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Abstract—In today’s local networks a significant amount of
traffic is caused by Multicast DNS Service Discovery (mDNS-
SD), a prevalent technique used for configurationless service
distribution and discovery. It allows users to offer and use services
like device synchronization, file sharing, and chat, when joining
a local network without any manual configuration. While this is
very convenient, it requires the public exposure of the offering
and requesting identities along with information about the offered
and requested services, even when services do not need to be
public. Some of the information published by the announcements
can be very revealing, including complete lists of family members.
Another problem is the huge amount of multicast traffic caused,
which is especially relevant for large WiFi networks.

In this paper we present a privacy extension that does not
publish private information and reduces the number of packets
sent while still not requiring any network configuration except for
an initial pairing per pair of users. A key feature of our solution
is the ease of upgrading existing systems, a must for widespread
deployment and acceptance. We developed an implementation
based on the open-source Avahi daemon to show the feasibility
of our privacy extension. Our solution grants tunable privacy
and reduces multicast traffic without affecting user experience.

Index Terms—Privacy, DNS, Multicast, Service Discovery.

I. INTRODUCTION

Multicast DNS Service Discovery (mDNS-SD) is a preva-
lent technique widely used to distribute services in local
networks without configuration. It uses the upper two layers
of the Zeroconf stack[1], namely, DNS Service Discovery[2]
built on Multicast DNS[3], and provides great user experience.
For example it allows a student who enters his campus network
to automatically connect his mobile devices (smartphone,
tablet, notebook) among themselves, allowing file sharing and
synchronization; it further allows to automatically connect to
friend’s devices on campus allowing to chat or share data and
to connect to infrastructure devices like printers. This works
seamlessly, without user interaction and regardless of the IP
addresses and ports the corresponding services use.

Since Zeroconf is built on multicast, every machine in the
same network will automatically receive all the announcement
traffic and thus obtain a lot of information about the users
in the network without having to send a single packet itself.
Using mDNS-SD, devices publish their hostnames, commonly
containing the user’s name, when entering a network, followed
by information about offered and requested services. When a
user named Daniel enters the campus network, his Notebook
publishes “Daniel’s notebook joined the network™ to all de-
vices in the network. Many users are completely unaware of

how chatty their devices are [4]. Most users do not consent
to this information being published whenever they approach
a McDonald’s or Starbucks [4]. However, there is no user-
accessible mechanism to limit or prevent this chattiness.

The device might further publish:

e “I want to sync Daniel’s mobile folder with Daniel’s
smartphone.”

e “I share the folders
/home/alice/share,
and /home/bob/share.”

¢ “I am online using iChat and my status is gaming.”

/home/daniel/share,

Offering shares might allow inferring names of family mem-
bers, furthermore opening pathways to social engineering
attacks, while a chat application shows the user’s activity status
to everyone in the same network. Most users do not even know
how much information is published via mDNS-SD every time
they connect their mobile devices to a network or come close
to a known WLAN access point.

In this paper, we present a privacy extension for Zeroconf
daemons, which

« guarantees privacy by sending private discovery data only
to trusted hosts instead of multicasting it to everyone in
the same network,

o significantly reduces multicast traffic, moving further
towards the Zeroconf group’s goal of reducing multicast
traffic,

e is transparent to client software using mDNS-SD,

e is transparent to the existing network infrastructure,

o allows automatic service discovery like standard mDNS-
SD,

« allows to present only services a user can use, reducing
visual clutter,

o is fully backward compatible,'

« is very efficient, in all of network traffic, memory con-
sumption, CPU time, and wall clock time.

To grant these features, a relationship between two hosts has
to be established. This is done by an initial pairing during
which a shared secret is exchanged. After this initial pairing,
service discovery requires no further configuration allowing
hosts to offer and request arbitrary service instances, which
do not have to be known at the time of pairing. The IETF

"Public services’ operation remains entirely unchanged; private services
seem entirely unchanged within the trusted group.
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(a) Traditional mDNS-SD. The Zeroconf daemon announces
every service S1, ..., Sy to every device in the same network,
by multicasting it to the multicast sockets M.

Fig. 1.

