
JSXC: Adding Encrypted Chat
with 3 Lines of Code

Klaus Herberth, Daniel Scharon, Matthias Fratz, and Marcel Waldvogel
Department of Computer and Information Science

University of Konstanz, Konstanz, Germany
Email: <first>.<last>@uni-konstanz.de

Abstract—If it isn’t on the web, it doesn’t exist. However,
most of our current arsenal of web services are provided for
free by large international corporations – free as in targeted ad-
vertising. More privacy-aware self-hosted alternatives frequently
lack the feature set of their commercial rivals, leaving users to
decide between privacy and functionality. Therefore, we present
WISEchat (Web-Integrated Secure Enhanced Chat), our concept
for enhancing practical security for web-based chat, as well as
an implementation, the JavaScript XMPP Client (JSXC). By
design, JSXC can be easily and painlessly integrated into existing
webapps to equip them with encrypted chat capabilities, making
them more attractive and thus more frequently providing a secure
alternative as the most functional and convenient alternative.

I. RELATED WORK

There are plenty of web- or browser-based chat clients.
The most widely used one is presumably the one integrated
in the Facebook social network; however this client is firmly
tied into its intended service, and provides an equivalent level
of privacy – while the connection to the server is secured by
TLS, it critically provides no security whatsoever against the
server. In stark contrast to Facebook’s automatic logging of
chat messages, Off-the-Record messaging [1] provides end-to-
end encryption and confidentiality with full forward security,
preventing even a malicious or compromised chat server from
reading or altering messages in transit. This is clearly a highly
desirable feature for any chat client that is to be integrated into
services offering privacy by design.

Crypto Cat [2] appears to be the first popular add-on that
provided an in-browser OTR-encrypted chat. As an add-on, it
can profit from the full security of a native application running
on a properly secured host, but requires explicit installation
by the user which, for many use cases, is a crucial step too
much. WISEchat removes this step by integrating directly into
the web application itself, with minimal changes to the host
application – generally 3 to 5 lines, depending on the degree
of integration. What sets it apart from other integrable clients
such as Candy [3] or Jappix Mini [4] is its set of features and
its focus on security. Like Converse.js [5], it can piggy-back
the authentication of the host web application,1 saving the user
another annoying login, and tearing down one further barrier
between the user and encrypted chat.

II. IMPROVING PRACTICAL SECURITY

To avoid these barriers for the user, WISEchat is designed
not as another web service, but as an open-source, XMPP-

1This is especially helpful for webmail integration, as the user’s Email
address and Jabber ID are almost always identical.

based end-to-end encrypted chat client that can be easily
integrated into existing web applications with minimal effort.
Its integrated nature means that there is no WISEchat server
or website. It is part of whatever services it is integrated with;
it is, to a certain degree, invisible. This improves upon exist-
ing, standalone Off-the-Record chat applications by providing
security by usability – by offering the secure alternative as the
most convenient alternative, directly in the webapp the user
actually wants to use at the moment, without forcing a media
break.

WISEchat is a concept; JSXC [6] is an implementation
of WISEchat, employing widely used, highly interoperable
protocols – by using standard Off-the-Record encryption [7]
compatible among implementations, by using the Extensible
Messaging and Presence Protocol [8] over BOSH [9], or
by employing SRTP [10] for encrypted video chat. For the
user, this interoperability means that (s)he can chat with any
other XMPP user, regardless of the other user’s choice of
client or XMPP server.2 This makes JSXC a first-class citizen
among OTR-capable XMPP clients; the user might use JSXC
integrated into an open-source groupware suite like SOGo [11]
while reading email in the webmail interface, but prefer to
chat using a standalone chat client like Pidgin [12] with its
OTR plugin while in the office. The user thus keeps his/her
freedom of choice, and can use whichever client (s)he finds
most convenient at any given time. Security profits because
secure chat is simply the most convenient option in a greater
number of situations.

JSXC is designed as an implementation of open protocols,
not as a web service. In order to provide cross-platform
functionality, it uses open standards like WebRTC and can
thus provide video chat without plugins in most modern
browsers.3 Combined with its use of common, widespread
libraries for both XMPP and OTR encryption, this further
reduces the burden on both the maintainer as well as the
service administrator by keeping the number of components
to a minimum. Because of its loose coupling (fig. 1), it also
preserves the freedom of choice for the operator of the service
it is integrated with. It uses XMPP towards the chat server,
which can be set up using any one of a number of popular

2XMPP, being a federated protocol, will forward messages as necessary
between properly configured servers, much like Email forwarded between
domains. Therefore, while generally configured with a central XMPP server
for each organisation, there is no need for users to connect to the same server
to be able to communicate, neither with JSXC nor with any other client.

3As of writing, Internet Explorer does unfortunately not yet support Web-
RTC and thus is not supported for video chat. It can of course still be used
for general, OTR-encrypted text chat.



