
User-Friendly, Versatile, and Efficient
Multi-Link DNS Service Discovery

Daniel Kaiser, Marcel Waldvogel, Holger Strittmatter
University of Konstanz

Konstanz, Germany
ăfirstą.ălastą@uni-konstanz.de

Oliver Haase
University of Applied Sciences Konstanz

Konstanz, Germany
oliver.haase@htwg-konstanz.de

Abstract—When mobile devices at the network edge want to
communicate with each other, they too often depend on the
availability of faraway resources. Feasible user-friendly service
discovery is essential for direct communication. DNS Service
Discovery over Multicast DNS (DNS-SD/mDNS) is widely used
for configurationless service discovery in local networks; due in
no small part to the fact that it is based on the well established
DNS, and efficient in small networks.

In our research, we enhance DNS-SD/mDNS providing ver-
satility, user control, efficiency, and privacy, while maintaining
the deployment simplicity and backward compatibility. These
enhancements are necessary to make it a solid, flexible foundation
for device communication in the edge of the Internet.

In this paper, we focus on providing multi-link capabilities and
scalable scopes for DNS-SD while being mindful of both user-
friendliness and efficiency. We propose DNS-SD over Stateless
DNS (DNS-SD/sDNS), a solution that allows configurationless
service discovery in arbitrary self-named scopes – largely in-
dependent of the physical network layout – by leveraging our
Stateless DNS technique and the Raft consensus algorithm.

Index Terms—DNS, Multicast, Multi-Link, Service Discovery.

I. INTRODUCTION

Zero configuration service discovery is omnipresent as it is
essential for convenient interconnection and communication
of today’s variety of devices in the edge of the Internet. A
widely used zero configuration service discovery solution is
DNS Service Discovery [1] over Multicast DNS [2] (DNS-
SD/mDNS). It allows users to detect printers and streaming
devices, to share data, and to communicate with others in
a very convenient way. A particular benefit is that services
can be requested and offered using DNS resource records,
leveraging the solid and well established DNS; thus all means
of offering and requesting DNS records can also be used for
service discovery. DNS based service discovery cannot only
be used in local networks leveraging mDNS but also – losing
the zero configuration property – in the Internet using standard
DNS servers (DNS-SD/DNS).

While the current means of DNS-SD distribution are ap-
propriate for single-link local networks and the Internet, there
is no efficient, user-friendly means of DNS-SD distribution
for multi-link networks, used e.g. in universities or other
institutions. Since multicast packets are not propagated across
routers, devices in different subnets cannot exchange service

information using mDNS. Even if the routers propagated
the messages, multicast based solutions would not scale. For
bandwidth conservation, many institutions deactivate multicast
in their WiFi network denying mobile users the benefits of
local service discovery. On the other hand, DNS-SD/DNS
would pose an unacceptable configuration overhead and would
not scale if every user was allowed to offer services. Where
suited, an institution could use DNS-SD/DNS to offer a fixed
number of services to its members.

To enable communication among the myriad of smart end
user devices and thereby becoming an enabling technique
for edge-centric computing [3], DNS-SD needs user-friendly,
decentralized means to distribute resource records in multi-
link networks. If not, users are forced to trust central service
directory providers as soon as multicast is not enabled or
services have to be discovered across links.

The zero configuration community has reached consensus
that adding multi-link support to DNS-SD/mDNS is necessary
[4]. Apart from the community consensus, a petition [5]
expressing popular demand for providing a DNS-SD/mDNS
multi-link extension had been published.

This aligns well with our research (Figure 1), in which we
provide enhancements for DNS-SD/mDNS that are necessary
to make it a solid, flexible foundation for device communica-
tion in the edge of the Internet, by

‚ increasing the versatility by adding multi-link support to
DNS-SD/mDNS,

‚ providing user control through scopes instead of network
boundaries within an organization,

‚ increasing efficiency, especially in large networks, and
‚ adding easy-to-use privacy,

while maintaining deployment simplicity and backward com-
patibility.

In this paper we propose DNS-SD over Stateless DNS
(DNS-SD/sDNS) facilitating versatile configurationless re-
spectively low configuration modes of DNS-SD operation for
multi-link networks. Our Stateless DNS technique [6] allows
registrationless provision of DNS resource records via existing
DNS cache servers. This technique allows to discover the
service directory which is distributed among few hosts within
the institution’s network, by providing NS resource records
that delegate a special service discovery domain to these hosts.

Fig. 1. Service discovery framework supporting scalable privacy and scopes.
The solution for the DNS-SD/sDNS area is covered in this paper. The yellow
areas are solved by existing RFCs [1], [2]; we provide solutions for the green
areas. For the dark green areas we have prototypical implementations.

For synchronizing the service directory among these hosts, we
use the Raft consensus algorithm [7].

Using the existing DNS infrastructure, the only additional
entity needed is a lightweight reflector – implementable e.g. in
a few lines of Perl – that can run within or (publicly) outside
the current institution’s network.

The contribution of this paper is a new way of DNS-SD
resource record distribution that

‚ is user-friendly as it offers a zero configuration mode of
operation in multi-link networks,

‚ is versatile as it crosses broadcast domains and adapts to
arbitrary scopes,

‚ is efficient as it does not depend on multicast and poses
negligible overhead on clients, and

‚ seamlessly integrates into the DNS query process using
well established techniques making it backwards compat-
ible.

In section VII we show the bigger picture integrating DNS-
SD/sDNS with our service discovery framework.

II. RELATED WORK

Much research has been done in the field of service discov-
ery, especially for ad hoc networks [8]. In this paper we focus
on related work in the field of DNS based service discovery,
because these approaches work with existing infrastructure and
are either backwards compatible to standard solutions or can
at least be easily deployed.

A. Scalable Multicast DNS-SD in Low-Power Networks

Since multicast causes significant network load in wireless
networks [9], techniques that make DNS-SD/mDNS more
scalable – especially in 6LoWPAN [10] networks – have been
developed.

