
WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

DOCTOR OF SCIENCE

May 2001

Saint Louis, Missouri

INTEGRATED HARDWARE/SOFTWARE DESIGN OF A HIGH
PERFORMANCE NETWORK INTERFACE

by

Zubin Dittia

Prepared under the direction of Professor Gurudatta M. Parulkar

This thesisdescribesthedesignandimplementationof a high performancenetwork interface

chip calledtheAPIC (ATM PortInterconnectController). It alsodescribesarchitecturalenhance-

mentsto operatingsystem(OS)softwarethatarenecessaryto exploit someof thenovel features

that have been integrated into this chip.

High-performancenetwork interfacedesignhasreceivedsignificantinterestfrom theresearch

communityin recentyearsbecausetraditionaldesignmethodologieshave not beensuccessfulin

translatinghighnetwork bandwidthsandlow network latenciesto improvedperformancefor appli-

cations.Thiscanbeattributedto severalfactors:in thepastnetwork interfaceshavebeendesigned

withoutcarefulconsiderationof theoperatingsystemsoftwareenvironmentin whichthey getused;

main memorybandwidthshave not scaledat the samerateasnetwork bandwidths;andnetwork

interfacesandprotocolshavenotbeendesignedto supportqualityof servicefor applications.These

aretheproblemsaddressedby this thesis,theobjective beingto developnew mechanismswhich

can result in significant improvementsin applicationperformance.In addition to incorporating

theseinnovativefeatures,theAPIC designborrowsprovenandusefulideasfrom anumberof com-

mercial and research prototypes.

ADVISOR: Professor Gurudatta M. Parulkar

INTEGRATED HARDWARE/SOFTWARE DESIGN OF A HIGH
PERFORMANCE NETWORK INTERFACE

by Zubin Dittia

ABSTRACT

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

May, 2001

Saint Louis, Missouri

Oneof the waysin which the APIC addressesthe memorybottleneckalludedto above is to

functionin a desk-areaenvironmentwheredifferentmemoriescanbeusedto spreadtheload.The

ideahereis to dedicateoneAPIC chipandonememorybankto eachhigh-bandwidthdevice in the

system,therebysheddingtheloadfrom ahostsystem’smainmemory. SeveralsuchAPIC-memory-

device combinationscanbedaisychainedto form a desk-areanetwork with high bandwidthand

low latency characteristics.

Thereareseveralwell-known operatingsystemoverheadsassociatedwith in-kernelimplemen-

tationsof network interfacedevicedrivers.Theseincludecontext switchlatency, systemcall over-

head,andinterruptoverhead.It is possibleto removeanumberof theseinefficienciesandallow for

increasedperformancefor endapplicationsif thedatapathof thedevicedrivercanbeimplemented

asalibrary in user-space.While this ideahasbeenproposedin therecentpast,theAPIC introduces

two new mechanisms,ProtectedDMA andProtectedI/O, which togetherprovide for anefficient

method for the implementation of user-space drivers.

Anotherproblemwhich plagueshigh-speednetwork adaptersis calledreceive livelock; this

termis usedto describethesituationin which, underheavy load,anoperatingsystemservicinga

device might endup spendingall its time in theinterruptserviceroutine,andno usefulwork gets

done.TheAPIC introducesanovel conceptcalledInterruptDemultiplexing,whichtakenalonecan

alleviate theeffectsof interruptlivelock,but in conjunctionwith user-spacedriverscansolve the

problem entirely.

Network interfaces,exceptfor ATM interfaces,have traditionallynotprovidedspecialmecha-

nismsfor supportingquality-of-service(QoS)guarantees.EvenATM interfaceshave traditionally

supportedQoSonly to a limited extent.By providing pacingsupportindependentlyfor largenum-

bersof connections,theAPIC is ableto efficiently andreliably supportQoSguaranteessimulta-

neouslyfor largenumbersof multimediastreams.This canbeespeciallyusefulin thecontext of

largemultimedia-on-demandservers.This featurewasmadepossiblethroughanovel pacerdesign

which uses a hardware d-heap data structure.

