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1 Introduction

Account information is in high demand among crooks. Ha-
cked accounts are used (1) as stepping stones to hide their 
tracks, (2) to abuse legitimate web sites for phishing and dis-
tribution of malware and copyrighted material, (3) to send 
spam without being filtered, (4) (5) for installing keyloggers 
to obtain more data, including banking information, and (5) 
to add machines to global botnets for later automated large-
scale malfeasance.

One of the favorite uses of botnets is to farm more accounts 
to increase the power (and rental value) of the botnet [Pur03]. 
This is generally done by trying to authenticate against a ser-
vice with (username, password) tuples based on dictionaries. 
These dictionaries are frequently enhanced by formation ru-
les to e.g. append a few digits to words or replace the letter e 
by the digit 3.
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Figure 1: Flexibility of Pluggable Authentication Modules (PAM)
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In the beginning, these (username, password) pairs were fired at 
the target as quickly as possible. However, tools such as DenyHosts 
[Den] and Fail2ban [Fai] made it easy to defend against these 
types of attacks by blacklisting the IP address of the assailant.

Nowadays, the attacks happen much more subtly. A large set 
of bots, often several hundred thousand, jointly and covertly 
go stalking potential victims: Each of them only uses a few shy 
attempts, hoping this will not alert the subject. Later, another 
member of the hunting party will tickle the prey, while the first 
attacker approaches the next target.
 
As it is necessary to allow a user to mistype her password or 
switch to the correct password for the system, a single failed at-
tempt cannot be used as a direct indication of an attack. Iden-
tifying user-generated typos helps distinguishing between bot-
net attacks and failed user logins.

Our PAM[SS95]-based approach includes several firsts:

1. Retaining the power of PAM, allowing arbitrary authentica-
tion and authorization mechanisms to be used (Section 3)

2. Allowing geographical risk differentiation (GRID, Section 4.2)
3. Hierarchical risk grouping (Section 4.2)
4. Coordinated organisation-wide defense (CROWD, Section 4.1)
5. Dictionary-attack defense (Section 4.3)
6. Secure typo detection for user-bot differentiation (Section 4.4)

Based on flexible, realtime in-app tracking and combined with the 
use of DNS-based black lists, SIEGE provides low-maintenance, 
high-impact defense against password-guessing attacks.

2 Related work

Around 1990, it dawned to administrators and system program-
mers that the traditional  /etc/passwd-based login approach 
was not flexible enough. Kerberos [KN03], LDAP [WHK97] and 
derivatives such as Microsoft’s Active Directory started coming 
of age in the following decade. The Open Software Foundation 
came up with Pluggable Authentication Modules (PAM) [SS95] 
as the way of making authentication more flexible (Figure 1).

For each application, the system administrator can individually 
specify which authentication mechanisms to allow as part of the 
module chain (Figure 2 (b)). In addition to authentication, oth-
er account-specific functions, session management and change 
of authentication token (mostly passwords) can be controlled 
(Figure 2 (a)). Common functions include limiting access by date 
and time; creating and populating home directories on the first 
login; mounting special volumes such as encrypted homes (and 
securely unmounting them on logout) and many more (Figure 3).
 
Due to its versatility, PAM has become the de facto authenti-
cation mechanism for most Unix-like desktop and server sys-
tems [Mor97].

For more than a decade, brute force account/password guess-
ing attacks against SSH (and other services requiring authen-
tication) have been going on [Cid13]. In the early days, a single 
host attacked its target with a large set of login attempts. This 
was simple to mitigate: Specialized host-based intrusion detec-
tion systems (IDS) like Fail2ban or DenyHosts [Fai, Den] started 
scanning log files for IP addresses which exceeded a given failed 
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login rate threshold. The culprits were blocked from further at-
tempts for a specified length of time.

Even though these are still not standard practice when setting 
up new hosts, the attackers moved away from individual source 
hosts to entire botnets. This helped them also to cover their tracks. 
Nowadays, each of the several ten or hundred thousands mem-
bers of a botnet only probes a small set of username/password 
combinations before focusing on the next victim. This renders 
source-based limits essentially useless. Furthermore, log file 
analy sis has several drawbacks: It must be flexible enough to 
cope with changes of the authentication software, but it must 
not be fooled into misinterpreting log entries.
 