Klauck et al. present and analyze their DNS-SD/mDNS
implementation for low-power devices in [11] and propose
methods to compress DNS messages to make DNS-SD/mDNS
more suitable for 6LoWPAN networks in [12].

EADP [13] is a protocol for scalable service distribution
in 6LoWPAN Networks; it has been leveraged as means of
distribution for DNS-SD in [14] (DNS-SD/EADP).

Since these solutions are designed for 6LoWPAN and also
depend on multicast, they are not applicable to larger multi-
link home or institutional networks. But they can be incorpo-
rated in a DNS-SD framework offering appropriate means of
resource record distribution depending on the network and on
the capabilities of the client.

B. Centralized DNS Related Service Discovery Solutions

There are also DNS related service discovery methods,
SkyDNS1 and Consul2, using multiple central directory
servers. For our use-case, they are not suitable because like
DNS-SD/DNS they demand setup and maintenance. Never-
theless, they might be the solution of choice for an institution
willing to maintain the service directory, because they offer
a zero configuration experience for the user, if the directory
information is propagated using DHCP.

SkyDNS uses etcd3 as back end, which is a distributed key-
value store also leveraging Raft [7] to maintain consistency.
Services are announced by sending the service information
with JSON over HTTP to the underlying etcd. Thereafter, these
service instances are retrievable using standard DNS queries.

Consul uses another synchronization algorithm and is also
suitable for distributed computing centers.

III. REQUIREMENTS

RFC 7558 [4] defines requirements that should be met
by a scalable service discovery solution. It summarizes the
requirements, desiring “[...] a mechanism [...] that populates
the DNS name space with the appropriate DNS-SD records
with less manual administration than is typically needed for
a conventional unicast DNS server.“ Our solution (DNS-
SD/sDNS) offers precisely that.

In this paper we focus on the requirements for multi-link
home and institutional networks. For low-power and lossy
networks, we propose to use the solutions mentioned in sub-
section II-A. For single-link home networks the widely used
DNS-SD/mDNS is well suited, because it poses no significant
impact on the network load [15]. DNS-SD/DNS or solutions
presented in subsection II-B are suitable for global scope
service discovery. Our service discovery framework described
in section VII covers further requirements stated in RFC 7558
and also protects the user’s privacy.

IV. DNS-SD OVER STATELESS DNS

To resolve services in multi-link home or institutional
networks (where multicast does not work across links) we

1https://github.com/skynetservices/skydns
2https://www.consul.io
3https://github.com/coreos/etcd

https://github.com/skynetservices/skydns
https://www.consul.io
https://github.com/coreos/etcd

Alice

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:
ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com
ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Reflector

Bob

DNS Cache

Q: ml.ssdisc.com NS

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:
ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com
ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:
8622A5A5.t100.ml.ssdisc.com 100 IN NS ↩
ns1.8622A5A5.t100.ml.ssdisc.com
ns1.8622A5A5.t100.ml.ssdisc.com 100 IN A ↩
134.34.165.165

Fig. 2. Using Stateless DNS to provide an NS record for the ml-scope of our example service discovery domain with a TTL of 100 seconds. Alice registers
her device as SNS and Bob retrieves the registered information. Thereafter, Bob can interact with the SNS running on Alice’s device registering and retrieving
service instances.

introduce Scope Name Servers (SNS) that act as service
directories. Any host in the network can become an SNS
following the rules explained later in this section. A group
of SNSes is responsible for one service discovery scope
that in turn is defined by a service discovery domain, e.g.
ml.ssdisc.com4 or floor3.buildingB.ssdisc.com. We integrate
the service querying process seamlessly into DNS such that
the query process is exactly the same as when using DNS-
SD/DNS. This allows client software to be independent of the
resource record transmission mechanism.

A very important design goal is to allow a zero configuration
mode of operation for both clients and SNSes, including the
process of becoming SNS. Further, the administrator of the
respective multi-link network has to neither deploy anything
nor be aware of our service discovery method.

The questions how to discover SNSes, how to become SNS,
how to synchronize a set of SNSes, how to query, and how
to register service instances are addressed in the following
subsections.

A. Service Discovery Domains

We propose three options5 for clients to learn about service
discovery domains: preset discovery domain, DNS-SD/DNS,

4ml Ñ multi-link; ssdisc Ñ scoped service discovery. The service discovery
domain ssdisc.com is operational for experiments.

5The DNS interface for quering an SNS is indepented of the method used
to learn about the discovery domain.

and DHCP. The default service discovery domain can be
preset, e.g. to ssdisc.com, so that clients work without any
additional configuration. Further service discovery domains
can be provided via DNS-SD/DNS, e.g. on dom.ssdisc.com.
Institutions could also provide their own reflector, e.g. using
one of our implementations, and distribute the corresponding
service discovery domain via DHCP. This would only pose
a minor configuration overhead for an institution compared
to maintaining a centralized service directory, because only a
lightweight reflector and a one-time DHCP entry are required.
Even if it is possible to provide an institution specific reflector,
in most cases it is not necessary. Reasons for providing a
reflector might be high privacy6 and availability requirements.

The combination of a service discovery domain and a DNS
cache defines a service discovery scope; thus even when using
a public reflector (and service discovery domain), service
directory information is only available to hosts accessing
the same DNS cache server. A user can create named sub-
scopes independent of the underlying network structure by
establishing itself as SNS for an arbitrary subdomain of a
service discovery domain.

B. Providing the NS Records

Since an SNS might leave the network at any time, very
dynamic means of providing SNS information is required.

