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ABSTRACT
During the last decade, large scale media distribution pop-
ulated peer-to-peer applications. Faced with ever increasing
volumes of traffic, legal threats by copyright holders, and
QoS demands of customers, network service providers are
urged to apply traffic classification and shaping techniques.
These highly integrated systems require constant mainte-
nance, introduce legal issues, and violate both the net neu-
trality and end-to-end principles.

Clients see their freedom and privacy attacked. Users, appli-
cation programmers, and even commercial service providers
laboriously strive to hide their interests and circumvent clas-
sification techniques. While changing the network infras-
tructure is by nature very complex, and it reacts only slowly
to new conditions, updating and distributing software be-
tween users is easy and practically instantaneous.

We present a new obfuscation extension to the BitTorrent
protocol, which allows signature free handshaking. The ex-
tension requires no changes to the infrastructure and is fully
backwards compatible. With only little change to client
software, contemporary classification techniques can be ren-
dered ineffective.

1. INTRODUCTION
The appearance of Peer-to-peer networks initiated the age
of large scale multimedia and binary distribution over the

networks. Currently, BitTorrent is one of the most promi-
nent application protocols in use and responsible for large
volumes of traffic.

Network providers see the use of P2P applications as a form
of denial of service (DoS). It demands vast amounts of re-
sources and threatens the quality of other services (QoS).
Furthermore, copyright holders impose responsibility for trans-
mitted content to network providers. As a result, network
providers apply traffic classification and shaping techniques
to satisfy demands for availability, security and QoS.

Those systems usually consist of a combination of Deep
Packet Inspection (DPI) and some sort of statistical or be-
havior analysis. DPI matches packet contents to known
protocol signatures. It is very expensive and prone to ob-
fuscation and encryption but works optimal on well known
signatures. Statistical /behavior analysis uses statistical in-
formation to evaluate the behavior of interesting flows or
hosts and provides estimates about possible application layer
protocols. Though accurate results cannot be guaranteed,
it is possible to identify obfuscated and encrypted proto-
cols. Traffic classification systems are highly integrated into
the network infrastructure and cannot be changed easily.
Updating signatures for identification is retroactive and re-
quires continuous monitoring and analysis of communication
protocols.

Clients have legitimate interest in hiding their intentions.
Users and application programmers go to great lengths to
obfuscate their traffic and data. Randomizing ports and
data encryption are common methods. In addition, multiple
services – both free as well as commercial – have surfaced
that aim to improve privacy and anonymity.

We propose a new obfuscation extension that makes use of a
globally shared secret to hide the infamous BitTorrent hand-
shake. It is easy to implement, backwards compatible and
does not require any changes to the BitTorrent infrastruc-
ture.

Only a few changes to the client’s source code are neces-
sary to effectively hide the BitTorrent traffic and to cir-
cumvent contemporary identification mechanisms while still
maintaining compatibility to unmodified clients.



2. RELATED WORK
Traffic classification is a vast and heterogenous field with
many different methodologies, applications and granulari-
ties. A study by Caida [15] reviews numerous papers that
span over a decade of research. In general, the goal is to ei-
ther specifically identify the layer 7 protocol, or to perform
a coarse-grain classification according to some pre-defined
categories. Methods are packet-based and flow-based, and
concentrate on port matching, DPI and analysis of flow char-
acteristics. Many of the proposed methods target specific
applications. As a result contemporary classification sys-
tems utilize multiple stages and a combination of different
methods. Extensive overviews of state-of-the-art traffic clas-
sification can also be found in [8, 12, 5, 11].

BitTorrent provides Message Stream Encryption (MSE)/
Protocol Encryption (PE). MSE utilizes a Diffie-Hellman-
Merkle (D-H) key exchange [14] to negotiate and establish
an encrypted connection. Peers try to establish an encrypted
connection by initiating the key exchange. If it fails, they
revert back to plain data transmissions. Otherwise the peers
negotiate encryption and perform the BitTorrent handshake.
Both peers can append random padding to the initial key
exchange messages. MSE/PE has been subject to heated
debate [13] and is fairly complex to implement. As a result,
not all clients support encrypted connections.