Zeroconf charter” states that minimal configuration is tolerated
for security’s sake; we believe this includes privacy as well.
To realize our goals, our solution extends mDNS-SD by

o an additional socket per device called privacy socket,
which receives private unicast queries from paired hosts
(see Figure 1),

o a meta service that distributes privacy sockets,

e a meta service that synchronizes pairing data among
devices of the same user,

« an enhanced service browsing tool giving users control
over mDNS-SD allowing tunable privacy.

All those concepts work seamlessly together and are transpar-
ent to both applications and the network.

II. RELATED WORK

In previous work[5] we showed privacy problems arising
while using mDNS-SD, and presented a proof of concept
solution that shows that privacy in mDNS-SD can be granted
with little effort. While this solution provides privacy with
imperceptible additional CPU time, the solution we present in
this paper

e grants even more privacy, because discovery data is only

unicast to paired hosts rather than multicast to everyone
although in encrypted form,

« significantly reduces the number of multicast messages,

e is much more convenient, because it needs only one

pairing per pair of users, instead of one pairing per pair
of service instance and service requester.
The solution presented in this paper outperforms the one we
presented in [5] in privacy, network load, and user experience.

We are not aware of any other publication regarding pri-
vacy extensions for mDNS-SD. Nevertheless, the problem of
mDNS-SD publishing device names has been addressed [6],

[4].

Zhttp://datatracker.ietf.org/wg/Zeroconf/charter

(b) mDNS-SD using our extension. While our solution still
allows to announce services S1, ..., Sk in the traditional way,
it is possible to announce services pSi,...,pSn in a privacy
preserving way. This is done by sending chosen services pSg
to chosen devices’ privacy sockets P using unicast.

Standard mMDS-SD transmits all announcement traffic using multicast, while our extension can unicast announcements to privacy sockets.

Aura et al. [6] investigate private information published on
different network layers when connecting devices to a network.
While they mainly look at other protocols, they also mention
the privacy problem of device names published by mDNS-
SD. As a solution, they propose network location awareness,
that is allowing service discovery only in trusted networks.
We consider that too restrictive and want to give the user the
possibility to request and offer services in a privacy preserving
way even if the network cannot be trusted. Further we want
to mitigate the configuration overhead of making assumptions
about the trustworthiness of the network in use.

The public announcement of device names by mDNS-SD is
discussed in more detail in [4]. The authors conducted studies
showing that almost 60% of the published device names
contain real user names and that 90% of the users consider this
as privacy problem. They propose making users aware of the
problem and changing hostnames as a solution and also refer
to network location awareness and identifier free networks[7].
The privacy problem of SRV and TXT records being published
is not mentioned. We consider it important to hide all possibly
private information, because it can be seen by anyone as easily
as the hostname and might deserve more privacy protection
(e.g. TXT records). Furthermore, users should not have to
change hostnames.

Much research has been done in the area of privacy in
wireless networks. Especially finding access points in WiFi-
networks is related to our paper, because it also has to solve
the task of finding entities in a network using broadcast,
where everybody in the vicinity can listen to the messages. [§]
presents a privacy preserving protocol for discovering WiFi
access points. Since it is an extension to the 802.11 MAC
protocol, it does not meet our requirement of not changing
any deeper protocol layers.

Greenstein et al. [7] present an identifier free wireless OSI
layer 2 protocol, which allows to find access points and com-
municate in the wireless network in privacy. Since it provides
privacy on the link layer, it also solves the private service
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discovery problem. But to allow private service discovery,
the whole network infrastructure has to be updated, while
our solution allows private service discovery by just updating
the local Zeroconf daemon. Nevertheless, an identifier free
network fulfills more privacy requirements than those we
stated in [5]. It allows to hide information about a certain
device being online in a network, because there are no MAC
addresses published; thus allowing users to be untrackable.
While we consider it beneficial to be able to meet more privacy
requirements, we also consider it important to give users the
possibility to easily hide the cleartext information published,
while being independent of the network infrastructure.

Generic protocols for privacy preserving service discovery
[9] and presence sharing [10] have been proposed. Since they
use a central entity [9] and depend on a trusted broker [10],
respectively, we did not use them because we want to keep
mDNS-SD decentralized and do not want to rely on trusted
third parties.

There is much research in the area of service discovery
in pervasive computing environments[11] and mobile ad hoc
networks[12]. Zhu et al. present a model for privacy preserving
service discovery [13]. Since it is a generic model, we consider
it unnecessarily complex for our application area. Nevertheless
it is a sophisticated model and we want to incorporate ideas
like the usage of bloom filters in our privacy extension in
future work.

