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Abstract

This report discusses our proposed improvements to Fast Hash Ta-
bles (FHT) which we name ’Efficient Hash Table’ (EHT) where ’efficient’
relates to both memory efficiency and lookup performance. The mecha-
nism we use to design the EHT lead to improvements in terms of sram
memory requirements by the factor of ten over the FHT. Our results back
the theoretical analysis and allow accurate predictions. A cost function is
provided that allows the adjustment of EHT parameter to different user

requirements.
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1 Introduction

Analysis of previous work has shown that IPv6 packet forwarding is still a major
bottleneck especially in the internet core. State-of-the-art data structures have
high on-chip memory requirements that can not be provided for extremely big
routing tables. See section 3.1 in [1] for a detailed analysis. By eliminating un-
necessary restrictions these memory requirements can be reduced by an order
of magnitude at reasonable costs of additional complexity and off-chip mem-
ory. The improvements are based on observations of contemporary solutions
and extraction of four key-ideas which are discussed in the following sections.
The resulting Efficient Hash Table (EHT) is an evolution of the Fast Hash Ta-
ble approach introduced in [2] with our key ideas applied. It provides better
performance and requires much less on-chip memory.

2 State-of-the-art

This section is an excerpt of section 2 in [1]. We concentrate on a short review of
the FHT and give a brief introduction to other solutions. For more information,
please refer to [1].

2.1 Fast Hash Table

In [2] Song et al. present a data structure named fast hash table (FHT) that
uses a counting Bloom filter (CBF) summary in on-chip memory to identify the
target bucket of an item. Each counter corresponds to a bucket in the hash
table and represents the number of items hashed into it. They use k universal
hash functions to access both the CBF and the hash table. With n items the
number of buckets /counters m is derived using the following equation.

m = z[logc n| (1)

The constant ¢ is the number of items per hash entries per item to be stored
(which also equals the number of SRAM counters per item) and is chosen opti-
mally as ¢ = 12.8 as follows.
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When searching for an item x it is hashed to find its k£ counters. The minimum
z of these counters is computed. If z == 0 the item is not present in the hash
table, else it is retrieved from the far left bucket corresponding to z. Note, that
while there is only one access to a bucket, it may be necessary to follow next
pointers to traverse the list of items in one bucket. Insertion and deletion of
items depend on the type of FHT.

2.1.1 Basic Fast Hash Table

In the basic FHT (BFHT) items are simply inserted k times, once in every
location it hashes to. The corresponding counters are incremented. Due to
collisions it is possible that an item is inserted less than k times. In this case
the counter experiencing the collision is incremented only once. Deletions are
equally simple. The item is removed from the buckets and the counters are



decremented. Lookup is done by hashing the item k times and computing the
minimum counter value z. If z # 0, the item is retrieved from the far left
bucket corresponding to z, limiting the lookup time to z. This scheme leads to
high bucket loads, thus, retrieval of an item is most certainly accompanied by
following multiple pointers. Figure 1 shows an example BFHT.
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Figure 1: Basic fast hash table

2.1.2 Pruned Fast Hash Table

The pruned FHT (PFHT) is an improvement on the BFHT. Items are only
stored at the far left bucket with minimum counter value. Counters and lookups
are handled as in the BFHT. This improves bucket load and lookup time. The
authors show that given a well designed table the buckets will hold only one
item with high probability. However, not storing every item in all corresponding
buckets complicates updates since they influence the counters of already present
items. Minimum counters of items inserted earlier might get changed during
update leading to a lookup in the wrong bucket. For insertions the items in
affected buckets must be considered for relocation. Deletions require even more
effort. Decrementing a counter may result in this counter being the smallest
one for items hashing to it. But since a bucket does not store all its items, it
is not possible to identify items that have to be relocated. This can either be
achieved by examining the whole PFHT and check every item (obviously this is
very expensive), or by keeping an offline BFHT and examining affected buckets
offline. Thus, the PFHT is only suitable for applications where updates are
much rarer than queries. Figure 2 illustrates the pruned version of the BFHT
depicted in figure 1.