A D-H key exchanged is also used for eDonkey protocol en-
cryption [1, 2]. Skype uses RC4 to encrypt signaling traffic
while the actual VoIP packets between peers is encrypted us-
ing AES [3, 7]. Furthermore, Skype can use different trans-
port protocols and codecs to dynamically adjust to different
network environments [4].

Protocol obfuscation is usually limited to packet content.
Flow features are rarely or insufficiently disguised. In [11]
the authors show, that sophisticated statistical methods can
identify obfuscated and encrypted protocols with over 90%
accuracy. The SPID algorithm (Statistical Protocol IDentifi-
cation) computes session fingerprints based on “meters” and
compares them to pre-learned protocol models. A multitude
of different “meters” can be trained and included indepen-
dently which adds a lot of complexity but also flexibility to
the identification process. The authors conclude that con-
temporary protocol obfuscation is not able to hide traffic
from statistical classification due to relatively strong flow
characteristics. They suggest concealing flow features using
randomized flushing, random padding and random changes
of flow directions. We take this observation as a starting
point to improve BitTorrent obfuscation.

3. OBFUSCATING BITTORRENT
The BitTorrent protocol specification [6] defines the Peer
Wire Protocol, which is used to establish connections and
exchange messages. It requires the peers to do an initial Bit-
Torrent handshake directly following the TCP handshake.
This BitTorrent handshake (Figure 1) uses a fixed string
signature at a fixed position that is easily detectable using
simple string matching. Contemporary DPI systems like
openDPI 1 or l7-filter 2 simply compare the first 20 bytes to

1http://www.opendpi.org/, retreived 12.01.12
2http://l7-filter.sourceforge.net/, retreived 12.01.12

the pattern“0x13BitTorrent protocol” to identify BitTorrent
traffic.

Name 
Length Protocol Name

0 1 20

Reserved

28

Info Hash Peer ID

48 68

Figure 1: BitTorrent handshake message. Name
Length equals“0x13”, Protocol Name equals“BitTor-
rent protocol”. The Reserved field is used to signal
extension support. Info Hash is the sha1 hash of the
torrent file’s info hash value. Peer ID is a client’s
random peer ID

MSE is now the de-facto standard for encrypted BitTorrent
connections. However, [11] has shown, that even MSE can
be detected due to characteristics of the key exchange and
too little variance in padding implementations. While the
lack of padding can easily be fixed, MSE suffers from high
complexity and impact on cpu usage as well as bandwidth.

Following [11], we analyze how BitTorrent obfuscation can
be improved. We propose an obfuscation extension that con-
sists of multiple independent techniques that address both
the payload data as well as flow features. First we use the
globally known Info Hash and the target peer’s Peer ID to
obfuscate the first 28 bytes of the handshake. Thus, the
packet contents appears random to an observer, defeating
DPI systems. Second, we introduce a new message type
called Padding Message, which allows injection of a random
number of random bytes into BitTorrent conversations. This
raises variance in packet lengths and payload values and
thus increases the difficulty of statistical fingerprinting. We
also discuss the applicability of random flushing and random
changes of flow direction.

Note that the proposed techniques do only address peer-
to-peer communication and not tracker traffic. As a result
it does not protect against the so called Sandvine attack.
Tracker-to-peer traffic obfuscation that addresses the Sand-
vine attack problem has been proposed in [10].

3.1 Obfuscated Handshaking
Since the BitTorrent handshake is the most discriminating
feature of the BitTorrent protocol, concealing the handshake
messages itself will nullify the effect of most DPI systems.
We propose an obfuscation technique, which is easy to im-
plement and introduces very little overhead to cpu and band-
width usage.

In the obfuscated handshake message the fields Name Length,
Protocol Name and Reserved are obfuscated by using the
sha1 hash value of the target peer’s “peer ID” concatenated
with the shared “info hash”. Since sha1 produces a 20 byte
hash value, we actually use two hashes to produce 28 bytes.
Figure 2 shows the procedure.