Mechanisms such as IPv6 privacy extensions[14] and locally
administered MAC addresses also aim to reduce the ability of
others to trace the whereabouts of end systems. These methods
work independently of our privacy extension, on OSI layers 3
and 2, respectively, and thus can be used at the same time.

Device fingerprinting [15], [16] can be used to track the
devices, even if the protocol in use has no explicit identifiers.
It is outside the scope of this paper to address tracing using
information leaked by the physical layer [17] and tracing of
the users by other ‘metadata,” such as the number or rate of
connections devices open, or where they connect to [18].

Another research topic that is related to our work is ef-
ficiency and bandwidth usage of multicast in general and
especially in 802.11 wireless networks. The efficiency problem
of multicast in wireless networks is explained in [19]. Chow
et al. [20] introduce mechanisms to mitigate the problem.

IITI. EFFICIENT MDNS-SD PRIVACY EXTENSION

Our main goal is to provide an extension for mDNS-SD that
avoids application-layer distribution of private data. Figure 2
shows resource records published by mDNS-SD when using
a chat application that is based on the _presence service.
Since these records contain private data, we want only paired
hosts to be able to receive them.

We also want to reduce the number of multicast packets
sent. Traditionally, services that are restricted to a small
user group, e.g. file-sharing, are implemented by selectively
handing trusted users’ access credentials, mostly in the form
of a user-specific or shared password. Thus, information about
services that can only be used by a few users is published to

_presence._tcp.local: type PTR,
daniel@Daniel’s Notebook._presence._tcp.local

(a) PTR record containing the device’s hostname, which by default
typically contains the user’s name.

daniel@Daniel’s Notebook._ presence._tcp.local:
type SRV, port 5298,
target Daniel’s Notebook.local

(b) SRV record showing the hostname and port.

daniel@Daniel’s Notebook._presence._tcp.local:
type TXT,

vc=! ver=2.10.6 node=libpurple

port.p2pj=5298 txtvers=1

status=gaming

last=Kaiser

lst=Daniel

(c) TXT record that contains several critical key value pairs like the
first and last name of the user, the chat status and the version of the
service.

addr 134.34.10.36

(d) A record presenting a mapping of hostname to IP address.

Daniel’s Notebook.local: type A,

Fig. 2. Resource records multicast when using a chat application that is
based on the _presence service. Each of these resource records violates
privacy.

Fig. 3. During pairing, two devices exchange a symmetric key and a label
(the name of a meta service instance described in subsection III-C) used to
discover privacy aware services.

the whole local network, only to deny almost everyone access
later. According to Cheshire[1] mDNS-SD is used to query
services of a type one can sensibly use; services one can just
connect to without understanding its language should not be
offered. We extend this by also not offering services someone
is not allowed to access.

A. Pairing

Pairing is the process of establishing a relationship between
two devices (see Figure 3). We distinguish two kinds of
pairings, namely inter user pairing and intra user pairing;
the first allows users to offer services to each other in a
privacy preserving way, the latter allows privacy aware service
discovery among devices of the same user. Users become
“friends* with respect to our privacy extension, if they pair
one of their devices with each other. To limit pairing to
a single inter user pairing and one intra user pairing per
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Fig. 4. If users’ devices (in circles) are paired to each other, it is sufficient to
pair one of their devices to another users device to be able to discover services
offered by all devices of this user in a privacy preserving way. This is possible
because pairing data can be synchronized among all devices of a user (see
subsection III-C). User A paired his smartphone with B’s Notebook which
makes A and B friends; the pairing data synchronization allows B to discover
A’s services with his smartphone, even if A does not know this device.

device a user has®, we introduce a meta service described in
subsection III-C which allows a user to synchronize pairing
data among his devices. Pairing data synchronization allows
to discover services offered by all devices of friends*, even if
just one of them has been paired (see Figure 4).

Both inter user pairing and intra user pairing are realized
by exchanging data via a secure or out-of-band channel,
such as Bluetooth, NFC, photographing a QR code, encrypted
Email, or SMS. The data consists of a label’ and a random
key only known to the pair of users. After exchanging this
information, each user chooses an ID for the new friend, and
stores the information received from the friend indexed by this
ID in a hash table. The keys are needed to discover privacy
aware services that do not have to be known at the time of
pairing.