2.2 Other Solutions

Kirsch and Mitzenmacher [3] observe, that the summary structure need not
correspond to a bucket in the underlying data structure. This allows separation
of the hash table and its summary and independent optimization. They use
a multilevel hash table (MHT), first introduced by Broder and Karlin [1], to
store the items. Three summary structures are introduced. The first is an
interpolation search summary using a bit string to represent each item. The
second summary is a single Bloomier filter which encodes the type of each item to
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Figure 2: Pruned fast hash table

allow identification of the sub-table it is stored in. The last presented summary
is a multiple Bloom filter summary where there is one Bloom filter to represent
the set of items which are stored at least in the corresponding sub-table. The
Multilayer Hash Table and all the summaries are deeply discussed in section 2.3
in [1].

3 Efficient Hash Tables

Two conclusions can be made by observing modern hash tables and their sum-
maries.

e Big summaries are used to optimize the false positive probability.
e Update support adds significant overhead.
The following sections show how the conditions of IP Lookup applications can
be exploited to optimize hash tables and summaries.
3.1 Key Ideas
We base our design on the following four observations or key ideas.
e The false positive probability can be ignored.

e A hash table bucket can hold more than one entry without the need to
follow next pointers.

e The lookup engine can be separated from the update engine.
e The summary can be encoded using compression.
Lemma 1. The false positive probability can be ignored.

Proof. The router must provide a worst case lookup performance at link speed
to prevent buffer overflows. The number of lookups needed to find the cor-
rect prefix is upper bound by the LPM technique used. The underlying data
structure must have a predictable lookup performance to evaluate worst-case be-
havior. Whether or not the lookup is actually made has no impact on worst-case



performance. Lookup performance is thus independent from the false-positive
probability. O

Lemma 2. A hash table bucket can hold more than one entry without the need
to follow next pointers.

Proof. Let a bucket b equal the number of bits that can be read with one memory
burst and = equal the number of bits representing the entry. If x < b, a bucket
can hold up to L%J entries. O

Lemma 3. The lookup engine can be separated from the update engine.

Proof. TP-lookup, as the name implies, is a heavily lookup driven application.
Updates occur infrequently and much rarer than lookups. In addition, they are
not time critical and need not take effect instantly. Updates can be computed
offline and changes to the online structures applied afterwards. O

Lemma 4. The summary can be encoded using compression.

Proof. As long as the compression scheme provides real-time compression and
incremental updates and is further easy to implement in hardware, the summary
can be compressed without affecting the lookup performance. O

The key ideas and the Efficient Hash Table design are discussed deeply in
section 3 of [I]. The following sections give a short introduction into our re-
search.

3.2 Ignoring the false positive probability

The major reason for having relatively large Bloom filters is to minimize the
false positive probability. As proven in Lemma 1 the IP-lookup performance
does not suffer from higher false positive rates as long as the summary returns
the correct value independent of the false positive probability. In conclusion,
counting Bloom filter summaries can potentially be much smaller. By reducing
the address space counter values and the load of buckets are expected to increase.
So there exists a tradeoff between reducing on-chip memory requirements and
the resulting counter values and bucket loads. The problem is to identify a size
m that optimizes this tradeoff.

Analysis has shown that as long as the number of hash functions k is near
optimal and the constant c is chosen such that - > 2 the counter values are
not affected by reducing the size m. However, since the optimal number of hash
functions is a floating point number the practical k£ usually leads an overestimate
and there are some construction for which the counter distribution does not
scale. However, this has only a slight effect on the overall performance.

Reducing the size m affects the bucket loads of the hash table buckets. This
can be compensated by providing a wider off-chip memory to allow multiple
items per bucket. In general increasing the off-chip memory width by a factor
of two allows a reduction in on-chip memory size by a factor of four. The
tradeoff is even better for ¢ = 1.6. With a three times wider off-chip memory,
the on-chip memory size can be reduced to éth of the optimum. Figure 3 shows
the expected maximum load for different table sizes that will occur with high
probability.
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An extensive analysis of the effect of reducing the size m is given in section
3.3 of the master thesis.

3.3 Multi Entry Buckets

Lemma 1 states, that the address space, or size, m of the summary can be
reduced at the cost of a higher false positive probability and higher bucket
loads. These can be compensated by increasing the off-chip memory width,
thus, allowing multiple entries per bucket which can be fetched in one memory
cycle. The expected bucket load and the size of an entry specifies the number
of bits needed for the off-chip memory width.

