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Abstract: Security is one of the main challenges today, complicated significantly by
the heterogeneous and open academic networks with thousands of different applica-
tions. Botnet-based brute-force password scans are common security threat against
the open academic networks. Common defenses are hard to maintain, error-prone and
do not reliably discriminate between user error and coordinated attack. In this paper,
we present a novel approach, which allows to secure many network services at once.
By combining in-app tracking, local and global crowdsourcing, geographic informa-
tion, and probabilistic user-bot distinction through differential password analysis, our
PAM-based detection module can provide higher accuracy and faster blocking of bot-
nets. In the future, we aim to make the mechanism even more generic and thus provide
a distributed defense against one of the strongest threats against our infrastructure.

1 Introduction

Account information is in high demand among crooks. Hacked accounts are used (1) as
stepping stones to hide your tracks, (2) to abuse legitimate web sites for phishing and
distribution of malware and copyrighted material, (3) to send spam without being filtered,
(4) for installing keyloggers to obtain more data, including banking information, and (5)
to add machines to global botnets for later automated large-scale malfeasance.

One of the favorite uses of botnets is to farm more accounts to increase the power (and
rental value) of the botnet [Pur03]. This is generally done by trying to authenticate against
a service with (username, password) tuples based on dictionaries. These dictionaries are
frequently enhanced by formation rules to e.g. append a few digits to words or replace the
letter e by the digit 3.

In the beginning, these (username, password) pairs were fired at the target as quickly as
possible. However, tools such as DenyHosts [Den] and Fail2ban [Fai] made it easy to
defend against these types of attacks by blacklisting the IP address of the assailant.

Nowadays, the attacks happen much more subtly. A large set of bots, often several hundred
thousand, jointly and covertly go stalking potential victims: Each of them only uses a few
shy attempts, hoping this will not alert the subject. Later, another member of the hunting
party will tickle the prey, while the first attacker approaches the next target.
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Figure 1: Flexibility of Pluggable Authentication Modules (PAM)

As it is necessary to allow a user to mistype her password or switch to the correct password
for the system, a single failed attempt cannot be used as a direct indication of an attack.
Identifying user-generated typos helps distinguishing between botnet attacks and failed
user logins.

Our PAM[SS95]-based approach includes several firsts:

1. Retaining the power of PAM, allowing arbitrary authentication and authorization
mechanisms to be used (Section 3)

2. Allowing geographical risk differentiation (GRID, Section 4.2)

3. Hierarchical risk grouping (Section 4.2)

4. Coordinated organisation-wide defense (CROWD, Section 4.1)

5. Dictionary-attack defense (Section 4.3)

6. Secure typo detection for user-bot differentiation (Section 4.4)

Based on flexible, realtime in-app tracking and combined with the use of DNS-based black
lists, SIEGE provides low-maintenance, high-impact defense against password-guessing
attacks.

2 Related work

2.1 Authentication

Around 1990, it dawned to administrators and system programmers that traditional /etc/
passwd-based login approach was not flexible enough. Kerberos [KN03], LDAP [WHK97]
and derivatives such as Microsoft’s Active Directory started coming of age in the following
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decade. The Open Software Foundation came up with Pluggable Authentication Modules
(PAM) [SS95] as the way of making authentication more flexible (Figure 1).

For each application, the system administrator can individually specify which authenti-
cation mechanisms to allow as part of the module chain (Figure 2 (b)). In addition to
authentication, other account-specific functions, session management and change of au-
thentication token (mostly passwords) can be controlled (Figure 2 (a)). Common functions
include limiting access by date and time; creating and populating home directories on the
first login; mounting special volumes such as encrypted homes (and securely unmounting
them on logout); and many more (Figure 3).

Due to its versatility, PAM has rightly become the de-facto authentication mechanism for
most Unix-like desktop and server systems [Mor97].

2.2 Attack/defense

For more than a decade, brute force account/password guessing attacks against SSH (and
other services requiring authentication) have been going on [Cid13]. In the early days, a
single host attacked its target with a large set of login attempts. This was simple to miti-
gate: Specialized host-based intrusion detection systems (IDS) like Fail2ban or DenyHosts
[Fai, Den] started scanning log files for IP addresses which exceeded a given failed login
rate threshold. The culprits were blocked from further attempts for a specified length of
time.