Queries for privacy aware services are only sent to friends
that offer those services, and announcements of private ser-
vices are only sent to friends that are authorized to connect.
This might seem like destroying the possibility to connect to
previously unknown services, but this can be allowed by just
announcing a new service to a friend for the first time.

B. Privacy Socket

To grant privacy not only by encrypting multicast traffic,
which would still allow inferring information, and to reduce
multicast traffic, we introduce a privacy socket each host
listens on in addition to the standard mDNS-SD socket. On
this socket each privacy extension aware host receives queries
from paired hosts. When receiving a query from an unknown
host it is dropped silently. Testing whether a received packet is
from a paired host can be done efficiently in O(1) time. Using
a single privacy socket per host it is possible to offer instances
of arbitrary service types to paired hosts via unicast. Figure 5

3A user can pair all of his devices to one of them and then use synchro-
nization to get a fully connected pairing graph among his devices.

4If the friend wants services to be offered only by some of his devices, he
is able to configure this using the tool we introduce in section V.

5The users’ _ppSOS service instance name described in subsection III-C.

Querier

locally lookup _ppSOS <instance name>s
in hash table

Query SRV, TXT <instance name>._ppSOS._udp
multicast

decrypt data in SRV and TXT records

Query A for <enc_hostname>

multicast

Answer A containing <IP address> of <enc_hostname>

multicast

Store <IP address> and
<port> in local hash table

Fig. 6. Queries and responses sent for _ppSOS discovery. Discovery data
corresponding to _ppSOS is multicast to the standard mDNS-SD socket; to
grant privacy, possibly private data in the SRV and TXT records are encrypted
before transmitting.

compares querying for a service using standard mMDN-SD
5(a) to querying using privacy sockets 5(b) and 5(c).

C. Meta Services

To fulfill our goals we need privacy preserving, efficient and
convenient means to distribute information about the privacy
socket to paired hosts, and to synchronize the pairing data of
users’ devices. To achieve this, we introduce the concept of
meta services, which can be used to exchange information
about other services or service groups. Meta services are
published directly by our modified daemon. In the eyes of
an unmodified daemon, a meta service looks like any other
service. The meta service concept allows us to seamlessly
integrate service information control in our privacy extension
by using mDNS-SD itself. We introduce the following two
meta services.

1) Privacy Preserving Service Olffering Service: repre-
sented by the service type _ppSOS, is a meta service we
use to publish information about a host’s privacy socket to
paired devices. When joining a local network, our modified
daemon offers the hosts _ppSOS instance and browses for
_ppSO0S instances in order to find friends that are online in
this network. The port and IP address of the privacy socket are
extracted from the received SRV and A records, respectively,
and stored in a local hash table indexed by the users’ IDs.
Information within the SRV and TXT records is encrypted
with the symmetric key exchanged during pairing, granting
privacy preserving privacy socket distribution. When receiving



(a) Using standard mDNS-SD each device using
mDNS-SD in the same network is queried.

Fig. 5.

(b) Our extension just queries for the _ppSOS
meta service using multicast. Since the packet
content is encrypted, there are no privacy leaks.

resp A

querier

resp B resp B

resp C

(c) Queries for any other service are directly
unicast to the privacy socket of the paired host
offering the requested service.

While standard mMDS-SD multicasts all query and response packets revealing a lot of information about users and causing a lot of multicast

traffic (a), our solution only multicasts encrypted information about the _ppSOS service (b); all other services are queried directly using unicast (c). Private

information is only accessible by chosen paired hosts.

a _ppSOS instance on the multicast socket a host looks up the
service instance name in his hash table to determine whether it
is from a friend without having to decrypt it. Figure 6 demon-
strates querying for the _ppSOS service. Distribution using
multicast is only necessary for the bootstrapping _ppSOS
service. Other meta services can use the privacy preserving
means of service distribution granted by the privacy sockets.