TheAPIC hasbeensuccessfullyimplementedin 0.35micron technology, andis currentlyin

usein severalprojectsbothatWashingtonUniversityandelsewhere,aspartof theNSF-sponsored

gigabit kits project.

to my parents

iv

Contents

Tables... viii

Figures.. ix

Acknowledgements.. xii

1 Introduction .. 1

1.1 Goals... 2

1.2 Features of the APIC Chip.. 2

1.3 Contributions.. 3

1.4 Outline... 5

2 Background and Motivation ... 6

2.1 DMA Subsystems... 7

2.1.1 Why is the DMA Subsystem so important?.............................. 8

2.1.2 NIC design choices that affect the DMA Subsystem................ 11

2.2 Architectural Impact on Latency.. 13

2.2.1 Impact of interrupts on latency... 14

2.3 Receive Livelock.. 14

2.4 QoS Support in Network Interfaces.. 16

v

2.5 User-space Protocol Implementations.. 18

3 Related Work ... 23

3.1 Related work in network interface design.. 23

3.2 Network interfaces supporting user-space control................................ 27

3.3 Desk-Area Networks... 30

3.4 Reducing Interrupt Overhead.. 30

3.5 Receive Livelock Elimination... 31

3.6 QoS support for network interfaces.. 31

4 Contributions ... 34

4.1 Problem Statement.. 34

4.2 Overview of Solutions.. 35

5 Architecture Overview .. 39

5.1 APIC as a Network Interface Device.. 39

5.2 APIC-based DANs.. 40

5.3 Ports and Connections... 43

5.3.1 The ATM Ports... 43

5.3.2 The Bus Port... 43

5.3.3 Virtual Connections (VCs)... 44

5.4 Basic Operation... 44

5.4.1 Segmentation and Reassembly... 45

5.4.2 Packets and Frames... 45

5.4.3 Cut-through Behavior... 45

5.4.4 Channels and Connections (VCs)... 47

5.5 Summary of Features.. 47

5.5.1 Multipoint and Loopback.. 47

5.5.2 AAL-0 ... 49

5.5.3 AAL-5 ... 50

vi

5.5.4 Traffic Types... 50

5.5.5 Batching.. 52

5.5.6 Remote Control... 53

5.6 User-Space Control... 55

5.6.1 Protected I/O... 55

5.7 DMA Modes... 60

5.7.1 Simple DMA... 62

5.7.2 Pool DMA... 64

5.7.3 Protected DMA... 65

5.7.4 Packet Splitting... 69

5.8 Interrupt Mechanisms... 72

5.8.1 Interrupt Demultiplexing.. 72

5.8.2 Orchestrated Interrupts.. 76

5.8.3 Notification Lists.. 77

5.9 Miscellaneous Features... 77

5.9.1 TCP Checksum Assist.. 77

5.9.2 Flow Control... 78

5.9.3 Cache Coherent Bus Transfers.. 79

6 Internal Design of the APIC Chip.. 81

6.1 Clock Regimes.. 82

6.2 Module Functions and Paths Taken by Cells Through the Chip.......... 83

6.2.1 Synchronization Modules... 83

6.2.2 Input and Output Ports.. 84

6.2.3 BusInterface.. 84

6.2.4 RegisterManager... 84

6.2.5 VCXT.. 85

6.2.6 CellStore... 88

6.2.7 RxSync.. 92

6.2.8 Requestor.. 92

vii

6.2.9 DataPath.. 93

6.2.10 IntrNfyMgr.. 93

6.3 Pacer Design... 102

7 APIC Software ... 105

7.1 Overall Software Framework.. 105

7.2 Kernel Driver Structure... 109

7.2.1 Interaction with IP... 110

7.2.2 Interaction with RATM... 111

8 Experimental Results... 113

8.1 Best-effort TCP Throughput... 114

8.2 Pacing Test for UDP Traffic... 114

8.3 Pacing Test for TCP Traffic.. 116

8.4 End-to-end Delay and Driver Performance.. 117

8.5 Protected DMA Throughput and Delay Performance.......................... 119

9 Conclusions... 122

9.1 Contributions.. 122

9.2 Future Work.. 125

9.3 Closing Remarks... 126

References.. 128

Vita... 132

viii

Tables

4.1 Comparison with Other Network Interfaces... 38

8.1 Performance metrics for NetBSD on PCs used in experiments........................ 114

8.2 Probe points in the protocol stack... 118