6When using a public reflector, the only transmitted data beyond the
institutions network are scope names and the (local) IP addresses of the SNSes.

ml.ssdisc.com
floor3.buildingB.ssdisc.com
ssdisc.com
ssdisc.com
dom.ssdisc.com

Further, SNSes should only be discovered within the institution
they currently sojourn in. To this end, we store name server
delegations to SNSes in the current network’s DNS cache
using our Stateless DNS technique7. This allows to have loca-
tion dependent SNSes for a single service discovery domain;
depending on the network a host is currently discovering in,
different resource records can be retrieved using the same
global service discovery domain.

To make Stateless DNS work, the only additional infras-
tructure we need is a stateless reflector implemented e.g. in a
few lines of Perl. It acts as authoritative name server for the
parent zone of the service discovery domain.

Figure 2 shows the process of leveraging Stateless DNS to
enter an NS resource record in the current DNS cache. Alice
sends a programming query – which is a valid DNS query –
by asking for an NS resource record with the label
8622A5A5.t100.ml.ssdisc.com IN NS

that will be handled by the local DNS server. Because the
stateless reflector is authoritative for this query, it will receive
the query from the local DNS server. The reflector then gen-
erates the following response using only information encoded
in this query8.
Question: 8622A5A5.t100.ml.ssdisc.com IN NS
Authority: ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com
Additional: ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Since it is a delegation to an in-Bailiwick [16] name server the
cache will accept the answer if this in-Bailiwick name server
– Alice’s notebook with the IP address 134.34.165.165 –
is able to answer the programming query and NS queries for
the service discovery domain.
Question: <LABELS.>ml.ssdisc.com IN NS
Authority: ml.ssdisc.com ê

100 IN NS ns1.<LABELS.>ml.ssdisc.com
Additional: ns1.<LABELS.>ml.ssdisc.com ê

100 IN A 134.34.165.165

The programming query answer’s sole purpose is to make
the cache name server store the NS entries. The answer for
NS queries of the service discovery domain is needed to be
able to retrieve the SNSes’ IP addresses. The general form of
the programming query is9

(<hexenc_IPaddr>.){1,4}t<TTL>.<scope>.<sd_domain>

allowing to specify up to four name servers in a single
programming query. All specified name servers have to be
able to answer the programming query and the NS queries
for the service discovery domain. Each of them has to return
all NS entries10 to make the cache name server ask the next
available name server in the case the first one asked is offline.

C. Establishing SNSes

When entering a network, a host supporting our multi-link
DNS-SD technique sends a standard DNS query asking for
NS records belonging to the service discovery domain to get

7In our techreport [6] we also propose methods to store other record types
and evaluate the proposed methods. The method used in this paper (to store
NS records) works reliably as it behaves like a normal subzone delegation.

8The IP address of the new SNS is transmitted in hexadecimal notation.
9We use () for grouping and {} for repetition count.
10Since the SNSes know each other, this does not pose a problem.

a list of SNSes (see Figure 3). The query corresponding to our
example service discovery domain is
ml.ssdisc.com IN NS

In the bootstrap phase there will be no SNS and the host
will become the first SNS using the Stateless DNS method
explained above (Figure 2). Because these NS entries cannot
be overwritten, the TTL should be chosen adaptively. The first
SNS should choose a low TTL when establishing its first NS
entry, e.g. 10 seconds. To mitigate race conditions arising when
other SNSes exist whose TTL just expired in the moment the
new host asks to become name server, the new host must ask
a second time after a random back off.

When the host gets a list of SNSes, it asks one of them
whether it should also join the set of SNSes and if requested
joins the set. This concludes discovering the current SNSes
and the host can now ask for service information or register
service instances as described in subsection IV-F. Figure 3
illustrates the process of SNS discovery.

It might happen that none of the returned SNSes answers.
This is the case when all of them have gone offline without
the TTL expiring and with no new SNSes joining. Since
Stateless DNS cannot overwrite existing NS records, the
discovery domain is blocked in this situation. For this reason,
we need a defined fallback discovery domain and means to
restore the standard discovery domain as soon as possible. The
fallback discovery domain can be derived from the standard
discovery domain by appending ´0 to the highest scope
defining label; thus the fallback domains for ml.ssdisc.com and
floor3.buildingB.ssdisc.com are ml-0.ssdisc.com and floor3.
buildingB-0.ssdisc.com, respectively. With increasingly low
probability, the fallback domain might be blocked in the same
way. The fallback of the fallback is defined to be the domain
with the corresponding integer incremented by 1. When a
discovery domain is blocked in this way, a host has to check
whether the next fallback domain has an SNS that answers and
if not, become SNS for this fallback domain (see Figure 3).
To recover from this situation as soon as possible, a host that
has to become name server for a fallback domain sets the
TTL of its NS resource records to the remaining TTL of the
NS records belonging to the standard domain. This makes the
standard discovery domain’s TTL and all fallback domains’
TTLs expire at the same time and the host can register for the
standard domain with all fallback domains being unblocked.
Because of the adaptive TTL, the chain of backup domains
is expected to be small. Further this problem will only occur
in the bootstrap phase because the system will stabilize as
described later.

D. Synchronization of SNS data

To make the system robust, we need several SNSes for
each scope. These SNSes have to synchronize so that clients
receive consistent information. Further, we want a querying
client to be able to abstract away from the existence of several
SNSes that need to synchronize, considering each of them as
an equal representative of a black box providing the desired
information.

ml.ssdisc.com
floor3.buildingB.ssdisc.com
ml-0.ssdisc.com
floor3.buildingB-0.ssdisc.com
floor3.buildingB-0.ssdisc.com

send NS query for
ml.ssdisc.com

corresponding
SNS answers?

become
first SNS

store
NS entry

enter Raft
SNS array

NS records
received?

become
SNS? send NS query for

ml-i.ssdisc.com

no

no

no

yes

yes

yes

Fig. 3. Process of querying for existing SNSes and becoming SNS, for the
ml-scope of our example service discovery domain.