2) Privacy Data Sync Service: represented by the type
_pdss, allows synchronizing pairing data. Since we want
to minimize the pairing overhead to once per pair of users,
there have to be means for a user to synchronize pairing
information of his devices. The _pdss meta service grants
very convenient synchronization of pairing data, allowing a
user to automatically synchronize his devices by letting them
join the same network. The Privacy Data Sync Service can also
be used to backup pairing data. Using this method, no private
data is leaked while synchronizing or backing up pairing data.
This is due to the fact that the _pdss meta service only
sends encrypted information to privacy sockets. This means
secure meta service operation is granted by using the same
privacy sockets other private services use®. Thus, our solution
uses itself to synchronize and backup pairing data in a privacy
preserving way.

D. Service Discovery

The queries and responses of all three stages of service
discovery, namely service browsing, service discovery, and
address resolution, are sent via unicast, encrypted using the
symmetric key exchanged during pairing, to the privacy sock-
ets of offering and requesting devices.

1) Service Browsing: is the process of asking for instances
of a service type an application is interested in by asking
for PTR records corresponding to a requested service type.
Hosts that offer an instance of this type will answer by

Sexcept for the _ppSOS service which transmits encrypted data using
multicast

get <privacy socket> for <servicetype> query |

Query PTR <servicetype>

unicast to P

<privacy socket> 1

get <privacy socket> for <servicetype> response

'
.
-¢ ! unicast to
'
'
'
'

'
'

'

'

H Answer PTR <instancename>._<servicetype>
H

h

H ! <privacy socket>
'

get <privacy socket> for <instancename>

'

'
Query SRV, TXT <instancename>._<servicetype> H
unicast to g
<privacy socket> ; L

get <privacy socket> for <instancename>

| encrypt data for SRV and TXT answer |

'
'
'
'
'
'
H H

' '

1 Answer SRV, TXT containing <enc_hostname> + <enc_port>

i ! unicast to
-

1 <privacy socket>
'

decrypt data in SRV and TXT records |

Query A for <enc_hostname>

unicast to . >
<privacy socket>:

1 Answer A containing <IP address> of <enc_hostname>
B  unicast to

'
'
'
‘<@ ]
'
'
'

1 <privacy socket>

connect to Service using <IP address> and <port> H

Fig. 7. Service discovery over unicast using a privacy socket.

sending PTR records, which are used to list service instances.
For example a chat application like iChat will ask for the
service type _presence (see 2(a)). Instead of multicasting
the PTR query, it is sent directly to the privacy sockets of



paired hosts offering this service type. A list of IDs of users
offering this service type is retrieved from a hash table set
up by the enhanced service browser (see section V), a tool
that allows users to manage mDNS-SD privacy in a fine
grained way. The privacy sockets of these users have been
distributed by the Privacy Preserving Service Offering Service
(see subsection III-C) and stored in a hash table, allowing to
retrieve all data needed to send a query in O(1) time. Service
browsing is shown by the first pair of query and response in
Figure 7. The received PTR answers are stored in another hash
table associated with the IDs of the users that sent the answers.

2) Service Resolving: is the process of asking for the port a
service instance uses and other information about this service
instance, by asking for SRV and TXT resource records. The
privacy sockets these queries have to be sent to are retrieved
from the hash table built during service browsing. Service
resolving is shown by the second pair of query and response
in Figure 7. Further we offer the possibility to cache service
instance names, which allows for direct resolving omitting
the step of service browsing. Mimicking the concept of static
service instances, we also offer the possibility to exchange
static service instance names during pairing.

3) Address Resolution: is done by asking for A and AAAA
resource records as standard DNS does. The privacy sockets
the queries are sent to are the same as for service resolving.
For each resolved service there is one corresponding A record.
If one host offers two or more service instances, the A record
of this host is queried only once. Since the only private data
exposed during address resolution is the hostname of the user,
which can be set to something less revealing, our extension
also allows to send queries and responses for A records using
multicast.

E. Implementation

We implemented our privacy extension based on the open
source Zeroconf daemon Avahi’. We changed very little code
in the avahi-daemon source files, just adding hooks to our
loosely coupled privacy module before queries and answers
are sent to and received from the client, respectively. Because
of the very limited code changes in the standard avahi source
and the loose coupling, it is easy to merge updates from Avahi
to our modified daemon. The main part of our implementation
is in a separated privacy library.