Even though these are still not standard practice when setting up new hosts, the attackers
moved away from individual source hosts to entire botnets. This helped them also to
cover their tracks. Nowadays, each of the several ten or hundred thousands members of
a botnet only probe a small set of username/password combinations before focusing on
the next victim. This renders source-based limits essentially useless. Furthermore, log file
analysis has several drawbacks: It must be flexible enough to cope with changes of the
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authentication software, but it must not be fooled into misinterpreting log entries.

For example, an ssh error message documenting a failed attempt for user test might look
as follows

Jan 08 13:39:55 testhost sshd[555]: Invalid user test from 111.222.33.44 .

Malicious users can try to lock out users from a different address, say, 22.33.44.55, by
trying to authenticate with the non-existant user test from 22.33.44.55 . The resulting
message

Jan 08 13:39:59 testhost sshd[559]: Invalid user test from 22.33.44.55 from 111.222.33.44

and its relatives were misinterpreted by many earlier versions of most software packages,
as they did not have the benefit of the differing background colors.

pam abl [ABL] provides a similar function, but implements it as part of the PAM chain.
Therefore, it does not need to parse log files and thus is not vulnerable to the above log
injection attacks. However, a host with pam abl still fights alone in a steep uphill battle
against a fierce horde of coordinated botnet members.

In more restricted environments (stronger rules, fewer services, or fewer users) than in
academia, it is also possible to limit the hosts which may login or use certificate-based
logins (including ssh keys). However, the diverse student and staff body of most univer-
sities makes the necessary education and support problems look like an unsurmountable
problem, especially as this diverse group of ‘locals,’ together with many academic guests,
make traditional security perimeters impossible: inside is the same as outside.



3 Architecture

SIEGE brackets the actual authentication modules (Figure 3 (b)).1 With this trick, it can
remain mechanism-agnostic while learning as much as possible about successful and failed
authentications: A successful authentication will be visible to both module parts, while a
failed attempt will only call the top half.

The functions are divided into the top and bottom halves as follows.

Top half

1. Check whether the remote host is known to third-party DNS-based blacklists, such
as Spamhaus XBL [Spa]. Fail immediately on match.

2. Compare the password against a dictionary of common passwords (Section 4.3)

3. Determine remaining number of failed attempts for this address:

(a) Look up source address in the CROWD (CooRdinaated Organization-WiDe,
Section 4.1) server. If unreachable, use local cache. Return this information,
if any. Otherwise:

(b) Determine geographic origin of the connection. Use administrator-set like-
lihood for legitimate login attempts modified with optional user preferences
to determine maximum number of login attempts (Section 4.2).

4. Decrease the number of remaining login attempts, indicating that a (so far unsuc-
cessful) attempt is in progress. The amount of reduction is tuned by the likelihood
of a user password mistake (Section 4.4).

5. Perform hierarchical blocking propagation (Section 4.2).

6. Store this information in the local cache and update the CROWD.

To simplify the process of writing back local results if the CROWD has been temporarily
unavailable, the minimum of the remaining attempts of CROWD and the local cache can
be used.

Bottom half

1. Undo the attempted reduction and update cache and CROWD accordingly.

This unique three-level approach of (1) global, long-term DNS blacklist, (2) organization-
wide CROWD, and (3) local system information, is able to strike an excellent balance
between security, manageability, control, and privacy. Details about the implementation
can be found in [Kol13].

1In a future version, we might consider bracketing it inside the authentication facility, between the Authenti-
cation and Set Credentials functions, similar to pam abl



4 Defense mechanisms

The challenge in the defense against password-guessing attacks is finding a balance be-
tween

1. locking out as many of the attackers as possible, to reduce their guessing rate as
much as possible, and

2. allowing legitimate users to log in even when an attack is ongoing.

Our approach at achieving this is described in the remainder of this section.

4.1 Coordinated organization-wide defense

In the spirit of Indra [JWZ03], CROWD uses the wisdom of the (cooperating) masses
within an organization to coordinate their defense against the seemingly unsurpassable
superiority of the botnet. Each host contains a local secret, which is used to authenticate
against the central CROWD server through a secure connection.