For example, an SSH error message documenting a failed attempt 
for user might look as follows
 

 

Malicious users can try to lock out users from a different address, 
say, 22.33.44.55, by trying to authenticate with the non-existant 
user test from 22.33.44.55 . The resulting message
 

and its relatives were misinterpreted by many earlier versions 
of most software packages, as they did not have the benefit of 
the differing background colors.

pam_abl [ABL] provides a similar function, but implements it 
as part of the PAM chain.
 Therefore, it does not need to parse log files and thus is not vul-
nerable to the above log injection attacks. However, a host with 
pam abl still fights alone in a steep uphill battle against a fierce 
horde of coordinated botnet members.

In more restricted environments (stronger rules, fewer services, 
or fewer users) than in academia, it is also possible to limit the 
hosts which may login or use certificate-based logins (including 
SSH keys). However, the diverse student and staff body of most 
universities makes the necessary education and support prob-
lems look like an unsurmountable problem, especially as this 
diverse group of ‘locals,’ together with many academic guests, 
make traditional security perimeters impossible: inside is the 
same as outside.

Intrusion Detection Systems (IDS) can try and limit logins, e.g. 
based on IP-based blacklists [Cis09]. However, due to the encrypted 
nature of SSH traffic, it is impossible to distinguish failed logins 
from short successful logins, which occur e.g. in remote manage-
ment. Neither is it possible to differentiate between ‘good’ and 
‘bad’ users at this level.

3 Operation

SIEGE brackets the actual authentication modules (Figure 3 (b)).1 
With this trick, it can remain mechanism-agnostic while learn-
ing as much as possible about successful and failed authentica-
tions: A successful authentication will be visible to both module 
parts, while a failed attempt will only call the top half.
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4 Defense mechanisms

The challenge in the defense against password-guessing attacks 
gets in balance between

1. locking out as many of the attackers as possible in order to 
reduce their guessing rate as much as possible, and

2. allowing legitimate users to log in even when an attack is 
ongoing. 

 
Our approach at achieving this is described in the remainder 
of this section.

4.1 Coordinated organization-wide defense

In the spirit of Indra [JWZ03], CROWD uses the wisdom of the 
(cooperating) masses within an organization to coordinate their 
defense against the seemingly unsurpassable superiority of the 
botnet. Each host contains a local secret, which is used to au-
thenticate against the central CROWD server through a secure 
connection.

The race conditions in the protocol are hard to exploit, as the 
problem windows are very short-lived. This approach still allows 
the clients to remain in full control, keep the server simple (get, 
put, expire) and close gaping accounting loopholes in other ap-
proaches. For example, pam abl (and, depending on the configu-
ration, also the other mechanisms) allow a single-source attack-
er to open a large number of connections simultaneously. When 
they are open and ready to receive the password, hundreds or 
thousands of parallel guesses can be made before the source is 
blacklisted. Due to the pre-decrementing used in SIEGE, even with 
some decrements missing due to the race condition, only the first 
few attempts will be evaluated before the attacker is stopped.

4.2 Geographical risk differentiation

Even at a university with global outreach, the services requiring 
authentication have a local user base: Most requests will be from 
within the campus, the city, state, or country. Therefore, remote 
locations are less likely to be the source of legitimate logins, 
making password mismatches from other locations more like-
ly to be from attackers. As a result, the threshold to block a giv-
en source for exceeding the number of bad password attempts 
can be set smaller while maintaining a high probability that le-
gitimate users will not be locked out.

SIEGE uses this property to differentiate failure thresholds and 
their effects. A sample set of parameters is given in Table 1: For 
the university’s home country, after 10 failed attempts within a 
defined period (typically 10 minutes), the host is blocked for a con-
figurable time (10 minutes as well). As soon as 10 hosts within the 

The functions are divided into top and bottom halves as  
follows.
 

 

To simplify the process of writing back local results if the CROWD 
has been temporarily unavailable, the minimum of the remain-
ing attempts of CROWD and the local cache can be used.

This unique three-level approach of (1) global, long-term DNS 
blacklist, (2) organization-wide CROWD, and (3) local system in-
formation, is able to strike an excellent balance between secu-
rity, manageability, reliability, control, and privacy. The local lev-
el can react quickly and provides defense even when the higher 
levels are unreachable, e.g. because of denial of service, while 
CROWD helps to react even to slow attacks. The DNS blacklists 
help identify the long-time perpetrators, even if they have been 
inactive for some days. These functions cannot all be bundled 
into one global system, as this itself would become a security 
risk. In our design, the global level never sees usernameinforma-
tion. Password-related information does not leave the local host 
and even there it is only stored for a very short period of time.
Details about the implementation can be found in [Kol13].