IV. PERFORMANCE EVALUATION

Users do not want to pay for privacy by complicated
configuration, but they also do not want to pay by performance
loss. One of the main goals of our privacy extension is to be
at least as efficient as standard mDNS-SD in terms of both
network and host performance. Our privacy extension does
not increase the network load; in fact we reduce it by using
mostly unicast instead of multicast. Further the computational
overhead on the host devices is imperceptible for the user, both
in terms of responsiveness of the system and battery life.

http://avahi.org

A. Network

To be efficient with respect to network load, our privacy
extension allows to offer private services only to friends that
are allowed to connect and to send queries only to friends
that offer the corresponding service, not bothering other hosts
in the network with announcements of services they are not
authorized to use and queries for private services they cannot
possibly answer. Recall that private service queries are only
sent to friends that offer those services, and announcements
of private services are only sent to friends that are authorized
to connect.

If a service instance has to be offered to multiple friends,
or if a service type is offered by several friends, our privacy
extension sends a unicast to each of those friends instead of
sending a single multicast. This might look like a performance
problem, but in small networks, the influence of mDNS-
SD packets on the network load is negligible, whereas in
huge networks sending multiple upstream packets has a lower
impact then having to receive multitudes of downlink packets
which is the case when using multicast.

Assuming each user wants to transmit one service discovery
packet per time unit, using multicast, he has to transmit one
packet but receive as many packets as there are users in the
network; using unicast, he has to send and receive at most as
many packets as there are online friends’ devices. Since there
are many services, that are only offered to very few friends,
e.g. device synchronization, assuming to send each packet to
20 devices is already much for networks with up to 1000
members. If the network has more members the number of
online friends devices rises as well, but multicasts get even
more inefficient, making the unicast solution superior with
respect to network load.

The influence of many multicasts on network load is espe-
cially severe in huge WiFi networks, because multicasts are
transmitted using a very low transmission rate so that older
devices not supporting higher transmission rates can receive
the multicasts as well [19]. Hong et al. [21] show that 13%
of their campus network bandwidth is used by mDNS-SD. To
analyze the impact of our solution on network bandwidth in
802.11 wireless networks[22] compared to standard mDNS-
SD we extend on [21].

The utilization of network bandwidth caused by service
discovery can be expressed as

I Tp+1Ty
utilizationsy = ———,
timeunit

where Tp and Ty are the total transmission times for all
service discovery packets on up- and downlink, respectively.
The utilization contains all overhead that is needed when using
802.11, including physical layer data, namely PLPC Preamble
and Header, and the inter frame spaces DIFS and SIFS.
Definitions of Tp and Ty can be found in [21]; specifications
of the 802.11 overhead sizes can be found in [22].

To compare our solution to standard mDNS-SD in terms
of network bandwidth usage in 802.11 networks, we will
examine how the number of access points and the average
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(a) Bandwidth utilization caused by multicast and 20 unicasts dependent on
the increase of access points in the wireless network. Multicast is less efficient
than 20 unicasts in a network with just about 12 access points, when using
the 802.11n (300 MB/s). Even when using the outdated 802.11b (11 Mb/s),
unicast is more efficient in networks with about 24 and more access points.
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(b) Bandwidth utilization caused by multicast and a variable number of
unicasts in a wireless network with 100 access points. When using 802.11n
(300 Mb/s), over a hundred unicasts can be sent while still being more
efficient with respect to bandwidth utilization compared to multicast. Using
802.11b (11 Mb/s), 50 unicasts are still more efficient than multicast.

Comparison of estimated network bandwidth utilization caused by multicast and unicast in 802.11 wireless networks without taking co-channel

influences into consideration. Several unicasts are more efficient than a single multicast with respect to utilization of network bandwidth.

number of friends of a user influence the utilization of network
bandwidth. The number of access points is important to
consider, because while a single multicast needs one packet
upstream, which can be transmitted with a possibly fast
transmission rate, it needs as many downstream packets as
there are access points, which have to be transmitted using the
lowest bandwidth. When there are some access points in close
proximity there is also the problem of side channel influence.
‘We did not take that into consideration, but it further increases
the bandwidth utilization caused by multicast. Like described
above, privacy aware services need to send one packet per de-
vice that is online and authorized to receive the corresponding
service discovery message. Again assuming 20 unicasts per
message, Subfigure 8(a) shows that in a network with about
12 access points sending unicasts to 20 devices on average is
more efficient then multicast, when using 802.11n (300 Mb/s)
[22]. Even when using the outdated 802.11b (11 Mb/s) [22] 20
unicasts are more efficient in networks with a little more than
20 access points. Subfigure 8(b) shows that in a network with
100 access points sending each message to over 100 devices
is still more efficient than multicast, if the devices support
802.11n[22] and to about 50 devices if they use the outdated
802.11b[22].