The target peer ID and the info hash are concatenated twice
in altering sequence to be used as input for two sha1 hash
operations. Note, that this scheme requires the peer not
to support the compact peer list extension [9] which allows
trackers to return a more compact peer list, excluding the
peer ID. The target peer ID is used to prevent an observer

http://www.opendpi.org/
http://l7-filter.sourceforge.net/
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Figure 2: Obfuscation of the handshake message.
The fields Name Length, Protocol Name and Re-
served are replaced with sha1 hash values of the Info
Hash concatenated with the remote peer ID. Con-
catenation is denoted by (||), XOR is denoted by
(+)

from extracting all decoding information from the actual
message. An observer would need to associate IPs and ports
with peer IDs from tracker responses to derive the input for
the hash function. The first hash value is used to disguise
the Name Length and Protocol Name fields. Eight bytes of
the second hash value are XOR’ed with the Reserved value
to produce a new one. This introduces a higher variance in
byte values to increase difficulty for statistical fingerprint-
ing. Sha1 is used as hash function since it is already used
in BitTorrent. The fields Info Hash and Peer ID remain
unchanged.

Though the handshake itself appears to be random, it still
shows unique features that can be exploited for identifica-
tion. The handshake message is always 68 bytes long and
both request and response have the same info hash value.
That is, bytes 28 to 47 are equal in two consecutive packets
with opposite directions. In addition, incoming handshake
messages will have equal byte values in the first 48 bytes for
each unique {info hash, peer ID} pair. The fields Info Hash

and Peer ID will have equal values in every handshake mes-
sage (either as request or response) that is related to the
same torrent file and sent from the same peer.

3.2 Random Padding
[11] suggests using random padding to conceal flow features.
In case of MSE, padding is also used during key exchange,
although the implemented padding length is insufficient to
provide enough variance in packet lengths [11]. Introducing
random padding to the handshake solves the length issue.
We believe that the equal info hash is not really a problem,
since an observer needs to keep state and payload data to do
the actual comparison. The same applies for the {info hash,
peer ID} pairs. The observer needs to keep variance of the
first 48 bytes of inbound handshake messages. These mes-
sages can appear on different ports and will differ in case the
peer shares multiple files. There are possible solutions like
concealing the info hash and including the source peer ID in
the hashing process. To maintain compatibility with other
clients, peers supporting the obfuscated handshake exten-
sion first try to connect using an obfuscated handshake,and

if this fails, they fall back to standard handshake.

BitTorrent’s specification also specifies messages according
to the type-length-value (TLV) standard. Specifically, mes-
sages are encoded as <length> <type> <payload>. The first
integer denotes the length followed by one byte which de-
notes the type followed by the message payload. Nine mes-
sages are specified, some clients also implement a tenth mes-
sage.

We suggest a new message type called padding with a ran-
domly chosen length and random payload. It can be ap-
pended to conversations at all time, however, is especially
encouraged during handshaking which makes an early identi-
fication using statistical fingerprints extremely difficult. The
message is depicted in Figure 3.

Length = 1 + X Type = 0xa Value = X random bytes

Figure 3: Padding message. A random number
of random bytes. Introduces randomness in both
packet length as well as content value which makes
statistical fingerprinting difficult

Whenever the peer decides to use padding, the message is
randomly generated and can be appended to any data due
to be sent. We suggest using up to 1400 bytes to provide
randomness close to the MTU. One downside of the message
scheme is that the first two bytes in the length field will
always be zero, while message type will always equal 0xa.

3.3 Magic Peer ID
The downside of using obfuscation is additional overhead
due to reconnects if the connection is severed. The proba-
bility of this happening can be vastly reduced by encoding
obfuscation support in the chosen peer ID. Since the peer
IDs are announced by the tracker, peers in the swarm can
easily determine which fellow peers support obfuscation. To
indicate obfuscation support, the peer ID is chosen such that
its sha1 hash value shows a specific 2-byte value at a pre-
defined position. A peer that wants to connect to another
peer first hashes the target peer’s peer ID and checks the
hash value for the predefined 2-byte indicator. On a match,
the target peer supports obfuscation with high probability.
Following we will refer to such a peer ID as “magic” and to a
peer that has a magic peer ID as “magic peer”. The process
requires continuous random generating and testing of peer
IDs during startup. However, computation is cheap and
should on average not take more than 216 tries. Naturally
there is a margin of error if a peer chooses a magic peer ID
by accident without supporting the obfuscation extension.
Note, that the “magic” peer ID is not a requirement, nor a
guarantee for obfuscation support. It is a means to reduce
the probability of reconnects.