<link href="lib/jquery+plugins.min.css"
media="all" rel="stylesheet" type="text/css" />

<script src="lib/jquery+plugins.min.js"></script>
<link href="lib/jsxc.all.css"

media="all" rel="stylesheet" type="text/css" />
<script src="lib/jsxc.all.js"></script>
<script src="js/jsxc/config.js"></script>

Fig. 1. Typical HTML snippet required for JSXC integration. JSXC consists
of a handful of JavaScript code files, some CSS styles and several images.
Apart from making these files accessible on the server and setting up a BOSH
proxy for the XMPP server, the lines above are the only change required
to the application itself. In some cases, it may ease maintenance to include
the individual libraries separately instead of concatenating them into a small
number of files. This is particularly true for the jQuery libraries, which is
already present in most modern webapps for functionality other than JSXC.

Fig. 2. JSXC integrated into SOGo. The user list on the right-hand side shows
the online status of chat buddies. The chat window in the bottom right can be
slid away when not in use, reducing to the size of its title bar. This allows the
user to keep track of ongoing conversations without obliterating the screen.
Also note the display of users’ online status next to email addresses. This
functionality is entirely provided by JSXC; SOGo does not have to support
the status icons or in fact be aware of them.

XMPP server implementations – and this XMPP server itself
acts as a standalone service that can be used by other desktop,
mobile or web clients. In essence, this means that a single
real service – the XMPP server – can provide any number of
perceived services – the web chat integrated in numerous other
services – thereby greatly reducing maintenance effort.

JSXC does not have to be a separate part of the web
application that shares screen space but otherwise does not
interact with it. For example, it can automatically detect
Jabber IDs (JIDs) in the web page it is integrated on, show the
online status of the user alongside, and turn them into links to
start a chat with this user. This is implemented without active
cooperation of the host application, keeping interdependence
at a minimum without sacrificing interaction. Because JIDs
are almost universally identical to a user’s email address, this
simple functionality already provides significantly improved
usability and integration.

For example, in the SOGo integration example (fig. 2),
this means that the user can instantly see whether the sender
of an email is currently available for chat, and may thus be
able to directly ask for clarification if need arises, saving
what could be several lengthy email round trips explaining
what, exactly, the recipient did not fully understand. However,

because JSXC permits temporary, anonymous accounts, this
feature can also turn a static documentation page into a semi-
interactive medium by offering a quick, uncomplicated way of
contacting the contact persons given on the page – or of seeing
that they are offline and that an email is indeed necessary.

It does not have to be limited to such simple integration
however. For example, a federated social network application
such as buddycloud [13] could very easily provide a way
of contacting users and showing their status wherever they
are mentioned, without explicitly displaying the user’s JID. It
might then complement this by providing an easy path from
the chat window to the remote user’s profile, or provide some
form of notification of new content posted by the remote user
in the chat window. While such applications currently fall
firmly into the realm of future developments, and may require
deeper integration thus reducing JSXC’s advantages of simple
deployment into new or existing services, they clearly show
that the WISEchat concept could be used as a building block
for innovative web-based interaction.

III. DEMONSTRATION

We will demonstrate an example of a JSXC integration
into an existing webapp. From the users’ point of view, we
will demonstrate the login, unencrypted chat and starting of
an encrypted chat, while showing the messages as seen by
our “honest but curious” XMPP server. We will also show a
brief video chat conversation, but then proceed to take a look
under the hood and show what changes have been made to the
webapp, including the JSXC configuration and installation of
the BOSH proxy.

REFERENCES

[1] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record communication,
or, why not to use PGP,” in Proceedings of the 2004 ACM workshop
on Privacy in the electronic society. ACM, 2004, pp. 77–84.

[2] Crypto cat. Accessed Nov. 2014. [Online]. Available: https://crypto.cat/
[3] Candy chat. Accessed Nov. 2014. [Online]. Available: http://candy-

chat.github.io/candy/
[4] Jappix mini. Accessed Nov. 2014. [Online]. Available: https://mini.

jappix.com/
[5] Converse.js – a free and open-source XMPP chat client for your website.

Accessed Nov. 2014. [Online]. Available: https://conversejs.org/
[6] K. Herberth, M. Waldvogel, and D. Scharon. (2014) JavaScript XMPP

client. [Online]. Available: http://www.jsxc.org/
[7] I. Goldberg and the OTR Development Team. (2014) Off-the-record

messaging. [Online]. Available: https://otr.cypherpunks.ca/
[8] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):

Core,” RFC 6120 (Proposed Standard), Internet Engineering Task
Force, 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[9] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout,
and W. Tilanus. (2014) XEP-0124: Bidirectional-streams over
Synchronous HTTP (BOSH). Draft Standard. [Online]. Available:
http://xmpp.org/extensions/xep-0124.html

[10] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The Secure Real-time Transport Protocol (SRTP),” RFC 3711
(Proposed Standard), Internet Engineering Task Force, 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3711.txt

[11] Inverse, Inc. (2014) Sogo: Open source groupware. [Online]. Available:
http://www.sogo.nu/

[12] Pidgin, the universal chat client. Accessed Nov. 2014. [Online].
Available: https://www.pidgin.im/

[13] Buddycloud. Accessed Nov. 2014. [Online]. Available: http://
buddycloud.com/