The race conditions in the protocol are hard to exploit, as the problem windows are very
short-lived. This approach still allows the clients to remain in full control, keep the server
simple (get, put, expire) and close gaping accounting loopholes in other approaches. For
example, pam abl (and, depending on the configuration, also the other mechanisms), al-
low a single-source attacker to open a large number of connections simultaneously. When
they are open and ready to receive the password, hundreds or thousands of parallel guesses
can be made, before the source is blacklisted. Due to the pre-decrementing used in SIEGE,
even with some decrements missing due to the race condition, only the first few attempts
will be evaluated before the source is stopped.

4.2 Geographical risk differentiation

Even at a university with global outreach, the services requiring authentication have a
local user base: Most requests will be from within the campus, the city, state, or country.
Therefore, remote locations are less likely to be the source of legitimate logins, making
password mismatches from other locations more likely to be from attackers. As a result,
the threshold to block a given source for exceeding the number of bad password attempts
can be set smaller while maintaining a high probability that legitimate users will not be
locked out.

SIEGE uses this property to differentiate failure thresholds and their effects. A sample
set of parameters is given in Table 1: For the university’s home country, after 10 failed
attempts within a defined period (typically 10 minutes), the host is blocked for a config-
urable time (10 minutes as well). As soon as 10 hosts within the same subnet (/24 in the
case of IPv4) are blocked, the entire subnet is blocked for 20 minutes. When the blocked



Failure thresholds Blocking periods (minutes)
Class Host Subnet Net Country Host Subnet Net Country
Home 10 10 10 ∞ 10 20 30 —
Neighbors 5 5 5 20 10 20 30 60
Others 2 2 2 10 10 20 30 60

Table 1: Example escalation parameters for password failures

subnets in a /16 network reaches 10, the entire /16 network is blocked for 30 minutes.
Even when many networks in the home country are blocked, the country itself is never
completely blocked. For neighbor and other countries, entire countries can be blocked.

This mechanism can be too aggressive for a member of the university currently visiting
a country where a large number of bots are currently operating. Therefore, we allow
individual users to list countries they are visiting.2 For those users, the login threshold will
be set to 2 (or the minimum of the country) and they will be exempt from network size
escalation.

This allows the trade the small risk of that user’s account being attacked against the conve-
nience of the user. Because this has to be a user-driven step, the user can also be educated
about security precautions at this time.

With this adaptive combination of reactions, the GRID component of SIEGE can ensure a
very high level of security without compromising user experience.

4.3 Dictionary-based botnet identification

As a rule of thumb (and often as part of the security policy), passwords should not be
derived from dictionary words or well-known frequently-used passwords. This can be
enforced by the CrackLib PAM module [Gaf] or other similar tools. Conversely, this also
means that a user is unlikely to use a dictionary word as their password. SIEGE includes
a simple test whether a password tried is known to CrackLib and immediately classifies
a host trying to use such a word as an attacker, putting it on a temporary blacklist. This
significantly increases the efficiency of the defense perimeter.

4.4 User-/bot password differentiation

For processes supporting manual password entry, a user has a chance of mistyping the
password. Common typing mistakes include:

Transposing two keys on the keyboard: Two adjacent characters in the password are
swapped.

2This is best done before leaving the home country, to avoid a lockout in the case of an acute attack.



Duplicating. Bouncing a key on the keyboard: A character is in the password twice in-
stead of once.

Missing. Not hitting a key strong enough: The resulting password is missing a character.

It is unlikely that an attacker will try the correct password modified by one of these rules
early in the process. Thus, seeing a password modified by one of these rules is likely
to come from a user. When we detect this, the try will not count as much as a full in-
correct password attempt, thus reducing the chance of a legitimate user being locked out
incorrectly.

As the above error-generating processes can all be reversed, this is easy, even when the
passwords are encrypted (which they should be):

Transposing. All possible single transpositions can be tried in L−1 password encryption
attempts locally on the machine, where L is the length of the password just received.

Duplicating. All sequences of duplicate successive characters can be eliminated each in
D password encryption attempts locally on the machine, where D is the number of
duplicate successive characters (D < L).