According to [5], [0] less than 5% of the prefixes exceed 48 bits with the vast
majority having up to 32 bits and no prefix being longer than 64 bits. Only a
small minority of the tables will hold prefixes with more than 48 bits, and can
be treated differently. Therefore, we optimize the off-chip memory to deal with
the majority of prefixes. Longer prefixes can be stored in tables with larger
¢ and thus smaller load, while the very few prefixes > 64 bits can be directly
kept in CAM. By using a longest prefix matching algorithm that works on trees
of hash tables, like that described in [7], it is also possible to have fixed size
prefixes.

The size of an entry can further be decreased by using a hashing scheme
similar to that in [8]. A class of hash functions can be used that do a transfor-
mation of the key, producing k digests of the same size as the key. The same
size is crucial to prevent collisions and the hash function must be collision re-
sistant. An example is CRC, which is well known and easy to implement in
hardware. The digest is imagined to be composed of two parts, the index to the
hash table, and the verifier of the key. The verifier and the index are derived



by bit-extraction. Instead of the prefix only it’s verifier is stored in the bucket.
To be able to identify which prefix corresponds to a verifier, an identifier must
be kept along the verifier, that states the hash function that produced the ver-
ifier. Thus with fewer bits it is possible to identify which prefix corresponds to
a stored verifier.

One problem remains, that is how to deal with overflows, in case a bucket
receives more insertions than it has room for entries. If the word-size is chosen
appropriately large, overflows will occur extremely rare but still need to be han-
dled. To hold overflown entries a small CAM is reserved. In General, a bucket
can only be overflown, if the corresponding counter value at least exceeds the
off-chip word-size. In case an overflow occurs, all entries are moved to CAM.
On lookup a sentinel value in the CBF summary can be used to identify over-
flown buckets and the entries be retrieved from CAM. The process is discussed
in sections 3.4 and 3.5 of [1].

3.4 Separating the update and lookup engines

By separating the lookup from the update engine on-chip overhead can be
avoided and the lookup summary reduced in size. The idea is to keep two
summaries. One is kept online in on-chip memory and does not need to support
updates but is specialized on lookup. It can be different from the offline sum-
mary which fully supports updates. When updates occur they are processed by
the offline engine and changes applied to the online structures afterwards.

An entry can only successfully be retrieved by computing the minimum
counter value. The counters can be limited to a value x smaller than the ex-
pected maximum thus specifically allowing more overflown counters. Limiting
the counter values allows for better encoding of the summary either in reduction
of the counter-width or by using compression. Successful lookup is guaranteed
as long as not all counters corresponding to a prefix are overflown, which would
not allow to identify the correct bucket. Choosing an appropriate value for x
is a tradeoff between storage saved and number of counter overflows. To be
able to retrieve all entries the event that all chosen k' counters equal y must be
dealt with. The easiest solution is to move entries which can not be retrieved by
calculating the counters to CAM. A small CAM must already be maintained for
overflown buckets. If x is chosen appropriately large the overhead is minimal.
The expected number of CAM entries for n = 105, ¢ = {12.8,6.4,3.2,1.6,1} and
X = {3,4,5} can be seen in figure 4. For example, with ¢ = 12.8 and y = 3, the
expected number of CAM entries is still 0. Without any additional cost, the
counter-width of the summary can be reduced to 2 bits, achieving a reduction in
size of 30%. By further providing a small CAM for few entries, ¢ can be halved,
leading to a summary only % of the optimum in size. The tradeoff gets better
for increasing y. Consulting the graphs, each time y is incremented once, ¢ can
be reduced by the factor of two, at the cost of few additional CAM entries.

As mentioned, limiting the counter range allows for better optimized encod-
ing or compression of the summary. We will present two compression schemes in
the following sections. The table construction is now four-fold. It is composed
of an offline update engine which includes a CBF and BFHT, an online on-chip
compressed CBF, the online hash table in off-chip memory and a small CAM
for overflow entries. The design is depicted in figure 5. In our design we want to
completely separate updates from lookups to keep interference with the lookup



S 247204 m c=128
3 O c=64
N O c=32
W c=16
o BH c=1
o
o _|
o
o
N
=]
Q o _|
=)
2 o
E °
s
<
o o
o
o _|
o
S
71980
6111
o
o
g |
o
n
16277
0 17418 0o o 47918 00 0 265.
o
3 4 5

chi

Figure 4: Expected number of CAM entries for different ¢ and x

process as small as possible. The offline update engine precomputes all changes
that occur during updates and generates update vectors for the online CCBF
and PFHT. Thus interference with the lookup process is kept to the minimum.

