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Abstract. Since the advent of P2P networks they have grown to be the biggest source of
internet traffic, superseding HTTP and FTP. For service providers P2P traffic results in in-
creased costs for both infrastructure and transportation. Interest is high to reliably identify
the type of service to ensure quality of service. In this document we analyze P2P network ar-
chitectures and give an overview of existing identification mechanisms. In addition we devise
a simple identification scheme suitable for implementation in resources restricted environ-
ments with limited computational power and memory. The scheme is based on behavior
analysis and as such is not prone to traffic obfuscation techniques.
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1. Introduction

1 Introduction

Peer-to-peer (P2P) systems form overlay networks to provide distributed storage that allows queries
and sharing. The overlay networks are dynamic by nature and can be of complex topologies.
According to [1] P2P systems can be classified into three types.

– Centralized
– Decentralized but unstructured
– Decentralized but structured

Centralized. A central directory server holds the locations of all data present in the P2P network.
Nodes query the server to retrieve a list of nodes that provide the desired content. Centralized
systems do not scale well and also have a single point of failure. Napster introduced this architecture.
BitTorrent also features a form of centralization in terms of trackers, though this has been loosened
by introducing decentralized trackers.

Decentralized but unstructured. These systems neither provide a centralized directory nor any
control about network topology and content placement. Nodes dynamically join the network and
query neighbors for content. Neighbors are randomly selected from all available nodes. Queries
are usually propagated using floods or random walks within a certain radius defined by a TTL.
Unstructured networks are very robust towards changes but queries do not scale since the load on
every node grows linearly with the numbers of queries. Nearly all P2P systems currently in use are
decentralized and unstructured including Gnutella, FastTrack/KaZaA and eDonkey.

Decentralized but structured. Structured overlay networks are prominent in current research. They
were primarily designed to improve data discovery and have constraints both on the network
topology and content locations. Content is not placed randomly but at specific locations. The
structure is usually built using a distributed hash table (DHT) where content is identified by a key
and the associated value is a pointer to the target location. Nodes form a graph that maps the
keys to values. A well known example is Kademlia which is also featured by the eMule network.
A widespread prejudice states that structures overlays are to complex to maintain. However, as
shown in [2] this need not be the case.
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2. Related Work

2 Related Work

Multiple different approaches for P2P traffic identification have been suggested based on signa-
tures, patterns, payload or behavior. This section presents a summary of different identification
mechanisms and exercises their applicability and dis-/advantages.

2.1 Transport layer identification

Previous work tries to identify P2P traffic [3] and super nodes [4] on the transport layer using flow
identification techniques based on heuristics using the 5-tuple {source IP, destination IP, source
port, destination port, protocol}. Traffic identification works as follows.

1. Source/destination IP pairs that use both TCP and UDP are flagged as P2P candidates.
Only few other applications like DNS, IRC, online gaming. . . have similar behavior and are
eliminated if identified using a lookup table of port numbers.

2. {source IP, source port} and {destination IP, destination port} pairs are examined. Pairs for
which the number of distinct IPs and distinct ports are equal are considered P2P.

3. To decrease the risk of false-positives the identified P2P flows are matched against the behavior
of known applications like eMail, DNS, HTTP, malware and online gaming.

The authors prove that P2P traffic can be identified with 95% accuracy using their heuristics.

Advantages and Limitations.

+ Protocol independent. Works on proprietary and encrypted protocols.
+ Non-intrusive. Requires little changes to flow identification schemes and does not strongly affect

flows.
- No P2P application identification.
- Must be matched against the behavior of other well known applications to reduce false-positives.

To identify super nodes the previously identified P2P traffic is filtered using the following
conditions.

1. Well-known super node ports. Super nodes usually use reserved well known port numbers.
2. Forwarding queries from peers. If egress timestamp − ingress timestamp < expected maximum

forwarding time and the payload size of the egress packet = payload size of the ingress packet,
it is considered to be a forward query.

3. Once a super node is identified, all nodes the query is forwarded to are marked as super nodes.

The authors conclude that the algorithm could not be verified because they were not able to provide
a super node themselves so this approach to identify super nodes is to be considered experimental.

2.2 Application Signature Identification

[5] presents an application signature based identification scheme to identify P2P download traffic.
The authors only concentrate on TCP transfer traffic of well known P2P protocols. They use
fixed-offset string matching to identify P2P TCP segments. The following signatures are used for
identification (we omit ’dead’ protocols for simplicity).

Gnutella

– First string following TCP/IP headers is GNUTELLA , GET , HTTP

2



2. Related Work

– If first string is GET or HTTP there must follow a field with either User-Agent: , UserAgent:

or Server: .
ed2k

– First byte after TCP/IP headers is the ed2k marker 0xe3 .
– next four bytes as integer is equal to packet size - size of headers + 5.

BitTorrent

– First 20 bytes in TCP payload equal 0x13BitTorrent Protocol .

Only the first packets at the beginning of the transfer phase need to be analyzed. Since fixed-offset
string matching is considerable cheap the overall cost is reasonably small. The authors show that
more than 99% of P2P traffic could be identified with their method.

Advantages and Limitations.

+ Reasonably small cost.
- Does not work on unknown, proprietary or encrypted protocols, unless the encryption sequences

are captured.

2.3 Match Characteristic Strings

Similar to [5] Karagiannis et al. propose a string based characterization of P2P traffic identification
[6],[7]. The authors analyze both TCP and UDP traffic and exercise multiple stages of identification.
The following table summarizes the string against the packet payload is matched (again ’dead’
protocols are omitted, for a complete overview see [7]).

P2P protocol Strings Transport Protocol

ed2k oxe3 , oxc5 TCP/UDP

BitTorrent

GET /announce?info hash , GET /torrents TCP

GET TrackPak , 0x13BitTorrent TCP

0x00000005 , 0x0000000d , 0x00004009 TCP

Gnutella

GNUTELLA , GIV , GET /uri-res/ , GET /get/ TCP

X-{Versio,Dynami,Query,Ultrap,Try,...} TCP

GND UDP

Table 1. Strings used for P2P identification

To identify P2P traffic the following algorithm is used.

1. If src/dst port matches well known P2P ports the flow is flagged as P2P.
2. Payload is compared to the string table. In case of a match the flow is flagged as P2P, else the

flow is flagged as non-P2P.
3. If a UDP flow is flagged as P2P from 2, src/dst IPs are hashed into a table of IPs. All flows

that contain an IP of this table are also flagged as P2P, even if there is no payload match.
Flows with src/dst port of other well known applications are excluded.

4. If a TCP flow is flagged as P2P, src/dst IPs are hashed into a second table of IPs. All flows
that contain an IP of this table are flagged as possible-P2P if they have been identified from
2. Flows with src/dst port of other well known applications are excluded.

3
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2.4 Algorithm Behavior Identification

[8] proposes a scheme to identify BitTorrent peers using the behavior of BitTorrent’s choke al-
gorithm. Algorithm behavior analysis could also be exercised to other protocols but is protocol
and revision specific. As such it is not further investigated. Interested readers are referred to the
original paper.

4
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3 P2P Protocol Analysis

This section analyses the properties of prominent P2P protocols and aims to find commonalities
among different P2P networks that can be exploited for automatic identification of P2P traffic.
The focus lies on answering the following questions.

– Identify signatures in P2P control and data flows, both for plain and encrypted protocols. How
does encryption affect identification.

– Does identification of control flows allow automatic identification of data flows and vice versa.
– DPI is expensive. Are there other signature or template based approaches for identification to

reduce complexity.
– Distinguish different types of unknown P2P traffic even after identification of most flows.

Emphasize on encrypted protocols.

We first present shared properties of P2P applications, problems in identification and how they
can be addressed. Then strategies, which have been previously proposed by former research are
summarized. After that our analysis of significant P2P protocols follows.

