
A Multicast-Avoiding Privacy Extension
for the Avahi Zeroconf Daemon

Daniel Kaiser Andreas Rain Marcel Waldvogel Holger Strittmatter
University of Konstanz, Konstanz, Germany

<first>.<last>@uni-konstanz.de

Abstract—In today’s local networks, a significant amount of
traffic is caused by Multicast packets, such as Multicast DNS
Service Discovery (mDNS-SD), a widespread technique used for
configurationless service distribution and discovery. It suffers
from two major problems inherent in multicast: privacy and
network load. We present a privacy extension for the Avahi
Zeroconf Daemon that tackles both problems while being very
efficient.

I. MDNS-SD PROBLEMS

Multicast DNS Service Discovery (mDNS-SD) is a preva-
lent technique used for configurationless service distribution
and discovery. It uses the upper two layers of the Zeroconf
stack, namely, DNS Service Discovery [1] built on Multicast
DNS [2], and allows users to offer and use services like device
synchronization, file sharing, and chat, when joining a local
network without any manual configuration.

This is very convenient but as Zeroconf is built on multicast,
two major problems arise: privacy and network load.

The privacy problem arises because every machine in the
same network will automatically receive all the announce-
ment traffic and thus obtain a lot of information about the
users in the network without having to send a single packet
itself. Using mDNS-SD, devices publish their hostnames –
frequently containing the user’s name – when entering a
network, followed by information about offered and requested
services (see Figure 1). We show highly revealing real-world
examples of private information published by mDNS-SD and
present a thread model in our previous work [5]. Many users
are completely unaware of how chatty their devices are [7].

The network load problem arises because the multicast traf-
fic caused by mDNS-SD may use a vast amount of bandwidth,
which is especially bad for large Wi-Fi networks [3]. Therefore
some institutional networks do not allow multicast at all or are
subdivided in several multicast cells to reduce traffic, which
renders mDNS-SD unusable.

II. SOLUTION

Our privacy extension [6] allows to use mDNS-SD without
publishing private information and tackles the traffic problem
by significantly reducing the number of multicast packets
sent. The Zeroconf advantage of not requiring any network
configuration is fully maintained for public services; this
extends to private services after an initial user pairing.

In addition, the implementation we are going to present can
avoid multicast altogether, by using DNS in a very uncon-

daniel@Daniel’s Notebook._presence._tcp.local:
type TXT,
vc=! ver=2.10.6 node=libpurple
port.p2pj=5298 txtvers=1
status=gaming
last=Kaiser
1st=Daniel

Fig. 1. DNS TXT record that contains several critical key value pairs like the
first and last name of the user, the chat status and the version of the service.
This TXT record is not constructed; it was published by the pidgin chat client
on the author’s notebook.

ventional, innovative way, resulting in an enhanced privacy
extension which is

• privacy preserving
• usable without multicast
• completely transparent1

• very efficient2

• fully backwards compatible, and
• easy to deploy.
Besides solving the privacy and network load problem,

it also allows to use zero-configuration service discovery in
environments where standard mDNS-SD would not work.

III. IMPLEMENTATION

The implementation of our privacy extension is based on
the open source Avahi3 Zeroconf daemon. The new function-
ality was added with minimal changes to the existing source
code. Together with loose coupling the extension is easy to
maintain. Our implementation consists of three main logical
components:

1) Privacy Socket Distribution: To be able to offer config-
urationless service discovery over unicast, we need means to
distribute the network parameters of a special socket, called
privacy socket, when entering a network. To this end our
implementation uses a metaservice type, _ppSOS, whose
service instance name allows finding friend’s devices. This
instance name is a random string that is exchanged once4

1Both client software and the network infrastructure are oblivious to our
privacy extension.

2It demands imperceptible additional CPU time and significantly reduces
the network load [6].

3http://avahi.org
4Even if a user has several devices, it is sufficient to pair one of his devices

to one of each friends devices, because we allow pairing data synchronization
among the devices of the same user via our Privacy Data Sync Service,
_pdss.

per pair of users during an initial pairing, which is realized
via another metaservice but can also use out-of-band secure
channels like Bluetooth, encrypted email or photographing a
QR code.