See an extensive analysis and explanation of the update process in section
3.5 in [1].

3.5 Packed Counting Bloom Filter (PCBF)

A simple and well known compression scheme is to pack a number of values
limited to a certain range into one memory word. For instance, if the counters
are limited to a maximum value of x = 5 and thus a range of [0, 5] then with a
128 bit word-size 49 counters can be encoded, saving 19 bits. In general

log 2°
log [[x + 1|

counters can be encoded in a word of b bit size. In the following ~ is referred
to as compression rate, that is the number of counters encoded into one word.
Let w be the compressed representation of v, counters.

=1 ] 3)

Yp—1

w= Z%'I[X+1]|i (4)



updates

S — o —L :
=3 B =5
: | & o
g 8 <
g X AN =
g :|C ‘8 SN
g i|B| | BFHT | 15| C [ lookup =
CilE 1 5 |B B g
3 i i |F | 2
i i =
| g T
: ! =
........... S | N A '
| | CAM
: !
| L.—-—p
Y >

online lookup engine

hash factory

Figure 5: Memory efficient FHT construction

A word can be decompressed using pseudocode 1.

Algorithm 1: Word decompression

Data: w,x,7

Result: decompressed counters
1C=0;

2 for Vi € [v,] do
3 C —CUw% x;
4 | wew/x;
5 end
6 return C ;

The only drawback is the expensive modulo computation to calculate the coun-
ters. However, implemented in hardware, all counter values can be decoded
in parallel. To prevent confusion with other compression schemes we will refer

to this as word packing and name the summary packed counting Bloom filter
(PCBF).

3.6 Huffman Compressed Counting Bloom Filter (HC-
CBF)

We propose another design for compressed counting Bloom filters based on
Huffman compression which we name Huffman compressed counting Bloom fil-
ter (HCCBF). Given a binomial distribution like the CBF counters, Huffman
compression produces an optimal encoding. In addition, each symbol is mapped
to a prefix free code, allowing individual de-/compression. Huffman codes are



easily calculated using a binary tree. The probability of each counter value
is computed and the list is sorted by probability. On each iteration the two
items with highest probability are aggregated to a parent node with the left
child being the higher weighted counter, and the right child the lower. This is
repeated until the list contains only one root node. The tree can be stored in
small dedicated hardware, like a hardware lookup table. Decompression could
also be done inside the data path. We will also refer to the the Huffman tree as
codebook henceforth.

To achieve real-time de-/compression the counters must be easily address-
able. Storing the compressed counters consecutively is not feasible. Without
the help of complex indexing structures one could not retrieve a specific value.
Therefore, when compressing the offline CBF we calculate the maximum num-
ber of counters 7y, that can be compressed in one memory word, such that each
word encodes exactly 7, counters. We iteratively try to fit as many counters
into a word w as allowed by the compression rate y, which is initialized to co. If
the bit-length of w would exceed the word-size, everything is reset and restarted
with ~y;, set to the last number of counters in w. This ensures, that every word
(except the last) has exactly 75 counters encoded and allows easy indexing.

This algorithm has an obvious flaw. It heavily depends on the sequence of
counters leading to an unpredictable compression rate 7. In addition, the com-
pression is wasteful in storage. Since 7y, depends on the sequence of counter val-
ues, it is upper bound to the longest code sequence it can compress in one word.
A better approach is to define 7y in advance such that a desired compression is
achieved. In general, the Huffman compression only achieves improvement over
the word packed compression if v, > 7,. Thus, vy, can be used as a guideline
for choosing 7. In the following we will refer to this compression scheme as
hard compression.

Compressing a fixed number of counters into a word can lead to word over-
flows if the compressed counters do not fit into the word. This can happen
during hard compression or updates. There are multiple solutions to deal with
word overflows.