For synchronizing the service directory among the SNSes
we use Raft [7], a simple and efficient consensus protocol,
that uses heartbeat messages and randomized timers to elect a
leader whose log state is copied to the other participants called
followers. After each heartbeat there is consensus11 about who
is leader and what the current log state is. In our case the log
state contains the resource records corresponding to registered
service instances. Changes of membership are also expressed
and communicated using the log state.

Raft is very efficient with respect to network load as it only
uses 2n messages per heartbeat, where n is the number of
participants. During each heartbeat phase the leader sends a
message to each follower, which can

‚ be empty if there were no log changes
‚ contain a log change
‚ contain a confirmation of a log change

and each follower sends a message to the leader which can
‚ be empty if the leader’s message was empty
‚ contain a confirmation of a log change if the leader’s

message contained a log change.
If the leader fails to send a message within the heartbeat
before a follower’s timer runs out, the follower becomes a
candidate and sends a further type of heartbeat message to each
participant, asking to vote it as the new leader. Participants that
did not get any other heartbeat message within the current
interval will send an answer message voting for the candidate
to become the new leader. If the candidate gets consensus it
becomes the new leader. All information needed to agree on
log changes, leader changes and membership is communicated
in these 2n messages per heartbeat interval.

11There is a negligible possibility for split votes. If a split vote occurs,
consensus is very likely to be reached during the next heartbeat interval.

E. Processing Queries

Our goal is to also incorporate all the additional logic nec-
essary for the SNSes within the heartbeat messages described
above. Since we want each SNS to be able to process service
information updates, we allow a follower to append an update
request within the heartbeat answer. The leader receiving this
request will then issue the corresponding update request to all
followers. This message will also be received by the issuing
follower, serving as a confirmation.

1) Deciding on a new SNS: The number of SNSes for a
scope should be chosen dependent on the number of hosts, the
number of offered service instances, and the churn rate. The
decision whether a querying client should become SNS should
be based on a ranking taking the hosts expected time to stay
online into consideration. As of yet, we are still assessing
which kind of ranking to use. If there is only one or two
other SNSes, the new client should definitely be chosen. The
closer the number of SNSes gets to the desired SNS set size,
the higher the rank of the new client should be in order to
be accepted. There should still be the possibility to substitute
the new client for an SNS in a full SNS set if the rank is
appropriate.

2) Updating the NS Records: When the TTL of the current
NS entry in DNS cache runs out, the current leader has to
reestablish itself and its followers as name servers. Since the
number of name servers that can be provided via the DNS
cache is limited by the reflector implementation – 4 in our
current implementation – the leader chooses the followers with
the highest rankings; we call an SNS that is established as
name server listed SNS. The TTL grows with the average
ranking scores of the current SNSes, but should not exceed
a sensible limit. Since the current leader will not change as
long as it is online, the system will stabilize. With increasing
online time, hosts are more likely to be leader.

3) Relaying Queries: In very large scopes there might be
a significant load on the listed SNSes as they are queried by
the hosts (see section VI). To cope with this problem, listed
SNSes can relay queries to a randomly chosen non-listed SNS.

F. Querying the SNSes

SNSes offer the standard DND-SD/DNS interface to clients
which allows asking for

‚ a listing of all existing service types,
‚ a listing of service instances of a service type and
‚ the resolution of a certain service instance.

The process of querying is independent of the structure the
SNSes are organized in. A client can query any of the SNSes
retrieved from the DNS cache.

Clients that need an up-to-date list of instances of a certain
service can request DNS push [17] from the SNSes; this is
important e.g. to provide an up-to-date list of online contacts
in a chat application.

Resource records provided by SNSes have a TTL of 10
minutes, which seems to be a good compromise between
avoiding stale information and efficiency. When hosts leave

1 use warnings ;
2 use s t r i c t ;
3 use Net : :DNS: : Nameserver ;
4

5 sub rep ly hand le r {
6 my ($qname , $qclass , $qtype , $host , $query , $conn) = @ ;
7 my ($rcode , @ans, @auth , @add, %headermask) ;
8

9 # parse query
10 $qname = l c ($qname) ; # to lower case
11 my (@ips , $ t t l , $a l ias , $qbase) ;
12 my $rx i = qr / (\w+(? :\ .\w+){0 ,3}) / ;
13 my $rx t = qr / t (\d{1 ,6}) / ;
14 my $rx a = qr / ((? : \w| ´)+) / ;
15 my $rx q = qr / ((? : \w+\ .) *\w+) / ;
16 i f ($qname =˜ / ˆ ${ r x i }\ .${ r x t }\ .${rx a }\ .${rx q}$ /) {
17 @ips = s p l i t (’ \ . ’ , $1) ;
18 ($ t t l , $a l ias , $qbase) = ($2 , $3 , $4) ;
19 $rcode = ”NOERROR” ;
20 }
21 else{
22 $rcode = ”NXDOMAIN” ;
23 r e t u r n ($rcode , \@ans, \@auth , \@add, \%headermask) ;
24 }
25

26 # assemble answer
27 $headermask{aa} = 1; # set a u t h o r i t a t i v e answer f l a g
28 my $al ias domain = $ a l i a s . ’ . ’ . $qbase ;
29 my $ns num = 1;
30 foreach my $ip (@ips){
31 my $ns domain = ’ ns ’ . $ns num++ . ’ . ’ . $al ias domain ;
32 #conver t from hex to dot ted no ta t i on
33 $ ip = j o i n ’ . ’ , unpack ”C* ” , pack ”H* ” , $ ip ;
34 my $rr ns = new Net : :DNS: :RR(name => $alias domain ,
35 t t l => $ t t l ,
36 c lass => ” IN ” ,
37 type => ”NS” ,
38 nsdname => $ns domain) ;
39 push @auth , $rr ns ;
40 my $rr a = new Net : :DNS: :RR(name => $rr ns >́nsdname ,
41 t t l => $ t t l ,
42 c lass => ” IN ” ,
43 type => ”A” ,
44 address => $ ip) ;
45 push @add, $rr a ;
46 }
47 r e t u r n ($rcode , \@ans, \@auth , \@add, \%headermask) ;
48 }
49

