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Abstract—Routing in opportunistic networks heavily relies on
past behavior of the mobile devices it is formed of to predict their
future and thus making routing decisions. While almost every
protocol relies on this history, its prediction quality has never
been studied in a realistic setting. Using extensive simulations on
real traces, we are able to describe for the first time how well
predictions can be. Unlike oracle-based prediction comparisons,
we do not try to predict a contact, but compare the expected user
result, namely message delivery probabilities. The analysis also
provides guidance on the importance of multi-path routing and
the path diversity required, as well as on the impact on forward
error correction on the delivery probability. Our results show
that the repetitive nature of path is directly proportional to the
mobility extent of the devices and, consequently, history obtained
from dense opportunistic networks is reliable.

I. INTRODUCTION

Since the initial introduction of Delay Tolerant Networks
on the research horizon for interplanetary communication[2],
several offshoots have spawned, e.g. Vehicular Networks,
Mobile Social Networks and Opportunistic Networks. Sim-
ilarly, several practical applications, such as an emergency
response in case of a catastrophe, military operations and
non-interactive Internet access in rural areas[6] have vastly
increased the usability of such networks.

Every routing protocol in literature is one way or another
dependent on history of the devices to extract routing in-
formation. Moreover, each routing protocol deploys its own
way of collecting the history that is distinct with respect to
several aspect including (a) what kind of history information
is collected, (b) how frequent is it collected, and (c) what
measures are taken to maintain the minimum device storage
consumption. Moreover, due to hardware limitations, the size
of routing information must be limited, which introduces
inaccuracies in the measures. Consequently, obtaining accurate
and precise traffic measures for participating devices is a great
challenge. One may expect that more accurate paths and traffic
measures will lead to better message delivery.

Given these arguments, it is easy to conclude that re-
searchers face the challenge of acquiring accurate and precise
information to make correct routing decision. Delays and
device mobility makes the access to information like network
topology and traffic volume very difficult. Jain, Fall and
Patral[5] have proposed several oracles with future insight.
Although, such methods are unrealistic, they can help to
understand the nature and behavior of underlying networks.
Opportunistic networks can be seen as good examples of
distributed systems[?], which can be simulated and analyzed
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Fig. 1: Conceptual performance vs. knowledge trade-off for
different oracles.[5]

with the help of oracles that have the capability of delivering
different kinds of network measures without delay, throughout
the network . Mechanisms that provide information to predict
the device and traffic behavior, and which are difficult or
impossible to gather in realistic scenarios, are known as ora-
cles[5]. Jain, Fall and Patra [5] have presented classification
of several oracles based on the extent of information they can
deliver as shown in Fig. 1. Motivated by the work in[5], [?],
we have performed experiments to verify the repetitive nature
of routing paths on three different opportunistic networks.
First we use contact oracle to find the paths and then the re-
occurrence of these paths is verified by checking their delivery
ratio in the a different time period by assuming that history
information is spread instantaneously throughout the network.
Our results show that as the history grows older, it looses its
precision as well as accuracy.

II. SIMULATION SETUP

We have considered three different kinds of data sets, all of
which have been obtained from CRAWDAD. The motivation
behind choosing these three traces have been a broad spectrum
between dense and sparse networks. Two of the data sets
have been synthesized from reality mining project [4] from
MIT spans on 16 months, i.e. February 2004 to August 2005
whereas, the third data consist of the SNMP logs for one
month from a IBM campus[3].

In the case of the IBM access point trace, SNMP is used to
poll access points (AP) every 5 minutes, from July 20, 2002
through August 17, 2002. A total of 1366 devices have been
polled over 172 different access points during approximately 4
weeks. To turn these samples into continuous data, we assume
that the snapshot data remains constant for the next 5 minutes.
We further assume that two nodes that are connected to one



access point during the overlapping time period are connected
to each other.

The second trace of the MIT cell tower is utilized according
to the similar principal that was used for the IBM traces. The
only difference is that instead of access points, cell towers are
used to gather the contact times of the nodes, thus the resulting
network can be characterized as a very dense network due to
the high range of the cell tower. As the duration span of the
the MIT reality mining is longer than the IBM trace, we have
filtered the MIT data to match the time span of the IBM traces.
The span time of the IBM trace is approximately one month
whereas for MIT is more than one year, we have chosen one
month from cell tower on the basis of the activity, so that the
results can be compared.

The most sparse network is obtained from bluetooth logs
(MITBT) where each node scans every five minutes for active
bluetooth neighbors and stored the duration of contact times.
Like the MIT trace, we selected one month from bluetooth
traces, i.e. November 2004 showed 1858 bluetooth nodes
suggesting a huge number of undesignated nodes as compared
to the designated' 81 nodes that were designated to gather the
data. Here it is noteworthy that a few undesignated devices
had more connectivity and interaction with the network than
the designated nodes.