1) Set the overflown word to illegal and keep all counters in extra memory.

2) Replace longest codes in word with smaller overflow code.

3) Ignore counter value and assume value Y.

(1)
(2)
3)
(4) Keep the overflown bits in extra memory and retrieve on demand.

While (1) is a straightforward and easy solution it is wasteful to keep the values
of all counters of the affected word in extra memory. (2) Requires relatively
short overflow codes to replace the longest counter codes. The counter values
can be kept in extra memory. However, since the overflow code must be pretty
small the codes for higher counter values will be longer and in effect increase
the probability of word overflows. (3) As long as the overflown counter is not
the smallest for any item ignoring the value will not affect the lookup process.
However, if the affected counter is crucial for the lookup computing the correct
location requires additional effort. The best solution to deal with word overflows
is (4) and keep a small extra CAM, or other memory, to store the overflown
bits. If counters that are completely or partially overflown must be retrieved,
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the remaining bits are read from the extra memory. We will show in section 4,
that depending on v, and x the cost of additional memory is reasonably small.
With m counters, a compression rate of « counters per word and an on-chip
word-size of |w| bits, the summary needs
m

Bent = T;W |l ()

bits in total.
See section 3.6 of [1] for a complete description of the HCCBF.

3.7 Building Efficient Hash Tables

The previous sections covered various techniques to improve on-chip memory
requirements of hash table summaries. The improvements are usually bought
at the cost of additional complexity and off-chip/offline memory. The tradeoff
can be optimized by a careful choice of parameters. This section combines the
lessons learned to guide the construction of an efficient hash table.

Primary point for improvement is to reduce the size m of the summary and
the table at the cost of a higher false-positive probability. The size m depends
on the factor ¢ which influences the number of buckets and counters reserved
for any item. Reducing the size results in higher bucket loads which can be
compensated by increasing the off-chip word-size, thus allowing multiple entries
per bucket. This number depends on the expected maximum load that appears
with high probability. With the use of transformations and bit-extraction, the
entry size can be reduced and off-chip memory saved. Bucket overflows are
handled by keeping a small amount of CAM to store the entries of overflown
buckets. To off-load update overhead, we keep separate online lookup and of-
fline update data structures. The online counting Bloom filter’s counters are
limited in range, given by parameter y, which depends on the probability of the
smallest counter in &’ chosen counters. In case all chosen k' counters for an item
are , the item is stored in the overflow CAM. The range limit allows better
encoding by either using word packed filters, or Huffman compression. In case
of Huffman compressed filters, the compression factor -, which is the amount
of counters compressed in one on-chip memory word, must be chosen such that
Yn > 7p, Which can easily be calculated. The amount of memory that can be
saved depends on the on-chip word-size. In case of word overflows, that is, the
compressed counters do not fit in one on-chip memory word, the overflow bits
are stored in a small dedicated CAM and are extracted on demand. Figure 6
shows a size comparison of modern summaries and our improved EHT. We use
the optimal parameters suggested in the original papers to calculate the sizes
for summaries for n = 1.000.000. For details for the FHT and parameters see
[2], for MHT see [3]. A detailed explanation of the chosen parameters can also
be found in section 3.7 of [1]. As can be clearly seen our design achieves an
improvement over the original FHT by the factor of 10. It also performs much
better than any other designs by at least a factor of 5.

4 Results and Discussion

In this section we present and discuss results of a conceptual implementation
of the EHT. The implementation is conceptual in the sense that it does not
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fully resemble the complex structure of the EHT but simulates it’s behavior
appropriately.
For simulations we use the following parameters:

n = {100,000; 1,000,000}; ¢ = {6.4;3.2; 1.6}; v = {4;5}; |w| = {64; 128}

for a total of 32 different simulations. The number of hash functions k is always
chosen optimal. On each simulation we do ten trials, that is we instantiate the
EHT and fill it with n random keys and values. The structure is then pruned
and queried for all n keys. As summary a HCCBF is used. The compression
rate -y is automatically calculated to be optimal. No hard compression is used,
since we want to evaluate the quality of the compression algorithm. The cost of
using hard compression can be derived by examining the resulting HCCBF and
is included in the analysis.

Here we will only present and discuss a subset of the results. For an extensive
discussion see section 4 of [1].