3.1 Peer-to-Peer Application Properties

Shared Properties. With the exception of Kademlia all popular P2P systems use an unstruc-
tured overlay network. Though all protocols have default ports, random ports are possible and
thus port numbers cannot be used for (positive) application identification. Also both TCP and
UDP are common protocols to transport P2P packets. Though the networks are classified as being
unstructured it is common to have a semi-structured architecture based on super peer-like entities.

The following common properties can be identified among different P2P networks.

– P2P systems cause at least two types of traffic: signaling and transfer.
– Bootstrapping: nodes connect to already known nodes to get information about possible down-

load locations. To do so, the hosts keep local information of already known peers and probe
them for availability.

– Handshaking: all P2P systems use some kind of handshaking to initiate connections.
– Ping, Pong, Keep Alive: Pings and pongs are common, as well as some kind of periodic keep

alive messages.
– Special peers: Queries are usually forwarded to special peers with certain requirements. These

are either super nodes or ultra peers. After that, peers connect to other peers for direct down-
load.

– Usually control messages are sent using UDP while the actual file exchange is done using TCP
connections.

– A number of connections is kept open, even if there are no active file transfers.
– On some protocols, the peer will constantly probe other peers, resulting in a high rate of

opening connections.

Challenges in identifying P2P traffic. There are a number of challenges involved in identifying
P2P traffic.

– Large number of self organizing hosts.
– Arbitrary ports for signaling and transfer traffic, and NAT makes identification on transport

layer difficult.
– Multiple different flows – signaling, transfer – per application.
– High speeds.

5



3. P2P Protocol Analysis

– Encryption and obfuscation complicates payload based identification strategies.

To address these problems different methods can be exercised.

– Sampling: Capture only a fraction of the packets. Since the frequency of (especially) signaling
traffic is high, only a fraction of these packets need to be captured to identify ip/port pairs.
This can significantly reduce the bandwidth needed for identification.

– Association: Signaling traffic suffices to identify the ports on which the peers listen. Thus, TCP
traffic to those ports can be tagged as data transfer traffic and does not need further effort.

– Matching few bytes of signaling packets to fixed strings is much cheaper as full DPI and enables
identification of non-encrypted protocols.

3.2 Encryption, Obfuscation and Caching

To avoid detection and traffic shaping measurements from ISPs, P2P systems started integrating
traffic encryption and obfuscation measurements into their systems. The main reason for any ISP
to shape P2P traffic are either legal issues or financial issues. P2P traffic consumes vast amounts of
resources and produce additional cost due to high inter-network traffic. Thus, ISPs started shaping
or prohibiting P2P traffic much to the dismay of their customers. The P2P community responds
with traffic obfuscation methods. This section describes common features of protocol encryption.
For details how encryption is implemented in specific protocols see the corresponding sections.

Methods. Common techniques include using handshaking to exchange key information (like Bit-
Torrent’s Diffie-Hellman-Merkle key exchange) or – as with Skype – proprietary encoding of the
payload and multistage encryption using hashing and multiple encryption algorithms.

– Use global information and random seeds to generate keys.
– Use packet information and random seeds to generate keys.
– Use handshaking to exchange key information.

These techniques are most prominent in Skype and also many BitTorrent clients. In general it
is much easier to encrypt peer-to-peer TCP connections than UDP signaling traffic. Since UDP is
connectionless ping and keep-alive messages can only be encrypted using packet internal informa-
tion whereas TCP connections allow key exchange methods.

In general P2P systems must somehow exchange key information. Signaling traffic is likely to be
unencrypted or weakly encrypted by using packet internal information or simple encoding schemes.

Dispute and Caching. This approach is subject to much dispute even in the P2P community.
BitTorrent’s inventor Bram Cohen attacks encryption on his internet journal 1. The main points
of his critic are:

1. Large traffic that looks like noise is not more difficult to identify than unencrypted flows.
2. Incompatibility issues between clients.
3. ISP content caching is obliterated by encryption/obfuscation.
4. Obfuscation is unprofessional, hostile and harmful.

To allow ISPs to reduce traffic cost, BitTorrent Inc. and CacheLogic developed the Cache
Discovery Protocol. ISPs can automatically detect requested content, cache and seed it to their
customers thus reducing extra-network traffic and cost. Caching is also widely considered to be
legal, since it is not equivalent to copying. Naturally, obfuscation renders caching useless, which is
one of the reasons why Bram Cohen has a strong averseness to it.

1 http://bramcohen.livejournal.com/29886.html
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3. P2P Protocol Analysis

Detecting Encrypted and Obfuscated Traffic. There are multiple approaches on how to
identify encrypted flows.

– Exploit the fact that encrypted traffic looks like noise.

– Exploit knowledge about packet sizes, transport protocols and transmission rates.

– Use man-in-the-middle attacks to intercept key exchanges.

– Intercept retrieval of global information needed to set up encryption keys.

The chosen approach mainly depends on the methods used for the specific application. Skype
for example, is heavily encrypted and looks nearly completely like noise which is at the time
of this writing a unique feature. Even VPNs – like IPsec – have specific signatures which make
them detectable. Of course, if more applications use fully encrypted communication it would be
impossible to distinguish those applications based solely on noise. For suggestions of how to identify
specific encrypted protocols, see the corresponding sections.

Modern traffic identification systems that claim to reliably identify applications use a combi-
nation of signature based DPI and application behavior analysis. They provide regular signature
updates to keep up with the evolution of P2P and other applications.

3.3 Gnutella

Gnutella is a direct successor of Napster and the first P2P application that introduced a decentral-
ized overlay network. In the Gnutella network all peers function as clients and servers alike, called
servents. It was introduced by Nullsoft and soon made open-source. Today the most prominent
Gnutella client is LimeWire2. Since Gnutella is open-source it is well documented and developers
frequently exchange and implement RFCs.

Terminology. Throughout the next paragraphs the following terms will be used.

servent Any peer in the Gnutella network

client A client that wishes to connect, issue queries, download files

server A peer that responds to queries and uploads files.

ultrapeer A special peer that serves as a mediator between leafes

leaf Any peer that is not an ultrapeer

user agent The Gnutella client software running on a peer.

Overlay Network. The Gnutella overlay has significantly change from v0.4 to v0.6. Older
Gnutella v0.4 servents can both issue and respond to queries. Queries are distributed by floods. A
servent broadcasts the query to all neighbors which forward the query similarly up to a maximum
radius. Figure 1 depicts the Gnutella v0.4 architecture.

This design had certain flaws which could lead to bottlenecks. Gnutella v0.6 introduces ultra-
peers which implement special services like flow control and Pong-caching. Other peers are called
leaves and keep only a small number of connections to ultrapeers. Figure 2 shows the Gnutella
v0.6 network. Each node decides independently to become an ultrapeer based on local information
which includes firewalling, operating system, bandwidth, uptime, RAM and CPU power. Leaves
only forward messages to all it’s ultrapeers while an ultrapeer relays messages to all other connected
ultrapeers and only to leaves if they decide the leaf can satisfy the request.

2 http://www.limewire.com/
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Query

Response

Download

Servent

Fig. 1. Gnutella v.04 network

Query

Response

Download

Leaf

Ultrapeer

Connection

Fig. 2. Gnutella v.06 network

Connect and Participate. To connect to the network a peer must be aware of ultrapeers that are
already connected to the Gnutella network. A peer keeps a local cache of well known Gnutella
servents. The joining peer rapidly sends UDP PING messages (see below) to known servents to
discovery which are actually online. On reply (PONG), the peer tries to connect using the Gnutella
handshake (see below). After connecting to an ultrapeer the client propagates its file list to the
ultrapeers and can start exchanging binary messages.

A Gnutella session can thus be described as follows.

Retrieve ultrapeers Client connects to ultrapeer databases and retrieves recent ultrapeer lists.
Usually manual or automatic HTTP download.

Discovery Client rapidly sends UDP PING messages to find online ultrapeers. Source port is
user-agent listen port.

Ultrapeer Connection Open TCP connection to online ultrapeers. Immediately perform Gnutella
handshake (see below). On error, receive new ultrapeers and try again.