50 # create nameserver ob jec t
51 my $ns = new Net : :DNS: : Nameserver (
52 LocalAddr => ” 51.254.124.217 ” ,
53 Loca lPor t => 53 ,
54 ReplyHandler => \&rep ly handler ,
55) | | die ” couldn ’ t c reate nameserver ob jec t\n ” ;
56

57 # s t a r t nameserver main loop
58 $ns >́main loop ;

Fig. 4. Stateless reflector implementation in Perl. This implementation runs
as authoritative name server for our example domain ssdisc.com.

the network gracefully, they can send a sign-off message to
an SNS allowing the SNS deleting all corresponding resource
records and pushing this information to affected hosts. To
make a single message containing a hostname sufficient, both
hosts and SNSes store a mapping from host to resource records
offered by this host.

G. Hierarchical SNSes

SNSes can delegate sub zones; e.g. to create sub scopes or to
delegate the resolution of certain service types. This could e.g.
be used for load balancing or hiding the existence of certain
sub scopes.

H. Security and Privacy Considerations

Like DNS-SD/mDNS [1], [2], our technique currently relies
on the fairness of the participating hosts. Neither technique
offers privacy, and has the unmitigated risk of malicious
modification of resource records.

Using DNS-SD/mDNS, even passive hosts receive all re-
source records related to service instances as soon as they
are requested or offered by anyone in the network [18]. Each
user can overwrite existing service instances by violating
the protocol. Since every host gets these messages, such a
malicious user can be detected by looking at the traffic;
mitigating techniques currently do not exist.

Using DNS-SD/sDNS, hosts have to actively ask an SNS to
get resource records. An SNS could use filters to only provide
selected hosts with the requested records. Only hosts that are
currently in the SNS-role are allowed to overwrite existing
service instances. Further, SNSes tend to be more trustworthy
compared to random nodes because they are expected to be
stable nodes that are part of a network for a long time.
However, malicious SNSes can silently overwrite or drop
service instances. We work on mitigating this problem.

Privacy can be added to either technique using our orthogo-
nal privacy extension [19], [20] that provides means for secure
privacy preserving service discovery among hosts sharing a
previously exchanged secret.

V. IMPLEMENTATION

We have several implementations of the reflector (Perl, C,
Java), which are ready for deployment and work reliably.
Figure 4 shows the small but operational Perl implementation
of the reflector that is authoritative for our example domain
ssdisc.com; it supports the name server delegation method
used for DNS-SD/sDNS. Our flexible C implementation12

supports all Stateless DNS methods described in [6] and can
be easily augmented to support new methods by providing a
corresponding template file.

Our prototypical implementation of an SNS-capable service
discovery daemon13 demonstrates configurationless service
discovery in large multi-link networks without using multicast.

VI. ANALYSIS

In order to get widely accepted, user-friendliness with
respect to configuration effort is not sufficient; the solution
also has to be efficient. For service discovery this means it’s
working should be imperceptible to users with respect to both
network load and computational overhead. Despite the fact that
as of yet we did not thoroughly evaluate the network impact
of our solution14 the following analysis suffices to point out
the user-friendliness, suitability and scalability of our solution.

We analyze the influence of our solution on all relevant
entities, namely Hosts, SNSes, the SNS-Leader, the Reflector,
and the DNS-cache. An SNS is also a host, meaning it has

12https://gitlab.com/holst/StatelessDNS-EchoServer
13https://gitlab.com/kaiserd/sns
14We are going to evaluate our service discovery framework thoroughly

leveraging the Omnet++ discrete event simulator (https://omnetpp.org)

ssdisc.com
ssdisc.com
https://omnetpp.org

to perform host actions and specific SNS actions; the SNS-
leader also performs SNS and host actions in addition to SNS-
leader specific actions. We group the actions into the following
categories

‚ Raft related,
‚ messages to and from the reflector,
‚ messages to and from the DNS cache, and
‚ host to SNS communication which consists of

– service type listing,
– service instance listing,
– service instance resolution,
– service registration,
– service deregistration and
– queries about joining the SNS cluster.

The unity of our analysis is a single scope because the
actions causing the highest impact on the network load –
service instance listing and resolution – do not propagate
beyond scope boundaries. For actions reaching beyond scope
boundaries, e.g. communication with the reflector, we examine
an appropriate wider area.

Before going into more detail, we want to shortly address
the main efficiency concern, namely the number of service
instances a host wants to be listed. With DNS-SD the host
requests a service listing for service types it is interested in
and then selects the service instances it wants to be resolved. In
huge scopes this number can be quite large and the SNS has
to send the full list of PTR resource records corresponding
to these service instances to the host. This only has to be
done once per host joining a network; but a large number
of hosts joining a network might cause a significant load
on the corresponding SNSes. However, since the user has to
choose among the service instances manually, we argue that
this number should not be large. In future work, we consider
attribute based service instance selection on the SNS to cope
with this problem. Nevertheless, our solution in its current
state scales very well as we show in this section. We meet the
scale requirement of RFC 7558 [4] – ”It must scale to a range
of hundreds to thousands of DNS-SD/mDNS-enabled devices
in a given environment.” – as shown in the following analysis.
Standard multicast DNS service discovery does not scale to
scopes that large because the mere number of multicasts would
tie the network.

We do not take background traffic into consideration15

and consider only nodes supporting DNS-SD/sDNS. For ease
of calculation we assume that the devices register all their
services right when they join the network.

Our analysis uses the following variables and their respec-
tive limits.

‚ n, the number of hosts in the scope. We want scopes to be
scalable up to n “ 10000. Larger scopes can be handled
by limiting the number of listed service instances or by
subdivided them.

‚ no, number of nodes joining (and leaving) the network
per second. We use 10 minutes as minimum for the

15This will be part of our Omnet++ evaluation

average time a host is online [9], leading to maximum
arrival rate of n{600 “ 16.6 « 17 users per second.