8.3 Results of Ping-Pong Test... 120

8.4 Results of User-Space Throughput Test... 120

ix

Figures

2.1 Typical Host Architecture... 7

2.2 Data Touch Overhead in a Typical Protocol Stack... 9

2.3 Impact of On-board Memory on Data Touches.. 12

2.4 Illustration of Receive Livelock.. 15

2.5 Behavior of a paced channel... 17

2.6 Traditional versus User-space Control Model.. 20

2.7 Protection concerns in the user-space control model.. 21

3.1 Network Adapter Board (NAB) Architecture... 23

3.2 Providing protected access to registers using VM overloading........................ 28

3.3 Turner’s Pacing Algorithm... 33

5.1 Location of an ATM NIC in a Computer System... 40

5.2 An APIC Interconnect as a Desk Area Network.. 41

5.3 Perfect Shuffle Topology.. 42

5.4 Instances of Multipoint and Loopback Connections.. 48

5.5 An Example Multipoint Application.. 48

5.6 AAL-0 Frames and SAR... 50

5.7 Memory-Mapped I/O Address Space of the APIC... 56

5.8 Providing Protected Access to Registers using VM Overloading.................... 58

x

5.9 Fine Grain Access Control Using Protected I/O... 59

5.10 A Descriptor Chain... 60

5.11 Transmitting Data Using a Descriptor Chain.. 61

5.12 FIFO Queue Model for a Transmit Descriptor Chain....................................... 61

5.13 FIFO Queue Model for a Receive Descriptor Chain.. 62

5.14 Receiving Data Using a Descriptor Chain.. 62

5.15 Illustration of Simple DMA.. 63

5.16 FIFO Queue Model for Simple DMA... 63

5.17 Illustration of Pool DMA.. 64

5.18 FIFO Queue Model for Pool DMA... 64

5.19 Illustration of Protected DMA.. 66

5.20 Notarization for Protected DMA.. 67

5.21 Pool DMA with Packet Splitting.. 69

5.22 Zero-Copy Using Packet Splitting and Page Remapping................................. 70

5.23 A Different Way of Structuring a NIC Driver.. 74

6.1 Functional Block Diagram of APIC Internals.. 82

6.2 APIC Clock Regimes.. 83

6.3 Operation of the RegisterManager Module.. 85

6.4 Transit Path Forwarding... 86

6.5 VC Translation Process in the VCXT Module... 86

6.6 FIFO Queues in the Cell Store (Port 2 queues not included)........................... 89

6.7 The Receive Path.. 90

6.8 FIFO Queues in the CellStore... 91

6.9 The Transmit Path... 94

6.10 Control and Response Cell Path... 96

6.11 A Multipoint Receive Path.. 98

6.12 A Multipoint Transmit Path.. 99

6.13 Loopback Path.. 100

6.14 A Multipoint Loopback Path.. 101

xi

6.15 d-Heap Based Pacing.. 103

7.1 Software Framework for the APIC... 106

7.2 APIC Kernel Driver Structure.. 108

7.3 Example Code to Illustrate RATM Access to the APIC................................... 111

8.1 Experimental Setup... 113

8.2 Throughput vs. Specified Pacing Rate for UDP Traffic................................... 115

8.3 Throughput vs. Specified Pacing Rate for TCP Traffic.................................... 116

8.4 Measuring APIC delay and round-trip time performance................................ 118

9.1 APIC Internal Layout.. 124

9.2 The APIC Network Interface Card... 125

xii

Acknowledgements

Firstandforemost,I would like to thankmy advisorGuruParulkar, to whosehelpandencour-

agementI oweeverything.Thisresearchwouldnothavebeenpossiblewithouthim,andI thankhim

for his patiencein dealingwith my sometimesdifficult work habits,andfor alwaysproviding the

right mix of freedom,encouragement,andperspective that few advisorscanprovide for their stu-

dents.