Message Exchange User defined QUERY messages are forwarded to all connected ultrapeers, then
between ultrapeers and finally to leaves suitable for the query. QUERYHITs can either be directed
at the responsible leaf or it’s ultrapeer using UDP.

Client-Client Communication Users can browse through shared folders of each other. Requests
and file lists are exchanged using UDP.

Data Transfer Downloads are done using direct HTTP connections between servents. The client
initiates the TCP connection and requests files using HTTP GET requests. The server answers
with HTTP OK.

8



3. P2P Protocol Analysis

Protocol Specification. The current Gnutella protocol is version 0.6 3. A Gnutella servent con-
nects to the network by establishing connections with ultrapeers already present in the network.
There are multiple methods to retrieve lists for connected hosts like manual or automatic down-
loads. Connecting clients must first establish a TCP connection and then proceed with the Gnutella
handshake.

Gnutella Handshake.

1. Client establishes TCP connection.
2. Client sends GNUTELLA CONNECT/0.x , where x is the protocol version. The connection request

also carries client information like supported features, user-agent, the client IP and port.
3. Server answers either with GNUTELLA/0.x 200 in case the connection is accepted or with

GNUTELLA/0.x 503 when no leaf slots are available. In that case the Ultrapeer replies with
an X-Try-Ultrapeers header bearing {IP:Port} tuples of known ultrapeers.

4. A client that wishes to connect sends GNUTELLA/0.x 200 .
5. Both peers can start to exchange binary messages at will.

Note that the user agent opens multiple ports for connections to ultrapeers and send queries from
different ports than it accepts connections.

An observed client connection request looks like follows (all IPs and ports are replaced by
random numbers).

GNUTELLA CONNECT/0.6

X-Max-TTL: 3

X-Dynamic-Querying: 0.1

X-Requeries: false

X-Query-Routing: 0.1

User-Agent: LimeWire/5.1.2

Vendor-Message: 0.2

X-Ultrapeer-Query-Routing: 0.1

GGEP: 0.5

Listen-IP: 207.112.39.83:17784

Accept-Encoding: deflate

Pong-Caching: 0.1

X-Guess: 0.1

X-Ultrapeer: False

X-Degree: 32

X-Locale-Pref: en

Remote-IP: 19.179.51.127

An example ultrapeer 503 reply:

GNUTELLA/0.6 503 No Leaf Slots

X-Try-Ultrapeers: 201.170.245.144:39697,214.204.30.68:19678,67.225.145.85:31727

An example ultrapeer 200 reply:

GNUTELLA/0.6 200 OK

Listen-IP: 172.38.35.223:32758

Remote-IP: 48.105.117.144

User-Agent: LimeWire/4.18.8

3 http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
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X-Ultrapeer: True

X-Degree: 24

X-Query-Routing: 0.1

X-Ultrapeer-Query-Routing: 0.1

X-Max-TTL: 3

X-Dynamic-Querying: 0.1

X-Locale-Pref: en

GGEP: 0.5

Bye-Packet: 0.1

X-Try-Ultrapeers: 199.146.247.162:24971,186.65.239.213:18912,118.200.6.233:11669

Gnutella Messages. Messages are exchanged using UDP. Source port is the user agent’s listen port.
Each message has a 23 byte header as depicted in figure 3.

GUID (globally unique ID)

0 16

Type TTL Hops Length

17 18 19 22

Fig. 3. Gnutella message header

GUID A globally unique message ID. Byte 8 should contain 0xff for all modern clients. Byte 15

should contain 0x00 since it is reserved for future use.
Payload Type The type of message (see below)
TTL Time-To-Live. Number of times the message will be forwarded in the overlay before it is

removed.
Hops Number of times the message has been forwarded in the overlay.
Payload Length The length of the message in bytes from end of header. In little endian. This

number plus 23 equals the message size in bytes and are the only reliable source for the client
to identify the actual message content.

The following message types are allowed.

0x00 PING Used to actively discover hosts on the network. A servent receiving a Ping message is
expected to respond with one or more Pong messages.

0x01 PONG The response to a Ping. Includes the address of a connected Gnutella servent, the
listening port of that servent, and information regarding the amount of data it is making
available to the network.

0x80 QUERY The primary mechanism for searching the distributed network. A servent receiving a
Query message will respond with a Query Hit if a match is found against its local data set.

0x81 QUERYHIT The response to a Query. This message provides the recipient with enough infor-
mation to acquire the data matching the corresponding Query.

0x40 PUSH A mechanism that allows a firewalled servent to contribute file-based data to the net-
work.

0x02 BYE An optional message used to inform the remote host that the servent is closing the
connection, and the reason for doing so.

Query Routing Protocol QPR The QPR is the protocol used in an ultra peer scenario to route
queries in the network. Each ultrapeer maintains a local hash table mapping files to connected
peers. Peers use QRP to update the ultrapeers hash table as well as query files.

10
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Other Protocols. Multiple extension to the protocol exist, such as GGEP (Gnutella Generic Exten-
sion Protocol), HUGE and XML. Reserved bytes in the message payload indicate which extensions
the peers support and affects both signaling as well as data transfer traffic.

Traffic We have identified different types of traffic which are summarized in table 2. Here ’rnd’
means a port randomly chosen on initiating the connection while ’def’ denotes the user agent’s
defined listen port which is either left on the default value or chosen by the user.

peer-2-ultrapeer

description connection messages data transfer

type control control data

transport layer TCP UDP TCP

application layer QRP gnutella HTTP/HUGE

direction p2up p2p, p2up, up2p p2p

src port rnd def rnd

dst port def def def

purpose

join exchange messages exchange data

participate

query routing

handshake Gnutella (join) no TCP

header no ? message header no

signature

handshake paket size >= 23 B should start with

GNUTELLA B8 should be 0xff , rarely is GET , rarely does

B15 should be 0x00

B16 in

{ 0 , 1 , 2 , 0x40 , 0x80 , 0x81 }
B19-22 (little endian): Gnutella payload length

(= UDP payload length− 23)

frequency
high at start ≈ 7/sec only during transfer

infrequently afterwards frequent high amount of traffic

Table 2. Analysis of captured Gnutella traffic

Identification The following algorithm shows how to identify IP/port pairs of Gnutella peers.

1. If protocol = TCP & relative sequence number = 4 & bytes(0, 7) = GNUTELLA , then a
leaf Gnutella handshake message is caught. The scr IP can be added to the list of Gnutella
peers, the src port is a random port for this connection. The dst IP and port can be added to
the Gnutella candidate peers.

2. If the response messages first 8 bytes equal GNUTELLA , the dst IP and port can be added to
Gnutella peers.

3. It is possible but expensive to further dissect the response message to identify other Gnutella
peers.

4. If protocol = UDP & length ≥ 23 & byte(15) = 0
& byte(16) ∈ {0, 1, 2, 0x40, 0x80, 0x81} & bytes(19, 22) = length− 23, then src IP/port and
dst IP/port are Gnutella peers. These ports are also the listening ports on which data transfer
flows. And can be used to identify connecting hosts as Gnutella peers.
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3.4 BitTorrent

BitTorrent started in 2001 with a simple post on a forum: “My new app, BitTorrent, is now in
working order, check it out here” 4. It has been developed by Bram Cohen who describes it in [9].
Since then it has grown to be the most popular file sharing tool currently in use.

Overlay Network. The BitTorrent network consists of the following entities:

.torrent aka metainfo file. File with meta-data about the download file.
Webserver An ordinary web server that hosts the .torrent file.
Tracker A centralized server that maintains a list and the states of peers actively downloading

and uploading the file. It mediates between peers and answers requests. A new extension 5 also
allows decentralized trackers based on a Kademlia DHT.

Peer Any host participating in the BitTorrent network.
Seed Any peer that has all parts of the shared file. At least one seed for each file must be present

in the network.
Leech Any peer that is not a Seed. The term is generally used negatively for users downloading a

file and not seeding afterwards.

Figure 4 shows the network.