The _ppSOS instance can be distributed in two ways. The
first way of distribution is similar to the standard mDNS-SD
service announcement: the service instance is announced and
queried using multicast. To grant privacy, our implementation
encrypts all the information in the corresponding resource
records. This method is limited to a single multicast zone.
The second way of distribution, which allows using mDNS-SD
even if multicast is disabled, is based on Stateless DNS [4]. It
stores the SRV, TXT and A resource records needed to resolve
the _ppSOS service instance in the cache of the local DNS
Server. This is done by sending a special ”programming query”
to our echo server, which uses only the information contained
in this query to generate a DNS response the local cache will
store. Because the response is built only from information
contained in the ”programming query”, our echo server does
not need any configuration files or state; it consists of a single
Perl script using the Perl DNS library5, making the redundant
or local deployment very easy. It is not even necessary to have
an echo server running within an institution. Any echo server
instance can be used as long as it supports our query format.
The lack of state also allows the use of anycast.

Both ways of privacy socket distribution can be used simul-
taneously and do not interfere.

2) Privacy Aware Unicast Service Discovery: The queries
and responses of all three stages of service discovery, namely
service browsing, service resolution, and hostname resolution,
are sent via unicast, encrypted using the symmetric key ex-
changed during pairing, to the privacy sockets of offering and
requesting devices (Figure 2). A hashtable containing online
friends and their privacy sockets is maintained with the help
of the _ppSOS service described above.

Our implementation receives DNS queries that were gener-
ated by client software via DBUS and instead of multicasting
them to the mDNS-SD multicast address, it demultiplexes
them to the privacy sockets of online friends’ devices. Despite
the fact that there are many special cases to consider, our
implementation is very efficient and causes imperceptible addi-
tional CPU usage. The privacy extension is fully transparent to
all client software, completely obviating any need for change.

3) User Control: Our Enhanced Service Browser allows
selecting which services are offered to whom. It is further used
to control the pairing process described above and informs
the user when a (newly installed) application wants to offer
or request a service which is not configured yet, instead of
publishing the information without the user’s awareness. To
ease configuration the Enhanced Service Browser allows set-
ting sensible defaults. The tool also gives the functionality of
a traditional service browser, namely listing available service
instances; in addition it shows friends and other devices of the
user that are currently online.

5http://www.net-dns.org

S1 Sk...

Announcing
 Daemon

M

...
Receiving
 Daemon1

Receiving
 Daemonm

Application

Network

Daemon

Daemon

S
1 ... S

k S 1
 ..

. S
k

P

... pSlpS1

pS
x pS

x

PM MP

Fig. 2. While our solution still allows traditional announcement of services
S1, . . . , Sk , it is possible to announce services pS1, . . . , pSl in a privacy-
preserving way. This is done by sending chosen services pSx to chosen
devices’ privacy sockets P using unicast.

IV. DEMONSTRATION

In our demonstration we will show the privacy problems of
standard mDNS-SD, present our privacy extension and demon-
strate the Enhanced Service Browser; thus the demonstration
will be divided in three parts:

1) Privacy Problem: We will demonstrate the leakage
of private data when using the standard daemon and show
which information Eve, an example adversary, can get when
using a simple service browser like avahi-browse . Using
Wireshark, we will also show the packets transmitted.

2) Solution: We will present our privacy extension pub-
lishing and requesting the same services and demonstrate that
none of the private data shown before is accessible by Eve.
We will further show that our privacy extension is backwards
compatible and works with existing applications (e.g. Pidgin).

3) User Control: We will further demonstrate how to use
the Enhanced Service Browser to browse for services in the
network, pair to a new device, and tune the privacy settings
for an example service.

REFERENCES

[1] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. Number
6763 in Request for Comments. Internet Engineering Task Force (IETF),
2013. I

[2] S. Cheshire and M. Krochmal. Multicast DNS. Number 6762 in Request
for Comments. Internet Engineering Task Force (IETF), 2013. I

[3] S.G. Hong, S. Srinivasan, and H. Schulzrinne. Measurements of multicast
service discovery in a campus wireless network. In Global Telecommu-
nications Conference, 2009. GLOBECOM 2009. IEEE, pages 1–6. IEEE,
2009. I

[4] Daniel Kaiser, Matthias Fratz, Marcel Waldvogel, and Valentin Dietrich.
Stateless DNS. Technical Report KN-2014-DiSy-004, University of
Konstanz, Dec 2014. III-1

[5] Daniel Kaiser and Marcel Waldvogel. Adding privacy to multicast DNS
service discovery. In Proceedings of IEEE TrustCom 2014 (IEEE EFINS
2014 Workshop), 2014. I

[6] Daniel Kaiser and Marcel Waldvogel. Efficient privacy preserving
multicast DNS service discovery. In Workshop on Privacy-Preserving
Cyberspace Safety and Security (IEEE CSS 2014), 2014. II, 2

[7] Bastian Konings, Christoph Bachmaier, Florian Schaub, and Michael
Weber. Device names in the wild: Investigating privacy risks of zero
configuration networking. In IEEE MDM, 2013. I