‚ so, the average number of service instances offered by a
host. We regard so “ 5 as sensible default.

‚ sl, the average number of service instances a host wants
to be listed. In huge scopes, we consider 5% of the service
instances offered a reasonable upper bound, leading to
maxpslq “ nso ˚ 0.05 “ 2500.

‚ sr, the average number of service instances requested by
a host. In huge scopes, we consider 5% of the listed
service instances a reasonable upper bound, leading to
maxpsrq “ sl ˚ 0.05 “ 125.

‚ k, the total number of SNS in the network. We consider
k “ 20 a sensible maximum as it is very unlikely for 20
SNS to fail at the same time.

‚ kl, the number of listed SNS, i.e. SNS stored in the DNS-
cache. With our current implementation maxpklq “ 4.

‚ h, Raft heartbeats per seconds. We consider h “ 3 suffi-
cient to provide hosts with current information. Increasing
the heartbeat frequency to e.g. h “ 10 would increase
the number of transmitted packets, but not the network
load because the service related information that has to
be synchronized per time interval does not change.

‚ sizeP, average size of a PTR resource record. We use
100 Bytes as upper bound.

‚ sizeST, average size of SRV and TXT record. We use
a single variable because these records are always trans-
mitted together. The upper bound used in the following
is 500 Bytes.16

‚ sizePST, sizeP ` sizeST, average size of all records
associated with a service instance, summing up to an
upper bound of 600 Bytes.

‚ TTL, the TTL of entries in the DNS cache. Like described
above, the minimum is 10 s.

Figure 5(a) shows the estimated network load the different
entities have to cope with.

A. Host

A non-SNS host is agnostic to the Raft related actions.
Further, it does not communicate with the reflector. The
communication with the DNS cache to get the current SNS
list is negligible as it is a tiny fraction of the many DNS
requests when surfing the web. Queries concerning joining the
Raft cluster, and registering and deregistering services can be
neglected because these actions only demand a few messages
per session. Listing service types is also imperceptible because
even in a very large scope the number of offered types is
expected to be manageable and the set of available service
types is expected to change slowly.

After discovering SNSes, a host asks for a listing of service
instances followed by a resolution request for chosen services.
Even with maxpslq “ 2500 and maxpsrq “ 125, the amount
of data received would only be sl ˚ sizeP “ 250kB

16These average resource record sizes are very high; in all load critical
situations, many records are transmitted in one packet, which reduces the
header overhead significantly.

#hosts in the network

ne
tw

or
k

lo
ad

 in
 k

B
/s

0 2000 4000 6000 8000 10000

0
20

0
60

0
10

00

SNS Leader
SNS
Host

(a) Estimated network load the different DNS-SD/sDNS entities have to cope
with.

#hosts in the network

ne
tw

or
k

lo
ad

 in
 k

B
/s

0 2000 4000 6000 8000 10000

0
50

10
0

20
0

service listing
service resolving
Raft
service deregistration
host sign−off

(b) Estimated network load of an SNS distributed over the different SNS
actions.

Fig. 5. Estimated network load caused by DNS-SD/sDNS, dependent on the number of hosts in the examined scope. We chose 2% of the hosts as SNSes,
with a minimum of 4 and a maximum of 20. In scopes with less than 4 hosts, every host is an SNS.

and sr ˚ sizePST “ 75kB, respectively, without taking
compression into consideration. The load on the host while
sojourning in a network is very low even when using the afore
mentioned maximum values: noso ˚ 0.05 ˚ sizeP « 425B/s
and noso˚0.0025˚sizePST « 125B/s for service listing and
resolving, respectively; the arrival rate of new users per second
is about 17 with each of them offering 5 service instances on
average, of which in turn 5% have to be listed and 0.25% have
to be resolved. Even in our large example scope the network
load a host is exposed to only sums up to a manageable
burst of 325kB when joining the network and 550B/s while
sojourning in the network.

Further, the computational overhead on the host devices
used for packet processing is imperceptible to the user, both
in terms of responsiveness of the system and battery life. The
host has far less load compared to mDNS-SD as managing
services is the SNSes’ task; this makes our solution feasible
for low power devices.

B. SNS

Raft handling only needs two messages per heartbeat (2h
messages per second), and only messages propagating new
service information might be of considerable size. The load
caused on an SNS by Raft to synchronize the service infor-
mation is noso ˚ sizePST “ 16.6 ˚ 5 ˚ 600 “ 50kB/s. This
also includes the cost for receiving service registration queries
as an SNS receives this query only once; either directly from
a host or via a Raft heartbeat message.

Deregistering services is also handled in the heartbeat mes-
sages; it only needs a hostname per host signing off, adding
just no ˚ sizeP “ 16.6 ˚ 100 « 1.7kB/s.

We don’t consider service type listing. Typically there are
only a few different service types (roughly nso{sl “ 20 in
our example scope) and since most hosts already know which
types they are interested in, they don’t need to list service
types.

The load caused by service instance listing and service
instance resolution corresponds to the load on a host when
joining the network multiplied by the arrival rate, divided by

the number of SNS: nosl{k˚sizeP “ 16.6˚2500{20˚100 «
210kB per second and nosr{k ˚ sizePST “ 16.6 ˚ 125{20 ˚
600 “ 62.5kB/s for service instance listing and service
resolution, respectively.

Pushing service deregistration information to clients needs
nosr{k ˚ sizeP “ 16.6 ˚ 125{20 ˚ 100 « 10.5kB/s, in the
unfavorable case that each service a host resolved was offered
by a distinct host.