There are other disadvantages of multicast in 802.11 wire-
less networks described in [19], like handling host sleep mode,
which further increases the bandwidth utilization and battery
drain, because devices have to stay awake if multicast traffic
is waiting.

B. Host

Our privacy extension has an imperceptible computational
time overhead compared to standard mDNS-SD, which even
on mobile devices vanishes compared to packet delays of
mDNS-SD that are in the range of 20 to 120 milliseconds.
These delays mitigate the problem of multicast bursts when

multiple devices are reset at the same time[3].

The computational overhead caused by our privacy exten-
sion consists mostly of regular expression checking, hash table
lookups and sending packets multiple times. For both incom-
ing and outgoing packets we use one regular expression on the
resource records’ names and one hash table lookup to check
if the corresponding service is private. For private outgoing
packets we need O(n) hash table lookups and have to send n
packets, where n is the average number of online friends that
are authorized to connect to a service. For private incoming
packets we only need O(1) hash table lookups, because the
packet comes from exactly one friend, and O(1) hash table
updates, because this packet might contain new information
that has to be stored. Assuming n = 20, which is a high
number, we need less than a hundred hash table lookups and
a regular expression lookup, causing an estimated overhead of
a few hundred micro seconds. Together with sending about 20
additional packets this is still negligible compared to mDNS-
SD delays. On the receiving side, where having to handle
bursts of packets is more likely, computational overhead is
virtually non-existent.

To check if there are perceptible delays for the user, we
tested our implementation in our work group network with a
few clients and 500 private services published, and could not
observe any delay compared to standard mDNS-SD.

V. ADDING USER CONTROL TO MDNS-SD

The daemon alone is not sufficient without a user-friendly
service browser, extended to give users straightforward control
which services types and instances they want to be published
publicly, which services they want to be published in private,
and which services they do not want to be published at all.
Together they empower the users with mDNS-SD privacy
and transparency. The Enhanced Service Browser grants these
features giving users means to tune mDNS-SD privacy in a



fine grained way. Further it informs the user when a (newly
installed) application wants to offer or request a service which
is not configured yet, instead of publishing the informa-
tion without the user’s awareness. To ease configuration the
Enhanced Service Browser allows to set sensible defaults.
The tool also gives the functionality of a traditional service
browser, namely listing available service instances; in addition
it shows friends and other devices of the user that are currently
online.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a privacy extension allowing
Zeroconf service discovery without multicasting private data,
while being efficient and transparent. It is very user friendly
both in terms of overhead and control, and significantly re-
duces the number of multicast messages sent, making mDNS-
SD more efficient. A major advantage of our extension to
existing solutions (see section II) is that none of the existing
OSI layer protocols and none of the existing client software
has to be altered. Only the Zeroconf daemon running on
the users devices has to be modified, while afterwards still
being able to exchange service information with unmodified
daemons. While our privacy extension provides means to
publish services in a privacy preserving way, it still allows
to publish nonsensitive services to all users in a network via
multicast, and thus is fully backwards compatible.

In the future we plan to introduce a better key management,
that will also efficiently support offering private services to
groups. The key management will be based on asymmetric
cryptography, and should allow to use a mechanism similar to
DTLS[23] and a zero knowledge authentication mechanism.
We further want to give a security evaluation of the updated
system and plan to evaluate our implementation in detail. We
also plan to include two user friendly pairing methods: for
users meeting each other, allowing them to pair their devices
using NFC, and when they cannot easily meet. Furthermore,
we hope to improve the privacy protecting abilities such that
the possibilities of inferring information is reduced, while still
remaining compatible with standard mDNS-SD. This includes
substituting the fixed _ppSOS instance name with identifiers
that still allow efficient discovery; this is important to avoid
tracking and to be able to exclude friends from being able to
see the _ppSOS announcements. Moreover we want to extend
our solution to Wide Area Service Discovery.
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