Webserver

Peer

Seed

Tracker

Down-/Uploads
Get Tracker
Get Peers

Fig. 4. BitTorrent network.

bencoding. Nearly all messages as well as the .torrent file are encoded using a scheme known as
bencoding. It defines the following formats.

byte strings <len in base 10 ascii>:<string>
integer i<integer in base 10 ascii>e
list l<bencoded values>e
dictionary d<bencoded string><bencoded value>e

4 http://finance.groups.yahoo.com/group/decentralization/message/3160
5 http://www.bittorrent.org/beps/bep_0005.html
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Protocol Specification. The trackers use a simple protocol on top of HTTP. A downloader sends
a tracker-GET request which contains its random ID, IP, Port and information about downloaded
and uploaded amount of data. The tracker responds with a (randomly) generated list of peers that
offer the file. The peers then connect to each other exchanging pieces of the file. Peer connections are
symmetrical. Files are split into pieces of commonly 218 byte. An extension allows UDP connections
for tracker requests. It is supported by a small number of clients, including Azureus/Vuze.

Peers communicate and exchange data over TCP. The BitTorrent protocol is also known as
“peer wire protocol”. After the TCP handshake a peer must immediately send the BitTorrent
handshake message, which is easily detectable. Then data or message exchange can commence.
The handshake message is 49+len(pstr) Bytes long and has the following fields.

pstrlen 1B, length of the following string

pstr string identifier

reserved 8B, for extensions. Each bit can be used to state support for different extensions.

info hash 20B, SHA1 hash of the info key of the .torrent file.

peer id 20B, unique peer ID. Includes the client ID and client version.

The current protocol implementations all use pstrlen = 0x13 and

pstr = BitTorrent Protocol . All other messages using the peer wire protocol have the following
structure.

message length 4B, length of the message

type 1B, type of message, not present for keep-alive

payload optional message content

There are multiple messages peers can exchange. Some of them are used to exchange status
information or request and find file pieces. Depending on the type of message the payload is present
or not which usually contains index information for file pieces.

In addition to the peer wire protocol the DHT extension also implements the so called KRPC
protocol used to query for files and nodes in the DHT. It is a simple RPC mechanism which is
transported over UDP. Each KRPC message is sent within one UDP packet without any retrans-
mits. The UDP packet contains a bencoded dictionary that encodes query arguments and return
values. There are three types of KRPC messages, query, response and error. They start with the
following string sequences.

query d1:a

response d1:r

error d1:e

Query messages transport query strings as arguments (as indicated by the key a) inside a dictionary.
Responses also are dictionaries with response strings. Error messages contain a list of error codes
and strings

Traffic. Table 3 summarizes the flows we could identify in a few hours long BitTorrent session.
We used the official BitTorrent client on multiple virtual machines and shared and seeded freely
available files. We do not analyze Tracker traffic, since it is far to rare to be used for flow identi-
fication. In the table, ’rnd’ means a port randomly chosen on initiating the connection while ’def’
denotes the user agent’s defined listen port which is either a default value or chosen by the user.
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description KRPC messages messages/data

type signal signal, transfer

transport layer UDP TCP

application layer peer wire/KRPC peer wire

direction in/out in/out

src port def rnd

dst port def def

purpose exchange messages exchange message/data

handshake no bittorrent

header message header message header

observed signatures
size >= 5 B size >= 49 B

B0-4: d1:{a,r,e} B0-19: 0x13BitTorrent Protocol

Table 3. Captured BitTorrent Traffic

Encryption and Obfuscation Many BitTorrent clients – excluding the official one – implement
methods for encryption and obfuscation, known as Message Stream Encryption (MSE)/Protocol
Encryption PE. The official BitTorrent client is able to accept but does not reply with encrypted
packets. BitTorrent uses the infohash field of the .torrent file combined with a Diffie-Hellman-
Merkle key exchange to set up an RC4 encrypted connection. Using the infohash from the .torrent
file prevents man-in-the-middle attacks. BitTorrent only encrypts TCP traffic transported using
the peer wire protocol. Signaling traffic, which is transported via UDP is unencrypted since no key
exchange is possible.

Identification

1. If protocol = TCP & rel.seq.num. = 4 & bytes(0, 4) = 0x13Bit , then a BitTorrent Hand-
shake is caught and data transfer is initiated. Src IP, dst IP/port can be tagged as BitTorrent
peers. The src port is random and specific for that connection.

2. If protocol = UDP & length ≥ 5 & bytes(0, 4) ∈ d1:{a,r,e} a KRPC message is caught

and the src IP/port and dst IP/port can be added to known BitTorrent hosts. These ports
also listen for data transfer.

Since BitTorrent UDP traffic is always unencrypted it is easy to identify BitTorrent peers
solemnly on capturing signaling traffic. This allows easy identification of IPs and listening ports.
Any traffic to these peers can be classified as BitTorrent traffic.

3.5 FastTrack/KaZaA

FastTrack is a proprietary protocol introduced by Sharman Networks that gained much attention
in 2003. It uses an architecture similar to Gnutella v0.6 consisting of supernodes (SN) and
ordinary nodes (ON), however, historically it precedes Gnutella v0.6. The protocol has not
been documented, but the ON-SN protocol has been largely reverse-engineered 6 with SN-SN
communication still being unknown. Documentation is also very out-dated ranging back to 2004.
[10] extensively analyses the KaZaA/FastTrack network.

As other P2P networks, KaZaA has been subject to lawsuits initiated by the RIAA. This lead
to KaZaA being sold and turned into a payment-based online music download service. The original
KaZaA Multimedia Desktop, which was famous for its addition of malware is no longer available.

6 http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?

revision=1.19
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The once popular KaZaA lite client has also been discontinued. There have been several attempts to
resurrect the KaZaA/FastTrack network, including Kazaa Lite Resurrection and MLDonkey, which
once provided connectivity to FastTrack. However, the current state is that KaZaA/FastTrack is
effectively dead.

Network. SNs are special nodes that are highly available, have large bandwidth, and high pro-
cessing power. SNs must volunteer to get elected, they are not automatically spawned as in the
Gnutella v0.6 network. Each ON connects to at least one SN and uploads meta-data of all files
they want to share with other nodes. ONs query SNs for files which broadcast the queries to other
SNs and check the query for matches in their meta-data base and respond with qualified hosts.
Figure 5 depicts the network architecture.

Query

Response

Download

Node

Supernode

Connection

Object upload

Fig. 5. FastTrack network.

Protocol Specification. As already mentioned little is known about the FastTrack protocol
specification and documentation is out-dated. In addition connections between ordinary nodes and
super nodes is encrypted and uses random ports and TCP as well as UDP. KaZaA uses HTTP-like
headers for file transfers which can be easily distinguished from ordinary HTTP traffic since they
are plain text.

Traffic. Unfortunately, we were not able to connect to the FastTrack network. All the original
clients ceased existence. Clients still in development like MLDonkey removed FastTrack connectiv-
ity. We tried several days to connect to the KaZaA network using the most recent version of Kazaa
Lite Resurrection, however, we had no luck in joining the network due to a too small number of
connected hosts. Thus, we were not able to actively identify different types of KaZaA traffic. The
only type of messages we could capture were UDP packets presumably used for discovery. All were
sent from the user agent’s KaZaA port to different host IPs/ports and had the following 12 byte
content: 0x27 00 00 00 29 80 KaZaA. .

Identification. Apart from discovery UDP packets we were not able to capture any KaZaA traffic.
Thus we can not derive any means for identification except looking for 12 byte UDP packets ending
with the string KaZaA. . However, since KaZaA/FastTrack is effectively dead and has no impact
on today’s internet traffic any effort of identifying it’s traffic is probably wasted.
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3.6 Skype

Skype has been developed in 2003 by the same people that also invented KaZaA. Thus, it shares
several features with P2P protocols, especially the overlay network. However, it is used mostly in a
one-to-one or one-to-few contact scenario, typically between people knowing each other, and rarely
for filesharing. Skype traffic is heavily encrypted and obfuscated. The binary as well as network
traffic have been reverse engineered in [11], [12]. There have been previous attempts to identify
Skype traffic which will be introduced in the following sections.