The memory capacity needed by the SNS to store the service
directory amounts to nso ˚ sizePST “ 30MB. When an SNS
goes offline and a new SNS is chosen, the service directory
has to be synchronized to the new SNS. Since in small scopes
the caused load is insignificant, in large scopes the SNS are
expected to stay online for a long time, and only one of the
SNSes has to transmit the directory to the new node, we don’t
consider these occasional bursts in the average network load
per second an SNS has to cope with. If every ten minutes one
SNS went offline – which is a high frequency of SNS change
for such a large scope – an SNS has to cope with such a burst
approximately once every 3 hours.

In summary, an SNS has to cope with a network load of
340kB/s in our large example scope when estimating the
neglected actions to amount to approximately 10kB/s. Figure
5(b) shows the estimated network load caused by the different
SNS actions.

C. SNS Leader

The communication to the reflector is negligible; even using
the minimal TTL it only happens once every 10 seconds.

The Raft message load the SNS leader is exposed to
corresponds to k times the load of the follower SNSes,
because the leader exchanges messages with every follower:
nosok ˚ sizePST “ 16.6 ˚ 5 ˚ 20 ˚ 600 “ 1MB/s. This is a
significant load, but our example scope is very large (as well as
the average resource records size) and the SNS leader in such
a large scope is expected to be very strong and connected to
Gigabit Ethernet. Recall that a scope of this size takes time to
grow; there will be many leader elections, eventually resulting
in a strong leader and also strong followers. To reduce the load

on the SNS leader in very large scopes, it can delegate all host
queries to other SNSes or even forgo joining the listed SNSes.

D. Reflector

The load on the reflector is really low. For each scope that
is part of its authority zone it has to communicate once with
a single SNS leader before the corresponding TTL is about to
end. Even if a single service discovery domain had so many
scopes that it would be hard for a single reflector to handle
them, several reflectors using anycast could be used without
synchronizing, because the reflector does not hold any state.

E. DNS-Cache

The load increase for the DNS-Cache when using DNS-
SD/sDNS is imperceptible as usual web surfing causes a
myriad of DNS-Cache requests. There is only one new cache
entry per SNS TTL for a scope and hosts only ask for the
SNS list when entering the network or when the SNSes stop
answering.

F. Unicast vs. Multicast

Compared to DNS-SD/mDNS we reduce network load
in most scenarios as we forgo multicast. The influence of
many multicasts on the network load is especially severe in
huge 802.11 wireless networks [21], because multicasts are
transmitted using a very low transmission rate so that older
devices not supporting higher transmission rates can receive
the multicasts as well [22]. Hong et al. [9] show that 13% of
their campus network bandwidth is used by DNS-SD/mDNS.
We analyzed the expected network bandwidth savings when
using our service discovery privacy extension [19] which also
forgoes multicast.

There are other disadvantages of multicast in 802.11 wire-
less networks described in [22], like handling host sleep mode,
which further increases battery drain, because devices have to
stay awake if multicast traffic is waiting to be sent by the
access point.

VII. INTEGRATION AND ARCHITECTURE

This section gives a short introduction to our service dis-
covery framework. It returns control to the user supporting
scalable scopes and scalable privacy. Scalable scopes, as
described above, allow users choosing the scope in which the
services are offered and requested; our privacy extension [19]
allows to selectively offer services to chosen friends, chosen
groups, or everyone in a scope.

A. Service Discovery Framework

Figure 1 classifies service discovery techniques with respect
to the reachability scope they are used in and the privacy
they offer. To the end of providing such a service discov-
ery framework, we combined existing techniques and found
solutions for the yet missing parts. Solutions for the smallest
scope of single-link local networks and the biggest scope of
the whole Internet are given by DNS-SD/mDNS and DND-
SD/DNS. To provide a solution for the gap in between, we
developed DNS-SD/sDNS which has been proposed in this

paper. These techniques combined do not cover the whole
desired area as they do not provide privacy. DNS-SD/mDNS
publishes private information about services in an unsolicited
way [18]. To give users control over the offered and requested
services, we do not only provide privacy in a binary way -
either it is on or off - but give the possibility to scale the
privacy, i.e. choose a privacy level. This is important because
the less privacy is demanded the easier is the necessary process
of device pairing. To allow all users in the current network to
discover a certain service, we provide an auto-pairing meta
service that exchanges pairing information with all devices
in the current network. This allows the paired devices not
only exchanging service information in the current network
but also in all other networks. Pairing at this level of privacy
works without any configuration. Our privacy extension [19]
allows to offer services to chosen friends. While the basic
privacy extension, which we implemented as an extension
to the Avahi17 Zeroconf daemon, is limited to single-link
networks like DNS-SD/mDNS, augmenting it using Stateless
DNS allows scalable scopes within the privacy extension. We
also implemented an enhancement of our privacy extension
leveraging Stateless DNS to avoid the need of multicast [20]18.

B. User Control

The user interface to control the scope and privacy is
provided by our enhanced service browser. Sensible defaults
are preset to still allow configurationless service discovery. The
enhanced service browser also manages user groups for the
privacy extension. It does not matter if group members were
paired using the auto-pairing meta service or a user pairing
[19]. Users can manage groups, but configurationless group
management is also offered: e.g. all friends paired using the
auto-pairing meta service in a certain network allowing e.g.
to automatically get a group of all devices used in the home
network.

C. Architecture

To ease the integration of alternative ways of service
discovery, and to integrate into existing service discovery
daemons, we propose a service discovery daemon (SDD)
that is responsible to demultiplex client requests to different
resolvers. Leveraging the proposed service discovery daemon,
client software can use a unified interface for service discovery.
Figure 6 illustrates our proposed architecture.

The SDD can be controlled by users via our enhanced
service browser that allows to set the scope of discovery and
privacy for single service instances, certain service types or
all services. The SDD is also connected to a pairing module
that handles pairing for privacy preserving service discovery
[19].