Second,I would like to thankDr. JerryCox,who hasbeeninvolvedwith this projectfrom the

onset,andwhohasmadesignificantcontributionsto thedesigneffort. Hewaslikeasecondadvisor

to mein thisundertaking.In particular, alargeportionof theinternaldesignof theAPIC chipis due

to him, including many of the details of implementation of the pacing algorithm described here.

I wouldalsolike to thankRex Hill andWill Eatherton,bothof whomwereresponsiblefor the

VHDL codingeffort for mostof thischip. Althoughthey joinedtheprojectlate,bothmadesignif-

icant contributions to the designas well as the implementation. In particular, I would like to

acknowledgeRex for theparagonalmemorylayoutusedin thecell store,andfor significantinno-

vation in gettingthepacingalgorithmcommittedto silicon. I gave Rex many sleeplessnightsby

insistingon a very cleandesign,andcontinuallyaddingandremoving features.He seldomcom-

plained,and always maintainedgood humor, which madethe gruelling task bearable. I also

acknowdgeWill for his contributionsin codingthechipsinternalclock domain,andtheUTOPIA

ports. He hasleft his markon thechip in theform of anintelligentflow controlalgorithmwhich

allows the chip to exert flow control signals over optical links.

xiii

I owea lot to JohnDeHartin thisundertaking;hewasinstrumentalin gettingtheAPIC device

driverdebuggedandin ashapein whichit couldbedistributedto GigabitKits participants.I admire

hisabilitiesandamgratefulfor hisassistancein averydifficult situation,whicharosewhenhehad

to undertakeworkingwith theAPIC whenall of thechip’sdevelopers,myselfincluded,hadleft the

University.

My thanksalsogoto Dr. DaveRichards,whospentconsiderabletimeandeffort onimplement-

ing anddebuggingtheMBus andPCI prototypecards,andon theUTOPIA port implementation.

He alsocontributedhis considerableexpertisein trackingdown andfixing APIC physical level

problemsoncethechipswerebackfrom thefoundry. His constantspeculationsabouttheschedule

of the project were, I am sorry to say, right on mark.

I wouldalsoliketo thankMargaretFluckefor undertakingthemassive layouttaskfor thechip,

andTomChaney andFredRosenbergerfor spendinglonghoursporingoveraprintoutof thechip’s

layout to ensure signal integrity and dealing with power and clock distribution issues.

I wouldliketo thankDr. JonTurner, whocontributedto theprojectwith many veryusefulcom-

mentsandsuggestionsthroughouttheperiodof theproject. Thenew andimprovedpacingalgo-

rithm described in Chapter3 is due to him.

I would like to thankAndy Fingerhut,AnshulKantawala,andChuckCranorfor their support

and help in software related issues.

I wouldliketo thankeveryoneatGrowth Networks,andin particularDanLenoski,for agreeing

to let me take time off from work to finish my thesis.

Last,but not theleast,I would like to thankall my friendsatCCRCandARL, whosecompan-

ionshipaddedthenecessaryingredientsof fun andlivelinesswithout which life hasno meaning:

Ana, Anshul, Anurag,Apostolos,Brad, Cheenu,Christos,Chuck,Dan, Daphne,Diana,Girish,

Gopal,Geppo,Hari, Manamohan,Marcel,Maurizio,Milind, Mini, Nimi, Paula,Penny, Samphel,

Sherlia, Shree, and Vykky.

1

Chapter 1

Intr oduction

Althoughgigabitnetwork designhasseenmajoradvancesin thelastdecade,theability of end

applicationsto fully exploit the capacityof thesenetworks hasbeenseverely limited. From a

throughputstandpoint,thereis usuallya grossdisparitybetweenraw network bandwidthsandthe

maximumeffective throughputthat canbe achieved by end-applications.This becomesa very

importantissuein light of the emergenceof several high bandwidthmultimediaapplications. In

termsof latency, the networking subsystemin an endhostoften addsenoughto the end-to-end

latency that it oftenexceeds(or canevenbeseveral times)thenetwork propagationandqueueing

delay. This is especiallytruein localareanetworks,wherelatency is acriticial measureof perfor-

mance for interactive and distributed computing applications.