A. Analysis Methodology

Typically, network analysis requires finding a maximal-flow
solution to identify bottlenecks when there are capacity con-
straints on the arcs. The maximum flow problem is structured
on a network, however, the arc capacities or upper bounds, are
the only relevant parameters. Given a graph where one vertex
is considered a source and another is the sink, some object then
flows along the edges of the graph from the source to the sink
consuming the corresponding capacities of the paths. Readers
interested in background and theoretical proofs of problems
related to max-flow may consult[1].

We have chosen 10 src,dst pairs, where max-flow mecha-
nisms establish the throughput of the variable number shortest
path. As opportunistic networks are practically time varying
graphs, different max-flow starting point in time may result in
different measurements. For this reason, we have created mul-
tiple contact oracle based max-flows for one trace week period
at different starting times. Moreover, each max-flow comprises
of a variable number of shortest paths. It is important to notice
that these shortest paths are not necessarily disjoint and one
path may overlap with the others paths belonging to either
the same or the next starting time. Message delivery to the
destination using the stored path may fail due to two reasons,
(a) The stored path is not repetitive in nature and thus failed
to connect the source with the destination. (b) The stored path
does connect the source to the destination but is not able to
carry the prescribed message volume.

ITI. RESULTS DISCUSSION

In all the figures presented in the results, Y-axis represents
the amount of data delivered and X-axis represent the delay
in days encountered during the propagation to destination.

'Nodes running the scanning software are referred to as designated
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Fig. 2: Oracle behavior among all traces

a) Oracle behavior: All the three trace figures as shown
in Fig. 2 have four plots using the contact oracle. The number
prefixed with p in each plot represents the number of the short-
est paths that have been considered for the corresponding plot,
while the number prefixed with w represent the week during
which the corresponding measures have been computed. We
have simulated on 1,3,5 and 10 first paths(1p, 3p, S5p, 10p)
during the first, second and third week(1w, 2w, 3w) of the trace
timespan. The frequent repetitive nature of device contacts is
evident in the MIT trace where all the paths arrive within
1.8-2.1 days at the destination, and the curves for all the path
counts are similar to each other during the first week. Oracle-
Ip that utilizes the first shortest path, delivers approx. SMB
after 1.8 days whereas Oracle-10p delivers approx. 38MB in
2.1 days using 10 first shortest paths.

We have different starting points as well as dissimilar curves
in the IBM trace during the first week(1w), while all the curves
for the third week(3w) have the same shape for the first day.
This behavior can be coupled with the first week as there is a
significant delay between the first and second path for the first
week(1w). This behavior is absent during the third week(3w).
Presence of a dissimilar curves of Oracel-10 in the case of
the MITBT trace show a lower frequency of repetitive paths
when a bigger number of the first shortest paths is taken into
consideration. This feature is more evident in the case of the
IBM trace where all the curves have different starting points.

b) History quality: Each of the figures has 4 plots
representing propagation during the 4 weeks of the trace
periods. In each figure, there is one plot for propagation with
the help of the contact oracle, while the remainder of the plots
represent the propagation using the stored path of the oracle.
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Fig. 3: History quality of IBM trace

The number prefixed with letter p represents the number of
first paths obtained from the oracle, while the number prefixed
with letter w shows the week of the corresponding plot in the
figure.

When we compare oracle delivery times of the first week
belonging to the IBM trace (Fig. 3 (a)) with successive weeks,
we see prominent degradation during the capability of the
paths reaching the destination. This suggests that most of the
paths failed to occur in the later 3 weeks of the trace with the
same throughput as shown in first week. In an extreme case
of the first shortest path (Fig. 3)(a), the shortest paths among
all the chosen source and destination pairs are totally absent
in the period of the third trace week. As far as the figures of
1p and 3p (Fig 3(a),(b)) are concerned, the second trace week
has a relatively higher throughput from other weeks, while in
the remainder of the cases there is no such difference visible.
This suggests that advantages of recent history prediction may
diminish when larger number of shortest paths are considered.

When we look at the second set of 4 figures corresponding
to the MIT trace (Fig. 4(a)(b)), we observe that all the figures
show a strong repetitive nature of paths during the proceeding
3 weeks with relatively comparable throughput shown by the
oracle in the first trace week period. One interesting charac-
teristic in the MIT trace is the variance of throughput with a
changing number of utilized shortest paths, among the several
weeks. For example, the throughput obtained during second
week with 3 and 5 shortest path as shown in Fig. 4(a)(b) is
the lowest among all, whereas it improves when we utilize 1
shortest paths as shown in Fig. 4(a).
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Fig. 4: History quality of MIT trace

IV. CONCLUSION AND FUTURE WORK

Our results show that the density of a network does not
necessarily relates to the reliability of the gathered history
information. In future, we will design more innovative ex-
periments to establish a relationship between the way history
information is gathered with the nature of the network. Further
on, we will design mechanism that will help a routing protocol
to adapt to a suitable way of utilizing history to make optimal

routing decisions.
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