Missing. All possible missing characters can be tried in (L+1) ∗A password encryption
attempts locally on the machine, where A is the size of the likely alphabet.

The first two mechanisms are very cheap, the third can be rather costly if an expensive
encryption function was chosen for the password, so in some environments, this costly
step might be undesirable and can thus be deactivated.

Mechanisms which perform weak matches against the password open up new attack vec-
tors. One prominent mechanism are timing attacks, where a shorter password verification
time would indicate that the correct password has been found after only a subset of the op-
erations. To thwart such timing attacks, all the configured operations must be performed
for an incorrect input password. As the number of password verification options then only
depend on the input password, the timing leaks no information about the proximity of the
input to the actual password.

As the weak matching does not directly return information whether the password was a
close match or not, this information is very hard to abuse. Therefore, we believe that this
option only strengthens the defense, not weakens it, as it allows for significantly narrower
limits before blacklisting.

5 Evaluation

We built a simulator of the GRID and hierarchical blocking propagation logic to show the
large-scale effects (Table 2). For this simulation, we assumed three botnet sizes, ranging
from 10 thousand to 100 million hosts. The botnets are following either of two goals: A
targeted attack at a single host, or a sweeping attack, which ‘just’ tries to collect accounts,



Target hosts single 1k
Botnet hosts 10k 1,000k 100,000k 10k 1,000k 100,000k
Unprotected 10k 1,000k 100,000k 10,000k 1,000,000k 100,000,000k
Fail2ban/DenyHosts 0.2k 16k 1,630k 163k 16,300k 1,630,000k
SIEGE, 1 home 0.0k 0.1k 5k 0.0k 0.1k 5k
SIEGE, 5 neighbors 0.0k 0.2k 0.5k 0.0k 0.2k 0.5k
SIEGE, 250 others 0.0k 0.4k 0.4k 0.0k 0.4k 0.4k
SIEGE, total 0.0k 0.7k 6.5k 0.0k 0.7k 6.5k

Table 2: Password trial rate [s−1] (bold numbers indicate country blocking)

which has identified 1,000 hosts on the campus. We also estimate that due to protocol
overhead and built-in backoff timers, each bot can try a single password per second per
target host.

For the unprotected hosts, this means that the total number of password attempts is the
product of botnet size and target hosts, resulting in up to stunning 1011 password attempts
per second!

Fail2ban and DenyHosts are assumed to block a host after 10 failures for the following 10
minutes, so the effective trial rate is 10 attempts every 610 s, improving on the unprotected
hosts by a factor of 61.

SIEGE uses the parameters from Table 1. We assume that there are 256 countries, one
home country, five neighbors, and the remaining 250 in the ‘other’ class. Each country
consists of 256 /16 nets, subdivided into /24s. Attacking hosts are uniformly distributed
about the resulting 232 addresses. This is actually the worst case for SIEGE, as any clus-
tering will greatly increase the impact of the hierarchical blocking. We also assume that
the attackers will carefully avoid all passwords found in the targets’ dictionary, to avoid
multiplying SIEGE blocking rate (and thus significantly reducing attack rate).

The results are impressive: SIEGE limits background-type scans to a few dozen password
attempts per second. But even under heavy attack, no more than 7k attempts are successful,
while still offering service to most legitimate users. GRID and CROWD combined offer 7
orders of magnitude protection over vanilla systems and more than 5 magnitudes compared
to Fail2ban/DenyHosts-style.

6 Conclusions

Even a small campus without any specific protection can be subject to roughly 1017 pass-
word scans per day, especially on the weekend, when monitoring is not as close. This
is equivalent to trying all(!) twelve-digit lowercase passwords, ten-digit alphabetic pass-
words or nine-digit passwords perfectly chosen from all 95 ASCII printable characters.
With a large number of unprotected hosts, you no longer should assume that even excel-
lent passwords are safe. Therefore, alternate mechanisms are needed. GRID and CROWD
mechanisms of SIEGE provide several orders of magnitude improvement to current ap-



proaches. When you know that your campus is free of dictionary-derived passwords, the
attacker identification can be significantly sped up, providing even stronger protection.

We are currently working on putting the code into a releasable format to make the SIEGE
benefits available to the community.
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