3.4 Random Flush and Packet Direction
[11] proposes random flushing and changes in packet direc-
tions to further hide flow features. However, random flush-
ing of TCP streams cannot easily be performed since it re-
quires disabling Nagle’s algorithm, a procedure that might



not be possible on all systems. It would also impact overall
TCP performance.

The BitTorrent specification states, that “peer connections
are symmetrical [...], and data can flow in either direction.”
[6]. Both the seeders and leechers can and do initiate com-
munication. However, peers that open a connection always
initiate key exchange and handshake. This could be ex-
ploited for identification.

There is a simple reason for this behavior. The connect-
ing peer wants to share a specific file identified by the info
hash. Since peers can share many files, the target peer can-
not know for which info hash the connection is established
prior to the handshake. Theoretically, either peer could ini-
tiate the handshake or key exchange. This would, however,
require the peers to keep dictionaries of IP, peer ID and info
hash pairs and also a method to guarantee that all files are
equally shared.

Considering all the problems, flushing the TCP stream is
impractical, and changing the direction of the key exchange
and handshake requires significant effort.

4. EVALUATION
We implemented our obfuscation scheme in ttorrent 1.0.4 3,
a lightweight java BitTorrent library that is easily extensi-
ble. It is an all in one solution, providing an API for clients,
trackers, and torrent files alike. We also implemented a ref-
erence application in c as baseline and for testing purposes.
It only provides the absolutely necessary functions and has
about 100 lines of code. The basic implementation into ttor-
rent required changes to less than 200 lines of code.

We used Planet-Lab4 as a testbed and deployed our modified
ttorrent on 70 nodes which all initially acted as leechers.
The tracker and initial seeder ran on dedicated machines
and tracked a single file. We captured all traffic on the
initial seeder’s interface using tcpdump5, which mimics the
capabilities and view of the network access provider. In
addition, we also tested interaction with a variety of popular
BitTorrent client software and opentracker6, which is the
mostly used tracker software world wide.

We then analyzed the captured traffic using OpenDPI7 and
SPID8. OpenDPI is Ipoque’s open source version of its com-
mercial PACE engine and a state-of-the-art DPI represen-
tative, while SPID is a statistical protocol identification al-
gorithm, which uses trainable protocol models that can dy-
namically be applied to identify l7 protocols. In both cases
we did not apply any optimizations but used the provided
demo applications with default settings. Only in case of
OpenDPI did we implement per flow output, to verify and
compare the results with SPID that outputs per flow results
by default.

3http://turn.github.com/ttorrent/, retreived 12.01.12
4http://www.planet-lab.org, retreived 12.01.12
5http://www.tcpdump.org/, retreived 12.01.12
6http://erdgeist.org/arts/software/opentracker/, re-
treived 12.01.12
7http://www.opendpi.org/, retreived 12.01.12
8http://sourceforge.net/projects/spid/, retreived
12.01.12

4.1 Client Compatibility
To test communication of magic peers with ordinary peers
we introduced popular clients to the swarm, including Vuze,
uTorrent, Transmission, rtorrent, and libtorrent-rasterbar.
This set covers the vast majority of BitTorrent clients in the
wild today and is a decent representation of actual swarms.

All clients could successfully participate in the obfuscated
swarm. We also forced random magic clients to initiate
an obfuscated conversation regardless of the target peer’s
peer ID to test the effect of fast reconnects. As expected,
the obfuscated handshake was rejected but the subsequent
plain handshake was accepted at all times. We did observe
random attempts to perform an obfuscated handshake with
Transmission clients. Apparently, the chosen peer ID had
magic properties.