Thebottlenecksin anend-hostthatpreventapplicationsfrom exploiting all or mostof theavail-

ablenetwork capacitymanifestthemselvesin boththehardwareandsoftwarerealms.Fromahard-

wareperspective, limitationshave traditionallybeenimposedby thepeaksystemmemoryandbus

bandwidths,and from poor network interfacedesignpractices. From a softwareviewpoint, the

overheadof operationssuchasdatacopying, checksumming,servicingof interrupts,andcontext

switchingaretypically responsiblefor poorperformance.Severalresearchershaverecognizedthe

sourceof thesebottlenecks,andidentifiedmechanismsthatareat leastpartially effective in over-

comingsomeof thehandicaps.This is evidencedby theconsiderablelitearaturethathasbeenpub-

lishedin recentyearson network interfacedesign,andon thestructuringof protocolsin operating

systems [2,5,6,7,10,12,14,28,32,39,41].

2

We have attemptedto integratea numberof these“proven” goodmechanisms,alongwith

somenew onesof ourown creation,in ourattemptto build astate-of-the-arthighperformancenet-

work interface. This documentdescribesthedesignandimplementationof this network interface

chip (NIC), which is called the APIC (ATM Port Interconnect Controller).

1.1. Goals

Theresearchpresentedin this documentattemptsto answerthe following fundamentalques-

tions:

• Givencurrentchip technology, is it possibleto build aninexpensivenetwork interfacethat

candeliver all or mostof the network capacityof a gigabit network to endapplications?

Canthis be donein a way that assuressomedegreeof quality of service(QoS)to these

applications?

• Canthis samenetwork interfacealsoefficiently supportlatency sensitive applicationsthat

have to coexist with high bandwidth applications?

Oneof thenon-goalsof thisresearchis thepreservationof theprotocolstacksoftwarearchitec-

turecurrentlyusedin mostcommodityoperatingsystems.In otherwords,weassumedthatwehad

thefreedomto changethissoftwarearchitecturein orderto bestachieveourgoalof higherperfor-

mance.

While this thesisformulatesseveral new mechanisms,not all of them have beenvalidated

throughexperimentation.The reasonfor this was to limit the scopeof the work — designand

implementationof a network interfacechip is a complex taskrequiringmany man-yearsof effort,

andvalidationof all of thechip’s featureswould have requiredconsiderableadditionalinvestment

of time in programmingandtestingtherequiredsoftware.It is hopedthatmostof thesechip’s fea-

tureswill beexercisedby third partiesusingthechip,bothatWashingtonUniversityandelsewhere.

1.2. Features of the APIC Chip

TheprototypeAPIC designis ourattemptatproviding ananswerto theabovequestions.Tar-

getedfor ATM networks,it is capableof supportinga full duplex link rateof 1.2Gb/s. Sinceone

3

of ourgoalswasto keep(aproductionversionof) theNIC inexpensive,thedesignis gearedtowards

implementationonasingleapplication-specificintegratedcircuit (ASIC),with noexternalmemory

required for buffering or table handling. Some of the salient features of the APIC design include:

• The ability to act asa building block for System-AreaNetworks (SAN) andDesk-Area

Networks (DAN) [26,27].

• Remote controllability.

• Multipoint and loopback support.

• DMA modesthat aredesignedto reducethe numberof datacopiesto zero(a zerocopy

architecture).

• ProtectedDMA andProtectedI/O, which arenovel techniquesthatallow buffer manage-

mentandchip controloperationsto residein user-level processes,without compromising

OS protection mechanisms.

• Efficient mechanismsdesignedto reduceinterrupt frequency and interruptserviceover-

head, while retaining the ability to be able to react quickly to latency sensitive events.

• Support for multiple traffic classes for QoS.

TheAPIC hasbeencodedin VHDL, andpasseda detailedco-verificationwith a C++ simula-

tion of thechip’s behavioral model.It hasbeensuccessfullyimplementedin 0.35microntechnol-

ogy, and is currently in usein several researchprojectsat WashingtonUniversity, aswell asat

severalotheruniversitiesandresearchlabsthatarepartof theNSF-sponsoredgigabitkits initiative.