Top half

1. Check whether the remote host is known to third-party DNS-

based blacklists, such as Spamhaus XBL [Spa]. Fail immediately 

on match.

2. Compare the password against a dictionary of common pass-

words (Section 4.3)

3. 3Determine remaining number of failed attempts for this 

address: 

 (a) Look up source address in the CROWD (CooRdinaated  

  Organization-WiDe, Section 4.1) server. If unreachable,  

  use local cache. Return this information, if any.  

  Otherwise: 

 (b) Determine geographic origin of the connection. Use  

  administrator-set likelihood for legitimate login  

  attempts modified with optional user preferences to  

  determine maximum number of login attempts  

  (Section 4.2).

4. Decrease the number of remaining login attempts, indicating 

that a (so far unsuccessful) attempt is in progress. The amount 

of reduction is tuned by the likelihood of a user password 

mistake (Section 4.4).

5. Perform hierarchical blocking propagation (Section 4.2).

6. Store this information in the local cache and update the 

CROWD.

Bottom half

1. Undo the attempted reduction and update cache and CROWD 

accordingly.
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Transposing two keys on the keyboard: Two adjacent characters 
in the password are swapped. 
Duplicating. Bouncing a key on the keyboard: A character is in 
the password twice instead of once.
Missing. Not hitting a key strong enough: The resulting pass-
word is missing a character.

It is unlikely that an attacker will try the correct password mod-
ified by one of these rules early in the process. Thus, seeing a 
password modified by one of these rules is likely to come from 
a user. When we detect mistakes like that, the try will not count 
as much as a full incorrect password attempt, thus reducing the 
chance of a legitimate user being locked out incorrectly.

As the above error-generating processes can all be reversed, 
this is easy even when the passwords are encrypted (which 
they should be):

Transposing.  All possible single transpositions can be tried in 
(L− 1). A password encryption attempts locally on the machine, 
where L is the length of the password just received. 
Duplicating. All sequences of duplicate successive characters 
can be eliminated each in D. Password encryption attempts lo-
cally on the machine, where D is the number of duplicate suc-
cessive characters (D < L).
Missing. All possible missing characters can be tried in (L + 1).  
A password encryption attempts locally on the machine, where 
A is the size of the likely alphabet.

The first two mechanisms are very cheap, the third can be rath-
er costly if an expensive encryption function was chosen for the 
password. In some environments this costly step might be un-
desirable and can thus be deactivated.

Mechanisms which perform weak matches against the password 
open up new attack vectors. One prominent mechanism are tim-
ing attacks, where a shorter password verification time would 
indicate that the correct password has been found after only a 
subset of the operations. To thwart such timing attacks, all the 
configured operations must be performed for an incorrect input 

same subnet (/24 in the case of IPv4) are blocked, the entire sub-
net is blocked for 20 minutes. When the blocked subnets in a /16
network reaches 10, the entire /16 network is blocked for 30 min-
utes. Even when many networks in the home country are blocked, 
the country itself is never completely blocked. For neighbor and 
other countries, entire countries can be blocked.

This mechanism can be too aggressive for a member of the uni-
versity visiting a country where a large number of bots are oper-
ating. Therefore, we allow individual users to list countries they 
are visiting.2 For those users, the login threshold will be set to 2 
(or the minimum of the country) and they will be exempt from 
network size escalation.

This allows to trade the small risk of user accounts being at-
tacked against the convenience of the user. Because this has to 
be a user-driven step, the user can also be educated about se-
curity precautions at this time.

With this adaptive combination of reactions, the GRID compo-
nent of SIEGE can ensure a very high level of security without 
compromising user experience.

4.3 Dictionary-based botnet identification

As a rule of thumb (and often as part of the security policy), pass-
words should not be derived from dictionary words or well-known 
frequently-used passwords. This can be enforced by the Crack-
Lib PAM module [Gaf] or other similar tools. Conversely, this al-
so means that users are unlikely to use a dictionary word as 
their password. SIEGE includes a simple test whether a pass-
word tried is known to CrackLib and immediately classifies a 
host trying to use such a word as an attacker, putting it on a 
temporary blacklist. This significantly increases the efficiency 
of the defense perimeter.