We also tested the behavior of a magic peer participating
in an ordinary swarm. Again, the magic peer behaved as
expected and could communicate, download, and seed in the
ordinary swarm. We encountered no connection problems or
noticeable delays.

4.2 Magic Peer ID generation
We generated 100k magic peer IDs to analyze the number
of random tries needed to find a magic peer ID.
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Figure 4: Number of tries to generate the magic
Peer ID

Figure 4 shows the number of tries needed to generate the
magic Peer IDs. The maximum number of tries is pretty
high 766, 152. In the worst cases, the delay introduced by
searching for a magic peer ID might be enough to be rec-
ognizable and annoying to the user. However, the Peer ID
is generated only during startup and then remains constant
for the remainder of the session. As expected, on average
the client needed roughly 216 tries to find a suitable magic
peer ID.

4.3 Handshake message
We extracted all handshake messages from the recorded traf-
fic to analyze them for randomness and traits that could be
exploited for identification.

http://turn.github.com/ttorrent/
http://www.planet-lab.org
http://www.tcpdump.org/
http://erdgeist.org/arts/software/opentracker/
http://www.opendpi.org/
http://sourceforge.net/projects/spid/


Figure 5 shows the standard deviation and mean of the hand-
shake messages’ byte values. It can clearly be seen that the
standard deviation of bytes 28 to 47 (info hash) as well as
bytes 68, 69 , 72 (message header) are all zero. In addition,
standard deviation is also only medium for the first 28 bytes.
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Figure 5: SD and mean of handshake message bytes

Since we only shared a single file, the info hash is equal in all
of the recorded handshakes, which will not be the case for
peers sharing more then one file. The number of different
info hashes is, however, equal to the number of files shared.

The message header’s length field is an integer. The actual
length is lower or equal to 1,400 bytes. The first two bytes of
the header (offsets 68 to 69) will therefore always be 0, while
the type field (offset 72) will always be 0xa. While three
bytes might not be enough to reliably identify the hand-
shake message, they introduce a reoccurring pattern that,
combined with other traits, can be exploited.

The low standard deviation in the first 28 bytes is again
a result of sharing only one file. Inbound handshakes will
always have the same obfuscated signature for equal info
hashes. The first 48 bytes of incoming handshake messages
will be equal for any source sharing the same file.

4.4 Identification
The results of openDPI and SPID identification are shown in
Table 1. Both, DPI as well as SPI, were not able to detect
and identify the obfuscated BitTorrent traffic. OpenDPI
identifies 29 flows as BitTorrent. These are all seeder to
tracker announces, which OpenDPI recognizes by searching
for the string GET and then parsing the whole tracker re-
quest message. These flows are equivalent to the 29 HTTP
flows detected by SPID. Tracker requests look similar to
HTTP get requests and SPID was not able to distinguish be-
tween these two. In fact, in most cases SPID reported higher
similarities of the detected flows to eDonkey and ISAKMP
than to BitTorrent.

Algorithm total flows Identified
protocol number flows

OpenDPI 403
unknown 374

BitTorrent 29

SPID 389
unknown 360
HTTP 29

Table 1: Identification results for OpenDPI and
SPID

This shows, that techniques using payload information and
even flow features, can easily be fooled by disguising the

traffic with properties similar to other well known protocols
like HTTP or ISAKMP.

5. CONCLUSION AND FUTURE WORK
We presented a novel BitTorrent obfuscation scheme that is
easy to implement, is backwards compatible, and fairly effi-
cient. It circumvents contemporary identification tools and
thus effectively hides BitTorrent traffic. Only small changes
in applications require significant effort to update the net-
work infrastructure in order to maintain identification. Even
state-of-the-art statistical identification tools can easily be
fooled and circumvented by applying basic payload and flow
feature obfuscation.

Future work will explore possibilities to introduce more ran-
domness into the obfuscation process, apply more sophisti-
cated flow obfuscation, and to disguise the traffic to appear
as produced by other protocols.
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