Overlay Network. The Skype overlay network is relatively similar to the KaZaA network. It
consists of super-nodes which can be used to relay traffic behind NATs and firewalls. Any node
can become a super-node based on availability, bandwidth and similar criteria. [11] states that
there are ≈ 200 super-nodes hardcoded into the Skype binary that change on every release. It is
currently unclear, whether the super-nodes are also used as a distributed dictionary of nodes and
skype IDs, or if a centralized approach is taken.

Encryption and Obfuscation Skype uses multistage encryption based on hashing, AES, RSA
and RC4 to encrypt it’s messages. It uses both TCP and UDP as transport layer protocol. In case
of TCP the whole message is encrypted. In case of connectionless UDP, the message cannot be
fully encrypted but only obfuscated, that is, the user agent must extract header information to
encrypt/decrypt messages. In addition, the UDP port must be fixed.

Skype UDP. Skype UDP packets are encrypted with RC4. The key is calculated using elements
from the datagram, including src/dst IP, a Skype packetID and parts of the actual payload. The
following fields can be identified in a Skype UDP message.

ID 16-bit random identifier.
FUN 3 random bits followed by a 5 bit function (payload) type. Five different types have been

identified: { 0x02 , 0x03 , 0x07 , 0x0f , 0x0d}.

Skype TCP. The whole TCP stream is encrypted using RC4. The seed is sent in the first 4 bytes.
In addition the data can be fragmented and sent over multiple packets. Data is packed using
arithmetic compression very similar to huffman encoding prior to encryption.

Traffic. [13] identifies three types of traffic caused by Skype which can be categorized into E2E
(end-to-end or peer-to-peer) and E2O (skypeout messages over PSTN gateways). Depending on
the type of traffic packets show different characteristics which provide first clues for identification.

E2E over UDP The five FUN bits are deterministic. Other bits appear completely random.
E2O over UDP The first four bytes are deterministic and represent a Connection Identifier

(CID). The CID is likely to change during connection setup but is stable afterwards. All other
bytes are cyphered and random. The port is fixed to 12340.

E2E/E2O over TCP The whole message is cyphered and completely random.

In addition the following observations are worth mentioning.

– Packet size depends on the codec used and is stable throughout the conversation.
– Transmission rate must be fast and constant to maintain a good quality of service.

In essence, this means that Skype traffic consists of rapid, equal-sized packets, transported via
UDP/TCP. With the exception of a few bits depending on the type the packets appear to be
completely random.
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Identification There have been previous attempts to identify Skype traffic. A rudimentary guide-
line is given in [11],[12], who try to detect Skype by the first UDP NAck packet, which can be
identified by length and the FUN bits. Further effort is done in [13]. The authors propose three
different Skype classifiers, based on methods prominent in data mining applications that exploit
statistical information and probabilities. They are usually quite expensive and cannot easily be
done in hardware. Another approach that tries to solve complexity and bandwidth problems is
proposed in [14]. Here, a signature based on deltas between packets of a flow is used for identifica-
tion.

Chi-Square Classification.
The chi-square classifier of [13] tests whether the inspected flow behaves like a Skype flow. To
determine the chi-square error, groups of bits of the packet are examined over time and compared
to the expected behavior stated in section 3.6. Random bits are expected to follow a specific
distribution and the error can be relatively easy computed.

Näıve Bayes Classification.
Bayes classification is a standard information mining application and also prominent in statistical
analysis. It examines certain features and based on the values of the features computes a probability
that the examined object belongs to a specific class. In this case the authors are interested in
message size and transmission rate of the packets. Based on the codec used the packets have a
distinct size. The rate may not drop below a certain threshold. Using these features the probability
that a flow is either Skype or not can be computed.

Payload Based Classification.
Skype makes payload based classification difficult due to encryption and obfuscation. However, there
is some information both in the payload as well as in the headers that can be used for identifying
Skype flows. The Classifier uses payload information introduced in section 3.6 to identify E2E and
E2O packets. Then timing information is taken into account to classify the flows.

Uncooperative Identification.
In [14], the author bases his scheme on the following observations.

– Skype flows have a constant rate (isochronicity).
– Skype flows have a constant packet size.
– Packets in Skype flows appear random, with the exception of certain bits.

The identification of Skype traffic works in multiple stages.

– Flows are defined only by the tuple {dst IP, dst port}. Since the Source IP/port can be easily
forged and NAT and proxy networks obfuscate the true source they are not taken into account
when identifying flows.

– Incoming packets that are bigger in size than a certain threshold are filtered out.
– Remaining packets are hashed into a table of flows and each flow is associated with a timer

and a counter.
– Flows in which the number of packets in a given interval exceed and under-run specific thresh-

olds over a period of time (30-100 packets per second), are removed from consideration.
– Remaining flows are matched against a pre-computed signature. The signature is based on

changes of 4 bit wide blocks of the packet payload within the flow. Each 4 bit block is seen as
an integer value. The delta between packets is derived by simple subtraction. Then the mean
and standard derivation of the deltas is computed and used as a signature. As shown in the
thesis [14], different protocols show a specific signature – including Skype – which can be used
to distinguish them from other protocols.
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The methodology works on high speed due to early filtering of flows and uses multiple tricks to
reduce memory requirements (multiple hashing, counting bloom filters, aggregated timestamps).
Furthermore it is easy to implement in hardware. The downside is, that it is not well tested and
only applied to actual Skype voice conversation. However, the use of filtering and flow signatures
is intriguing and a good starting point for detecting encrypted flows like Skype or maybe other
encrypted P2P protocols.

3.7 Kademlia

Kademlia [15] is a decentralized and structured P2P system that uses a DHT and a novel XOR
based distance metric. It has been integrated in eMule, mlDonkey, and certain BitTorrent clients
and has since gained a lot of attention both in the file-sharing community and in academics.

Overlay. Each node is assigned a unique 160 bit NodeID. Files are also identified by a 160 bit
key (usually a SHA-1 hash of it’s content). Files are stored at nodes with a close NodeID, where
close is determined by XOR(NodeID,key). Each node keeps a list of {IP,Port,NodeID} triples for
nodes of distance between 2i and 2i+1 called k-buckets. This list is updated when a node receives
a request from another node.

Protocol. The protocol consists of four RPCs.

PING probe a node to check it is alive.
STORE instruct a node to store a {key,value} pair.
FIND NODE query a node with a NodeID. The recipient returns {IP,Port,NodeID} triples.
FIND VALUE like FIND NODE. If recipient has received a STORE it returns the value.

For all RPCs the recipient echoes a 160 bit random RPC ID which can include a PING.
Kademlia nodes use UDP packets to communicate and exchange messages.

Lookups and Joining. Nodes perform a recursive node lookup. They select α nodes from their
k-bucket an initiate parallel FIND NODE RPCs. Of the k retrieved nodes closest to the target it
recursively selects another α nodes to query. Nodes that do not respond in a given time are
removed from consideration. Retrieval if values works similar but the FIND VALUE RPC is used.
Each node refreshes it’s buckets by periodically performing node searches for random IDs. Joining
a network requires a node to connect to an already connected node which is added to the k-bucket.
The joining node then performs a node lookup of it’s own ID and refreshes all k-buckets for hosts
further away than the nearest neighbor. In addition all nodes have to periodically (every hour)
republish keys. The exception is if a node recieved a STORE RPC for a key, it is not republished in
the next hour.

3.8 eD2k/Overnet

Overnet was a two-layer P2P network consisting of clients and servers. It has been taken down in
2006 due to pressure from RIAA and other parties. Since then pressure on Overnet/eD2k servers
has increased. Nevertheless eDonkey and derivates are still popular in some parts of the world and
are often only superceded by BitTorrent. However its popularity is shrinking fast. The Kademlia
protocol has since been integrated into eMule and MLDonkey and is considered to be the future
7. The original client eDonkey2000 was developed by MetaMachine. It is discontinued since 2005
and has been replaced by others, most notably eMule, aMule, MLDonkey. The server software has
been reverse engineered and is known as lugdunum.