4.1 Bucket Load

The maximum load depends on the number of choices & and the number of
items n. We aggregate the results of the combinations for n and ¢ and count
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the number of entries in every online bucket and then take the maximum of the
frequencies to evaluate the worst-case behavior. The results are shown in table
1.

n=10%¢c=3.2
n=10%c=64

424659 99411 369 0
948583 100000 ) 0

load

configuration FErnazioad 0 1 2 3 4
n=10%¢c¢=1.6 3 1184464 837562 80950 684 1
n=10%c=3.2 3204894 980039 10438 1 0
n=10%c=64 7388934 999621 217 0 0
n=10°¢c=1.6 167662 89728 5327 24 0
0

0

NN W NN

Table 1: Entry distribution.

For all the tables with n = le+6 there was one bucket overflow in the worst-
case. That is, only one bucket must be diverted to CAM. None of the buckets
for tables with n = 1le +5 experienced an overflow. Column F,,q4100aq Shows the
expected maximum load. As can be seen, the EHT performs as expected.

4.2 CAM requirements

For CAM entries we aggregate the results for x according to n and c¢, calculate
the average and take the minimum/maximum values encountered. We also
calculate the expected number of CAM entries. Table 2 shows the results.

n ¢ x min max avg expected
10° 4 1.6 5017 5446 5194.05 5181
105 5 1.6 236 287 258.20 265
10 4 3.2 40 61 47.00 47
106 5 3.2 0 0 0.00 0
10 4 6.4 0 0 0.00 0
10 5 6.4 0 0 0.00 0
10° 4 1.6 144 209 177.95 178
10° 5 1.6 2 11 6.05 6
10° 4 3.2 0 1 0.15 0
10° 5 3.2 0 0 0.00 0
10° 4 6.4 0 0 0.00 0
10° 5 6.4 0 0 0.00 0

Table 2: Number of CAM entries.

Once again, the results closely resemble the expectations. One interesting
fact is, that the quality of x also depends on the fraction “*. This does not come
as a surprise, since with higher counters in general the probability to choose a
higher counter as smallest counter value for any item is also increased. It can
be expected at this point, that the achieved compression is more effective for
tables with higher “*. The next section analyses compression quality in detail.
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4.3 Compression

To analyze the achieved compression we take the minimum, maximum and
average v, and compare that to -y, and the number of counters if no compression
is used (denoted vp). We also include the maximum number of bits used to
compress the counters. Table 3 shows the results.

n ¢ X |w| |miny, maxy, avgyn | Y% Yo max bits
10° 1.6 4 64 22 24 22.8 27 21.3 63.3
10 1.6 5 64 21 22 21.5 24 21.3 63.3
105 1.6 4 128 50 53 51.0 55 42.6 126.4
10 1.6 5 128 47 51 49.5 49 42.6 125.1
10 32 4 64 23 26 24.6 27 21.3 62.7
10 32 5 64 24 25 24.9 24 21.3 63.2
105 32 4 128 56 59 57.7 55 42.6 126.3
106 32 5 128 55 58 56.9 49 42.6 126.3
10° 64 4 64 24 26 24.8 27 21.3 63.3
10 64 5 64 23 25 24.3 24 21.3 63.3
10 6.4 4 128 56 58 57.3 55 42.6 127.2
10 64 5 128 55 58 56.0 49 42.6 126.1
10° 1.6 4 64 25 27 26.0 27 21.3 62.6
10° 1.6 5 64 24 26 25.4 24 213 62.5
10° 1.6 4 128 57 60 58.8 55 42.6 126.6
10° 1.6 5 128 55 60 57.8 49 42.6 125.7
10° 32 4 64 23 26 25.5 27 21.3 63.0
10° 32 5 64 23 26 24.6 24 21.3 62.1
10° 3.2 4 128 57 60 58.3 55 42.6 126.9
10° 3.2 5 128 56 59 57.0 |49 426 125.8
10° 64 4 64 24 26 25.0 27 21.3 62.6
10° 64 5 64 22 26 24.2 24 21.3 62.5
10° 6.4 4 128 56 59 57.2 55 42.6 125.8
10° 64 5 128 55 58 56.5 49 42.6 126.3

Table 3: Compression rate.