4.4 User-/bot password differentiation

For processes supporting manual password entry, users may 
mistype the password. Common typing mistakes include:

Class Failure thresholds Blocking periods (minutes)

Host Subnet Net Country Host Subnet Net Country

Home 10 10 10 ∞ 10 20 30 —

Neighbors 5 5 5 20 10 20 30 60

Others 2 2 2 10 10 20 30 60

Table 1: Example escalation parameters for password failures
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case for SIEGE, as any clustering will greatly increase the impact 
of the hierarchical blocking. We also assume that the attackers 
will carefully avoid all passwords found in the targets’ diction-
ary, to avoid multiplying SIEGE blocking rate (and thus signifi-
cantly reducing attack rate).

The results are impressive: SIEGE limits background-type scans 
to a few dozen password attempts per second. But even under 
heavy attack, no more than 7k attempts are successful, while 
still offering service to most legitimate users. GRID and CROWD 
combined offer 7 orders of magnitude protection over vanilla 
systems and more than 5 magnitudes compared to Fail2ban/
DenyHosts-style.

6 Conclusions

Even a small campus without any specific protection can be sub-
ject to roughly 1017 password scans per day, especially on the 
weekend, when monitoring is not as close. This is equivalent to 
trying all(!) twelve-digit lowercase passwords, ten-digit alpha-
betic passwords or nine-digit passwords perfectly chosen from 
all 95 ASCII printable characters. With a large number of unpro-
tected hosts, you no longer should assume that even excellent 
passwords are safe. Therefore, alternate mechanisms are need-
ed. GRID and CROWD mechanisms of SIEGE provide several or-
ders of magnitude improvement to current approaches. When 
you know that your campus is free of dictionary-derived pass-
words, the attacker identification can be significantly sped up 
providing even stronger protection.

We are currently working on putting the code into a releasable 
format to make the SIEGE benefits available to the community  2

password. As the number of password verification options then 
only depend on the input password, the timing leaks no infor-
mation about the proximity of the input to the actual password.

As the weak matching does not directly return information 
whether the password was a close match or not, this informa-
tion is very hard to abuse. Therefore we believe that this option 
only strengthens the defense, not weakens it, as it allows for  
significantly narrower limits before blacklisting.

5 Evaluation

We built a simulator of the GRID and hierarchical blocking prop-
agation logic to show the large-scale effects (Table 2). For this 
simulation, we assumed three botnet sizes, ranging from 10 thou-
sand to 100 million hosts. The botnets are following either of two 
goals: A targeted attack against single host, or a sweeping attack, 
which only tries to collect accounts. We also estimate that due 
to protocol overhead and built-in backoff timers, each bot can 
try a single password per second per target host.

For unprotected hosts, this means that the total number of pass-
word attempts is the product of botnet size and number of tar-
get hosts, resulting in up to stunning 1011 password attempts per 
second! Fail2ban and DenyHosts are assumed to block a host af-
ter 10 failures for the following 10 minutes, so the effective tri-
al rate is 10 attempts every 610 s improving on the unprotected 
hosts by a factor of 61.

SIEGE uses the parameters from Table 1. We assume that there 
are 256 countries, one home country, five neighbors, and the re-
maining 250 in the ‘other’ class. Each country consists of 256 /16 
nets, subdivided into /24s. Attacking hosts are uniformly distrib-
uted about the resulting 232 addresses. This is actually the worst 

Target hosts single 1k

Botnet hosts 10k 1,000k 100,000k 10k 1,000k 100,000k

Unprotected 10k 1,000k 100,000k 10,000k 1,000,000k 100,000,000k

Fail2ban/DenyHosts 0.2k 16k 1,630k 163k 16,300k 1,630,000k

SIEGE, 1 home 0.0k 0.1k 5k 0.0k 0.1k 5k

SIEGE, 5 neighbors 0.0k 0.2k 0.5k 0.0k 0.2k 0.5k

SIEGE, 250 others 0.0k 0.4k 0.4k 0.0k 0.4k 0.4k

SIEGE, total 0.0k 0.7k 6.5k 0.0k 0.7k 6.5k

Table 2: Password trial rate [s−1] (bold numbers indicate country blocking)
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1In a future version, we might consider bracketing it inside the authentication facility, between the Authentication and Set Credentials functions, 
similar to pam abl
2This is best done before leaving the home country, to avoid a lockout in the case of an acute attack.