7 http://www.amule.org/wiki/index.php/FAQ_ed2k
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Network. Clients must know the IP of a server to connect to. As in FastTrack, the clients send
meta-data to the server to register files they offer for sharing. Clients can then query and request
files using unique identifiers. The server responds with download locations, and clients connect
to other clients for downloading. Most notably for ed2k clients is that they define two different
listening ports one each for TCP and UDP traffic. So there is no correlation between TCP and
UDP traffic and both seem to be random on each side of the conversation.

3.9 OpenNAP/WinMX

OpenNAP is an extended open source re-implementation of the original Napster protocol. It is
thus client/server based. WinMX started as an OpenNAP client for Windows. A proprietary
protocol called WPNP has been introduced by Frontcode. WinMX has practically been shutdown
by the RIAA. Community efforts try to keep the network alive but it is only slightly popular, and
overshadowed by BitTorrent and others. The protocol is not documented and to the best of our
knowledge has not been subject to academic research.

3.10 Contrasting Protocols

Non-P2P/filesharing protocols that have similar properties under certain circumstances include,
but are not limited to the following.

– HTTP
– Gaming Protocols
– TeamSpeak (in-game voice communications)
– VoIP
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4 Efficient P2P Classification

Contemporary traffic classification systems rely on complex deep packet (DPI) inspection or sta-
tistical/behavior analysis (BA) and require vast amounts of resources. These systems are usually
highly integrated and feature a multi-layered approach that combines different methods.

We present a simple identification algorithm, which is targeted on resource restricted envi-
ronments like physical interface cards with few amounts of memory and little processing power.
The algorithm is not intended to replace complex traffic classification systems but to provide fast
and efficient pre-classification to single out interesting flows and thus reduce the pressure in later
identification stages.

The algorithm exploits the observation that P2P applications usually use both TCP and UDP
in parallel for signal and transfer traffic. Depending on the point of identification in the network,
either core or edge, the view of network traffic between hosts is different.

4.1 Classify large flows as P2P on Edge

Since an edge router connects the provider’s network (PN) to foreign networks (FN) we must
distinguish between incoming and outgoing traffic. The edge router can detect all connections
from clients in the PN but has very limited information about connections from clients in FNs.

Outgoing connections Nodes participating in P2P networks that are attached to the PN produce
signal traffic to multiple nodes in one or more FNs. File transfers are initialized from the PN and
produce massive amounts of incoming TCP traffic. Thus the edge router has a complete view of
all signaling and transfer traffic originating from a PN node. Figure 6 depicts P2P traffic from a
sample PN node.
In this scenario signal traffic has both a fixed source IP and port while the destination IPs and

Provider
Network

Foreign
Network 0

Foreign
Network 1

Foreign
Network 2

Signal Traffic
Transfer Traffic

Fig. 6. Outgoing P2P traffic.

ports appear random. The TCP transfer traffic has a random source port but a fixed destination
port for each distinct destination IP. For large incoming TCP flows which have been initialized
from the PN there are many UDP signal packets from the destination PN node to FN nodes
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where a fraction must have destination IP and port equal to the TCP flows source IP and port.
In addition transfer flows are only acknowledged with TCP ACK packets without payload having
a constant size. This allows to differentiate between HTTP and P2P traffic. Table 4 summarizes
the properties.
The following algorithm is a simple scheme for identification.

properties signal traffic transfer traffic

outgoing src port fix rnd

outgoing dst port fix fix

incoming src port fix fix

incoming dst port fix rnd

Table 4. Properties of P2P traffic originating from PN nodes.

if in.TCP >> out.TCP and out.TCP.ACK:

if exist out.UDP:

if out.UDP.dstport == out.TCP.dstport:

tag flow as possible P2P

Incoming Connections For incoming P2P traffic the same rules as for outgoing traffic apply. How-
ever, the rate of signal and transfer packets is much lower thus thresholds must be chosen appro-
priately. Figure 7 shows P2P traffic of FN nodes.
For TCP transfer traffic that flows out of the PN there still must be signal packets that have

Provider
Network

Foreign
Network 0

Foreign
Network 1

Foreign
Network 2

Signal Traffic
Transfer Traffic

Fig. 7. Incoming P2P traffic.

been sent by the downloading FN node but the source port is different. Usually there are outgoing
signal packets to the FN node from the uploading host where the outgoing source port equals the
incoming destination port. But these messages might have a rather long time gap. So it is advisable
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4. Efficient P2P Classification

to check for both incoming and outgoing UDP packet for participating nodes. Table 5 shows the
flow properties.
The following algorithm shows a simple scheme for identification similar to that of outgoing con-

properties signal traffic transfer traffic

outgoing src port fix fix

outgoing dst port fix rnd

incoming src port fix rnd

incoming dst port fix fix

Table 5. Properties of P2P traffic originating from FN nodes.

nections.

if out.TCP >> in.TCP and in.TCP.ACK:

if exist out.UDP or in.UDP:

if in.TCP.dstport == (out.UDP.srcport or in.UDP.dstport):

tag flow as possible P2P

One weakness of this scheme is that it relies on equal TCP and UDP port numbers. This is not
the case for all P2P protocols. The ed2k clients usually define different port numbers for TCP and
UDP traffic and thus can not be detected. So this is an easy exploit for P2P designers to prevent
identification.

4.2 Identification Algorithm

The limitations in logic and memory on the target platform do not allow complex computations
or data structures. A simple algorithm based on the assumptions presented in previous sections
can be easily implemented in hardware and requires little amount of memory. The idea is to use a
combination of simple behavior analysis and payload matching. Figure 8 shows a flow chart of the
algorithm.

The algorithm is based on the assumption that P2P applications use both TCP and UDP on
the same port to connect to or receive connections from different machines. For every {Address,
Port} pair that engages in a UDP conversation a record of the form {ts, certain} is kept in a
dedicated identification table. The timestamp ’‘ts‘’ is used to match the entry against a timeout
to check if it is recent enough and can be considered for the currently observed packet. It is also
needed for aging and removing old entries from the identification table. The field ’‘certain‘’ is a
boolean value that indicates whether it is certain that the host is engaged in a P2P conversation on
this specific port or not. Every host that has UDP traffic is added to the identification table with
the packet’s timestamp (or an abbreviation of it) and certain set to 0. These entries are marked as
’‘possible‘’ P2P candidates. Algorithm 1 explains the algorithm in more detail.

The signatures for pattern matching are up to four bytes short and few in number. Only a small
set (on average 3) of signatures are needed for a set of P2P protocols. They can easily be stored
in registers and matched in parallel to avoid stressing the memory and reduce timing. Note that
signature matching works on each packet and can run independently from and parallel to the flow
table updates. The identification algorithm itself then runs on not yet identified flows and uses
information from the flow table (specifically the type).
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identify flow
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recent && certain 
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update entry 
(timestamp, 
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Fig. 8. Identification Algorithm flow chart.

Whether an entry is supposed to be recent depends on the state of the certain bit. An entry
that is certainly identified as a P2P related entry (certain=1) will have a longer timeout. This is
based on the observation that hosts engaging in P2P conversations are usually connected longer to
the network and especially to down/upload partners. Thus, two different timeouts must be kept,
one short timeout for entries that are not certain and one long timeout for entries that are certain.
Listing 1 shows a possible pseudo c implementation of the timeouts and recent function.

It is crucial to find suitable values for the timeouts to prevent tainting innocent hosts. Machines
may just have connected to the network and received the IP of a previously identified host. Thus
a timeout that is set too high will falsely classify these hosts as P2P hosts. On the other hand, a
timeout that is set too low will not find related P2P connections.