Based on sensible defaults or decisions made by the user
overriding the defaults, the SDD decides – given a client

17http://avahi.org
18 To also support service listing for unpaired devices and arbitrary scopes

the techniques proposed in this paper have to be used.

http://avahi.org

Fig. 6. Service discovery daemon (SDD) architecture. The SDD offers
a unified interface to client software and demultiplexes client requests to
different means of resource record distribution. Backwards compatibility is
granted by the legacy interfaces.

request – which means of resource record distribution has to
be used.

Backwards compatibility is provided, because software not
supporting the interface to the SDD still works as the interface
to existing service discovery daemons has not been changed.
Since we provide extensions to Avahi, existing clients can also
use the privacy preserving service discovery and offer services
in a multi-link scope.

VIII. CONCLUSION AND FUTURE WORK

Multicast DNS Service Discovery over Stateless DNS
(DNS-SD/sDNS) provides a versatile, convenient and easily
deployable means of resource record distribution for scalable
DNS Service Discovery. It offers a zero configuration mode
of operation and seamlessly integrates in the DNS discovery
process, allowing core-independent, user-controllable device
interaction in the edge of the Internet. Our proof-of-concept
implementation – realized as an extension to the Avahi Zero-
conf daemon – already allows to use DNS-SD in our campus
WLAN where multicast is disabled. We showed how to
integrate DNS-SD/sDNS in our service discovery framework
making it part of a user-friendly, efficient service discovery
solution supporting both scalable scopes - with the help of the
technique proposed in this paper - and scalable privacy. We
plan to address further security and privacy problems arising
when offering service information across links and in scalable
scopes. Further we will evaluate our scope extension with
respect to network efficiency using the Omnet++ discrete event
simulator19.

We also plan to integrate DNS-SD hybrid proxy [23]
capabilities in the SNSes as soon as the Internet draft becomes
an RFC, which is likely to happen soon. This will allow hosts
that are not aware of SNSes to use DNS-SD in multi-link
networks providing a very elegant way of being backwards
compatible.

19https://omnetpp.org/

REFERENCES

[1] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC
6763 (Proposed Standard), Internet Engineering Task Force, Feb. 2013.

[2] ——, “Multicast DNS,” RFC 6762 (Proposed Standard), Internet Engi-
neering Task Force, Feb. 2013.

[3] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[4] K. Lynn, S. Cheshire, M. Blanchet, and D. Migault, “Requirements
for Scalable DNS-Based Service Discovery (DNS-SD) / Multicast DNS
(mDNS) Extensions,” RFC 7558 (Informational), Internet Engineering
Task Force, Jul. 2015.

[5] (2013) Petition from educause higher ed wireless networking
admin group. [Online]. Available: https://www.change.org/p/
from-educause-higher-ed-wireless-networking-admin-group

[6] D. Kaiser, M. Fratz, M. Waldvogel, and V. Dietrich, “Stateless DNS,”
University of Konstanz, Tech. Rep. KN-2014-DiSy-004, Dec 2014.

[7] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annual Technical Conference, 2014, pp.
305–320.

[8] C. N. Ververidis and G. C. Polyzos, “Service discovery for mobile ad hoc
networks: a survey of issues and techniques,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 3, pp. 30–45, 2008.

[9] S. Hong, S. Srinivasan, and H. Schulzrinne, “Measurements of multicast
service discovery in a campus wireless network,” in Global Telecommu-
nications Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009,
pp. 1–6.

[10] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs
6282, 6775.

[11] R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-
based discovery service for the internet of things,” in Ad-hoc, Mobile,
and Wireless Networks. Springer, 2012, pp. 316–329.

[12] ——, “Enhanced DNS message compression-optimizing mDNS/DNS-
SD for the use in 6LoWPANs,” in Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), 2013 IEEE International
Conference on. IEEE, 2013, pp. 596–601.

[13] B. Djamaa, M. Richardson, N. Aouf, and B. Walters, “Towards efficient
distributed service discovery in low-power and lossy networks,” Wireless
Networks, vol. 20, no. 8, pp. 2437–2453, 2014.

[14] B. Djamaa and M. Richardson, “Towards scalable DNS-based service
discovery for the internet of things,” in Ubiquitous Computing and Ambi-
ent Intelligence. Personalisation and User Adapted Services. Springer,
2014, pp. 432–435.

[15] A. Rain, “An analysis of multicast traffic in wireless networks,” Master’s
thesis, University of Konstanz, 2015.

[16] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache poison-
ing,” in Security and Privacy in Communication Networks. Springer,
2010, pp. 466–483.

[17] T. Pusateri and S. Cheshire, “DNS push notifications,” Working Draft,
IETF Secretariat, Internet-Draft draft-ietf-dnssd-push-03, November
2015.

[18] D. Kaiser and M. Waldvogel, “Adding privacy to multicast DNS service
discovery,” in Proceedings of IEEE TrustCom 2014 (IEEE EFINS 2014
Workshop), 2014.

[19] ——, “Efficient privacy preserving multicast DNS service discovery,” in
Workshop on Privacy-Preserving Cyberspace Safety and Security (IEEE
CSS 2014), 2014.

[20] D. Kaiser, A. Rain, M. Waldvogel, and H. Strittmatter, “A multicast-
avoiding privacy extension for the avahi zeroconf daemon,” Netsys 2015,
2015.

[21] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Computer Society LAN MAN Standards
Committee IEEE Std 802.11 TM - 2012, 03 2012.

[22] E. Vyncke, P. Thubert, E. Levy-Abegnoli, and A. Yourtchenko, “Why
network-layer multicast is not always efficient at datalink layer,” Work-
ing Draft, IETF Secretariat, Internet-Draft draft-vyncke-6man-mcast-
not-efficient-01, February 2014.

[23] S. Cheshire, “Hybrid unicast/multicast DNS-based service discovery,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-dnssd-hybrid-
02, November 2015.

https://omnetpp.org/
https://www.change.org/p/from-educause-higher-ed-wireless-networking-admin-group
https://www.change.org/p/from-educause-higher-ed-wireless-networking-admin-group