The numbers provide a lot of useful information. With sufficiently large |w|
or larger x, Huffman compression always performs better than word packing,
even without using hard compression. If |w| is small and x is also small, word
packing is the better choice. The only exception to this rule is for tables with
n = le+ 6 and ¢ = 1.6. However, we have already seen that these have to be
treated differently and we will ignore them for now. In all cases, compression
yields an improvement over not using compression. The counter limit y only
slightly influences the compression rate «,. It’s impact on v, is greater by far.

Better compression can be achieved by reducing the word-size |w| while re-
taining . Of course this leads to more word overflows which have to be com-
pensated by additional memory. For example, for n = 1.000.000, reducing |w|
to 118 bits saves 10 bits per word at the cost of additional 160 overflown words.
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4.4 Comparing sizes

This section presents the average sizes for all simulations made. They include the
size of uncompressed filters (CBF), the packed filters (denoted P) and Huffman
compressed filters (denoted H) for each x and word-size |w| grouped by the
number of items n and the size of the table.

summary size, n = 1e6,c = 1.6
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682.67
682.67 668.75
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Figure 7: Summary sizes for n = 1e6, ¢ = 1.6

5 Conclusion

The results fully meet the expectations and backup our theoretical analysis. We
have shown that our initial assumptions allow fundamental improvements over
previous work. In conclusion, when constructing an EHT, the following aspects
must be considered.

e Reducing the size m is achieved by increasing the off-chip memory width.
Analysis has shown, that the expected maximum load will not exceed 3
as long as ™ > 2. Bucket overflows are extremely rare, even for a large
set of items. The off-chip memory width can be reduced at the cost of
additional CAM.

e Performance does not scale with n. With equal k but smaller 2*, perfor-

mance will be worse. This holds especially if table sizes are very small
such that 7 — 2.

e Choosing x depends on the fraction *. Starting with y =5 for 2 < <
2.5, x can be decremented by one each time 7 is doubled for a small

overhead in terms of CAM.
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summary size, n =1e5,c=1.6
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Figure 8: Summary sizes for n = 1e5, ¢ = 1.6
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summary size, n = 1e6, ¢ = 3.2
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Figure 9: Summary sizes for n = 1e6, ¢ = 3.2

e Huffman compression is favorable over word packed compression, unless
the word-size |w| and the counter limit x are small.

e At the cost of few additional CAM cells, the performance of Huffman
compression can be improved.
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summary size, n = 1e5, ¢ = 3.2
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Figure 10: Summary sizes for n = le5, ¢ = 3.2

summary size, n = 1E+6,c = 6.4
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Figure 11: Summary sizes for n = 1e6, c = 6.4

5.1 Recommendations

Following the theory and results an EHT implementation could be as follows.

e Prefixes are sorted and stored in tables according to length. The maximum
prefix length is 32 bits resulting in hash table trees for prefixes up to 64
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summary size, n =1E+5,c =6.4
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Figure 12: Summary sizes for n = 1e5, ¢ = 6.4

bits. The very few prefixes larger than 64 bits are kept in CAM.

e The prefixes are stored in EHTs with ¢ = 1.6 buckets/counters per prefix.
This leads to an expected maximum load of 3 which is exceeded only very
rarely. With n = 4 - 105 entries a single table would have 223 buckets.
Using the hashing scheme of section 7?7 a prefix needs only 11 bits leaving
much room for an associated value. A 64 bit wide off-chip DDR memory
is used. This provides provides enough space to make bucket overflows
vanish even for millions of entries. Alternatively, longer prefixes can be
allowed (approximately up to 48 bits, depending on n and the value size).

e The maximum online counter value is x = 5. With millions of entries the
expected number of entries which have to be stored in CAM is still only
in the tens.

o A 128 bit wide on-chip memory is used. This allows compressing about 50
counters per word using a HCCBF. To keep overflown bits a small CAM
with a few cells suffices. The memory width can be reduced at the cost
of additional CAM cells. Since the number of entries grows exponentially
with every bit saved, it’s probably best not to go below 110.

Our implementation includes a simulator which can be freely configured and
simulates the construction and behavior of an EHT including updates. Thus
sample configurations can be tested and the results used for a practical imple-
mentation.
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