4.3 Pattern matching

For pattern matching only the first four bytes of the packet payload are needed. These four bytes
are compared to a small set of well known P2P strings using exact matches. The signatures to
compare to are shown in listing 2.
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Algorithm 1: Flow identificaion Algorithm

Data: received packet P , flow flow
Result: flow type
if identified(flow) then return;
payload = getPayloadBytes(P );
if payload in signatures then

updateEntries(src,sport, dst,dport, ts, 1);
setType(flow,P2P);
return;

ts = getTimestamp(P );
ip p = getProtocol(P );
if ip p == UDP then

if recentCertain(src,sport, ts) or recentCertain(dst,dport, ts) then
updateEntries(src,sport, dst,dport, ts, 1);
setType(flow,P2P);
return;

updateEntries(src,sport, dst,dport, ts, 0);
setType(flow,POSSIBLE);
return;

if ip p == TCP and (recent(src,sport, ts) or recent(dst,dport, ts)) then
updateEntries(src,sport, dst,dport, ts, 1);
setType(flow,P2P);
return;

return ;

1 #d e f i n e SHORT 5 // 5 sec s shor t t imeout ( c e r t a i n=0)
2 #d e f i n e LONG (5∗60) // 5 mins long t imeout ( c e r t a i n=1)
3 bool r e c en t ( age , c e r t a i n ) {
4 t ime t d e l t a = c e r t a i n ? LONG : SHORT;
5 return ( ( time ()−age ) <= d e l t a ) ;
6 }

Listing 1. Timeouts and recent function

1 const char ∗ s i g n a t u r e s [ ] = {
2 ”\x13”” Bit ” , ”d1 : a” , ”d1 : r ” , ”d1 : e” ,
3 ”GNUT” , ”GIV ” , ”GND ” , ”GO! ! ” , ”MD5 ” ,
4 ”\x27\x00\x00\x00” , ”\xe3\x19\x01\x00” , ”\xc5\ x3f \x01\x00”
5 } ;

Listing 2. Signatures for pattern matching

Since exact matches are relatively cheap all patterns can be stored in 32 bit registers which can
be compared to the 4 byte packet content in parallel. The logic or of the individual result indicates
whether there was a match or not.

4.4 Data Structures

The identification algorithm only needs a relatively small table that holds records for every host
that engages in a UDP conversation or which is part of a flow otherwise identified as P2P (e.g. by
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DPI or signature matches). The table is a dictionary style structure indexed by a key and storing
an associated value.

The key is a pair of {Address, Port}. The hash of the key is used to index the table. Listing 3
shows the key definition.

1 typedef struct key s {
2 u i n t 3 2 t addr ;
3 u i n t 1 6 t port ;
4 } key t ;

Listing 3. Key type definition

The stored values can be reduced to the pair {timestamp, certain flag} and can both be encoded
in a single value with a few bits. Since entries are kept only a short amount of time and are regularly
removed during aging, there is no need to keep exact timestamps. Instead, only the time offset of
the entry in milliseconds relative to the timestamp of the last aging cycle is stored. In addition,
a small counter value is needed that keeps track of the number of aging cycles that the value
survived.

1 #d e f i n e d age 30000 // 30 sec s ag ing
2 #d e f i n e d shor t 5000 // 5 sec s shor t t imeout
3 #d e f i n e d long 5 ∗ 60 ∗ 1000 // 5 mins long t imeout
4
5 typedef struct v a l u e s {
6 u i n t 8 t age : 5 ;
7 u i n t 8 t c y c l e s : 4 ;
8 u i n t 8 t c e r t a i n : 1 ;
9 } v a l u e t ;

Listing 4. Type definitions of the table’s entries

Let o the offset in milliseconds, c the number of cycles, dage the aging interval in millisecond.
Then the real age of an entry in milliseconds can be derived using the following equation.

realage = o+ c ∗ dage

When an entry is created at timestamp Tts and the last aging occurred at Tage, then

o = d(Tts − Tage) · 103e

On each aging cycle, the counter of the entry is incremented by 1 if the entry remains in the table.
This way, the age of an entry can efficiently be encoded without the need to keep 64 bit timestamp
values. The total number of bits needed for an entry e is

|e| = |o|+ |c|+ 1

where |x| is the length of x in bits. The number of bits needed for the offset o and counter c fields
are derived as follows

|o| = dlog dagee

25



4. Efficient P2P Classification

|c| = dlog
dlong
dage

e

where dlong is the long timeout in milliseconds.
Listing 4 shows an example type definition of the value type using an aging interval of 30

seconds, a short timeout of 5 seconds and a long timeout of 5 minutes. The resulting table entry
only needs 10 bits space. Thus, in a typical 32 bit wide memory three entries could be stored per
memory word. So even with several millions of entries the table is only a few MiB in size.

Storing only the age and certain bit can lead to false positives if the hash function produces
collisions for different keys. There are multiple ways of how to define a suitable hash function or
even a set of hash functions and use multiple hashes to significantly reduce the probability of hash
collisions and false positives. An overview is given in [16].
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5 A guide for hardware implementation

The hardware implementation needs to make efficient use of the DFI engine and limit memory
accesses to both the flow and identification tables. A typical implementation in hardware or on an
FPGA vastly utilizes parallelism of multiple engines to reduce computation time.

In our proposed design we split the flow inspection into two parts. One is the pattern matching
engine (further denoted PAT engine), the other is the DFI engine, that executes the flow iden-
tification algorithm. This separation is possible and useful since both parts operate on different
information of the packet. The PAT engine uses only the first four bytes (further referred to as
content) of the packets payload. The DFI engine needs the five tuple { src, sport, dst, dport, pro-
tocol} from the packet’s headers as well as the timestamp of the packet. A more complex design
with more resources can include more sophisticated DPI and Statistical Packet Inspection (SPI)
engines that would run in parallel. The design is depicted in figure 9.
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Fig. 9. Possible design of the engines.
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Upon arrival of a packet, the header information and the content are extracted and sent to the
PAT and DFI engines which can operate in parallel. The content is immediately processed by the
string matching part of the DFI engine. The result will either be a match, in which case the P2P
protocol can be identified, or a mismatch, in which case the protocol will be unknown. Note, that
the string matching only needs to check a small set of equal sized strings, which can all run in
parallel and which is much faster than full-fledged DPI.

Meanwhile, the header information is used by the DFI engine to access the identification table
and retrieve the table entries if available. These entries should be copied to local registers for later
usage, together with their indexes. Note, that it suffices to retrieve one of the entries. So if the first
one is found there is no need for a second table access. The DFI module should have an interrupt
wire that can cause an instant interrupt and reset the DFI states. Reasons for an interrupt could
be, that the flow has been identified by PAT or DPI engines or that the flow table returns that
the flow is already identified. Depending on the packet’s protocol, either UDP or TCP, one of
the identification machines is used. So the protocol field of the packet’s header triggers execution
of either the UDP or the TCP machine, but never both. The DFI engine needs access to both
the identification as well as the flow table to query and update information. It also needs one
internal register (alternatively two smaller ones) to mirror the two identification entries and keep
the indexes. The TCP and UDP machines both can access these registers to read and compare the
age and certain values of the entry. If identification leads to changes of the entries, they have to
be written to the table, but only, if there has been a change or a new entry is created.

Logic Requirements

PAT engine. The PAT engine needs n 4 byte registers for n protocol signatures. The incoming
4-byte packet payload is compared to the n signatures in parallel. The comparators can be imple-
mented with simple and gates which are or’ed on output to indicate a match or mismatch. This
part of the identification algorithm can therefore be implemented with a small amount of logic. A
very simplified implementation scheme can be seen in figure 10.

signature 0

4 bytes 
payload

signature 1

AND

signature 2...

signature n

AND

AND

OR

AND

Fig. 10. Simplified PAT engine implementation.

DFI engine. First component needed are the registers to keep the hash values and the table entries
as well as the logic to access the identification table. In addition the DFI engine needs to keep
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state information about the two entries, which can be read and written during different stages of
the identification. There are basically only two states that need to be kept, namely if the entry is
updated (or created) or not. This can be modeled with a single flip-flop for the state update. The
protocol header field must be compared against the constant values 6, 17 to select which path is
executed. This can be implemented using less than 16 bit precision, since we are only interested in
certain bits of the protocol field, namely those that must be set in case the one of the values are
seen. So only those bits need to be AND’ed to get a match for either of the values. The output is
fed into a multiplexor that selects which bits of the internal registers (age and certain value) are
used to determine the flow type. The identification table needs only be updated if at least one of
the entries is updated. The flow table only needs to be updated if the flow could be identified as
either P2P or NONP2P, else not. This DFI engine also has small logic requirements. See figure 11 for
a simplified and abstract implementation sketch.
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Fig. 11. Simplified DFI engine implementation.
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6 Software Simulator

A prototype of the identification algorithm has been implemented in software to simulate and verify
behavior and results of the developed scheme. The software simulation addresses the following
issues.

– simulate identification behavior
• using live data
• using captured data

– verify identification results
• computer aided
• automatically

The simulator is written in c/c++ and uses libpcap8 to process packet data either by live
capture or using a pcap file. The simulator can also process verification files used to verify the
identification results.

6.1 Classes and Data structures

Figure 12 shows the class diagram of the classes used by the picDFI simulator. It is pretty straight
forward.

struct in_addr addr
ushort port

pic_service

pic_service lower
pic_service upper
uchar ip_p

pic_connection

timeval created
timeval touched
uint32 npackets
uint32 nbytes
uchar options
uchar flow_type

pic_flow

timeval touched
bool certain

pic_ident

uint32 nflows
uint32 npackets
uint32 nbytes

pic_stat

Fig. 12. Class diagram.

– pic service: A single service or host, defined as the pair addr, port. Used both for connec-
tions as well as key to the identification table.

– pic connection: A pair of two connected services and the connection protocol. It serves as
the key to the flow table.

– pic flow: The actual flow record. Keeps track of the times of creation and last touched as well
as the number of packets, bytes, some options (which are unused) and the flow type, which is
initialized to UNDEF. The value of the flow table. The pair {pic connection, pic flow} are
defined as the entries for the flow table.

8 http://www.tcpdump.org
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– pic ident: Values for the identification table. The pair {pic service, pic ident} are entries
to the identification table.

– pic stat: Used to keep and compute statistical information.

The simulator uses a number of tables (c++ maps) to store certain information and associations.

Flow Table. Keeps track of all flows. {key, value} pair is {pic connection, pic flow}. For each
arriving IP packet the corresponding flow is retrieved from the table and updated, or created if
not available. The flow ages at certain time intervals, that is, all flows that are older than the last
aging cycle are removed from the table. The default is 30 seconds, but the value can be defined
by the user. Note that there is only one global aging timeout that also applies to the identification
table.

Identification Table. The table used to keep the identification records needed to identify a flow.
{key, value} pair is {pic service, pic ident}. The identification table also ages at the same time
as the flow table.

Verification Table. Only used if a verification file is provided. Then it is the first table that is built.
The verification table is practically a static second flow table. It maps connections to flow records.
However, there are no updates or aging to the table during runtime. The flow type of the flow
records in the verification table are considered to be the accurate or real flow type. Thus every
flow that is identified is compared to the corresponding flow in the verification table. Thus it can
be determined if the flow has bee identified correctly or not.

Statistics Table. Used to keep and compute statistics of flow types and their corresponding number
of flows, packets and bytes.

6.2 Simulation Flow

The simulator uses libpcap to capture packets from the physical interfaces and to read/write pcap
capture files. It analyses the packet headers and takes appropriate actions depending on the layer
protocols. These actions are performed by so called handlers that operate on different layers and
stages. The following steps are performed.

1. Parse command line options.
2. If a verification file is provided, parse the file and build verification table.
3. Initialize tables.
4. Get next packet from interface or pcap file.
5. If number of passed seconds is greater than aging timeout age the flow table then the identifi-

cation table.
6. Update the flow table with packet information.
7. If needed run the identification algorithm.
8. Goto 4.

Every time a flow is removed from the flow table, either through aging or some other means,
it triggers certain actions defined by handlers. The statistics table is updated using the flow’s
informations. If a verification table is available the flow is verified. The program runs as long as
there are still packets in the file, or in case of capturing directly from the interface, as long as no
interrupt signal is received. Then it terminates the packet capturing and analyzation, flushes the
flow table and prints the final results on stdout.
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6.3 Verification

The problem with verification is, that it can hardly be done automatically. To verify the correctness
of the identification algorithm there must be a way of reliably know the real type of every flow. But
the lack of existence of a reliable identification scheme, which is able to accurately identify every
flow prevents automatic verification. The only way to verify the identification algorithm is using
a controlled environment where global knowledge about every communication is absolute. This is
possible in a lab environment but impractical on real world data. Thus, the only way of ’verification’
is actually to compare the results to those of other identification mechanisms. An example is
’OpenDPI’ from Ipoque. It is an open source DPI engine that can do protocol identification based
on packet payloads. However, since it is prone to error in presence of encrypted and obfuscated
protocols. As such ’OpenDPI’ is not a reliable source of verification. It can be shown that it falsely
classifies a large number of flows under certain circumstances. In fact, the picDFI algorithms has
a better True Positive rate than OpenDPI.

Verification is done using a ’verification file’. It records plain text comma separated serializations
of flow records and has the following fields:

la,lp,ua,up,protocol,created_ts,touched_ts,npackets,nbytes,type\n

Flow records are written in plain text and terminated with a newline. The implemented verification
process actually only uses the flow ID and type for verification and neglects time stamp information.
As a result, flows that have the same ID but appear over different time spans and also have different
times are overlooked. More specifically, only the latest flow (as appears in the file, not by time) is
considered. However, the file format is design to support also time based verifications.

Verification computes the following statistics.

– na_positive, could not verify, identified p2p
– na_negative, could not verify, identified nonp2p
– true_positive, identified and verified p2p
– false_positive, identified p2p, verified nonp2p
– true_negative, identified and verified nonp2p
– false_negative, identified nonp2p, verified p2p

6.4 Evaluation

Preliminary simulations show solid identification behavior of over 90 % accuracy and better quality
than ’OpenDPI’ especially in the presence of encryption. However, this is based on small captured
data within a controlled environment. Though this is a good means of reliably verify the identifi-
cation quality it is not representable for large-scale router traffic. Further tests and evaluation are
performed in a real corporate setting after final adjustments and are subject to future work.
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7 Future Work

Traffic identification methods used today rely on local information and mostly run independently
on individual routers. They try to identify the protocol using DPI and behavioral algorithms as
well as some statistical approaches. Though this has been proven to suffice for a lot of protocols
(especially plain text based and well known protocols) it is prone to obfuscation, encryption and
hiding. The locality-based approaches lead to high resource requirements on edge routers and a
waste of resources. They also do not gain global knowledge about network usage like the creation/
existence of overlay networks.

Another aspect to consider is the granularity of traffic identification and the actual identifica-
tion goal. Contemporary classification systems usually try to identify the exact application layer
protocol. However, in many applications, this might not be the best or even desired choice. The
application layer protocol is not necessarily an indicator for the actual type of conversation. As
an example, HTTP can be used for ordinary web browsing as well as large scale file downloading.
This identification goal can also easily be exploited for hiding the actual communication intend.

Instead of relying on local information that is based on well known signatures and fingerprints
future traffic classification should gather and aggregate network wide information about global
application behavior that is unlikely to change. Applications have specific behavior patterns and
requirements of network resources. VoIP and other streaming protocols for example always need
constant bit rates to provide a reasonable user experience. File sharing applications will always
need an overlay network with lots of connections to multiple nodes. In general a set of behaviors
and requirements can be identified that are unique to specific application domains.

This meta information about application behaviors and their network resource requirements
can be used to devise a general taxonomy of internet traffic which can then be used to classify any
network traffic into specific application domains that are independent of protocol and application
implementation details.
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