Thesoftwaredriversfor thechip have beenimplementedin theNetBSDoperatingsystemkernel,

and are currently in the process of being ported to Linux.

1.3. Contributions

The primary contributions of this research are:

4

• Designof a singlechip high performancegigabit ATM hostnetwork interfacewith dual

ATM ports,thatcanfunctionbothin a standaloneenvironmentaswell aswith otheriden-

tical chips in a desk-area network environment.

• Protected DMA and Protected I/O : A unique meld of hardware and software that

enablesuser-spaceprotocolsandapplicationsto efficiently interfacedirectly to the NIC

for datamovement,without any OS kernel involvement,andwithout compromisingOS

security mechanisms.

• Interrupt Demultiplexing: A featurethatwould permithigh bandwidthandlow latency

applicationsto coexist without theadverseinteractionsthatarecommonin today’s imple-

mentations.Additionally, this featurecanhelpreducetheeffectsof interruptreceive live-

lock, which is a problemthat plaguesalmostall high performancenetwork interfacesin

usetoday. Takentogetherwith user-spaceprotocolimplementationsusingProtectedDMA

and ProtectedI/O, interrupt demultiplexing can entirely eliminate the receive livelock

problem.

• d-HeapPacing: In orderto supportQoSguaranteesto individualmultimediastreams,the

APIC supportspacedconnections.Comparedto traditionalnetwork interfaces,theAPIC

cansupportindependentpacingfor very largenumbersof connections;thishasbeenmade

possible through a novel architecture based on hardware implementation of d-heaps.

Thethesisformulatestheabovemechanismsandexplainswhy webelievethey will functionas

described.However, asmentionedearlier, wehavechosennottoexperimentallyvalidateall of these

mechanismsin orderto limit thescopeof thework; it is hopedthatthemany usersof thechipwill

investthetime to write thenecessarydriversto programthosefeaturesnotexercisedby thedefault

driver, and publish results validating many of these mechanisms.

While theAPIC targetsATM asa network technology, it is importantto notethatmany of the

contributionsmadein thisthesisareapplicablein theInternetcontext too.In particular, it is feasible

to implementEthernetadaptersthatmakeuseof many of thesametechniques,providedtheadapter

containsa programmablepacket classificationenginethat canclassifypacketsbasedon Internet

port numbers; in that case, an Internet flow would take the place of an ATM connection.

5

1.4. Outline

Therestof the thesisis organziedasfollows: Chapter2 providesbackgroundandmotivation

for the problemaddressedherein.Relatedresearchin the areaof gigabit network interfacesand

desk-areanetworksis coveredin Chapter3. Chapter4 lists themaincontributionsmadein this the-

sis,with referenceto therelatedwork presentedin Chapter3. Chapter5 describestheAPIC archi-

tecture, while Chapter6 lays out the chip’s internal design. Chapter7 presentsa software

architectureanddescribesimplementedpiecesof thisarchitecture.Chapter8 presentsresultsfrom

several experimentsperformedon a working prototypeof the chip. Finally, Chapter9 concludes

with a summary of the contributions and ideas for future research.

6

Chapter 2

Background and Motivation

Figure2.1shows thetypical architectureof a modernworkstationor server. Thereareoneor

moreprocessormoduleswhichinterfaceto thesystem’smainmemoryandto aprimaryI/O busvia

a processor-memory interconnect. The latter could be implementedas a bus, but in modern

machines,it isusuallyageneralswitchchipsetwith internalbuffering. A processormoduleconsists

of aprocessor, somecache,andamemorymanagementunit (MMU) whichusuallycontainsatrans-

lation lookasidebuffer (TLB). Most I/O devicesinterfaceto theprimaryI/O bus,eitherdirectlyor

throughasecondaryI/O buswhich in turn is connectedto theprimaryI/O bususingabusadapter.

In thefigure,wedonotshow thesesecondaryI/O buses,becausefor themostpartweareinterested

in high bandwidthdevices,includingnetwork interfaces,which interfacedirectly to theprimaryI/

O bus. A goodexampleof aprimaryI/O busis thePCI (PeripheralComponentInterconnect)bus,

which originatedasa standardfor PCs,but hassubsequentlygainedwidespreadacceptancein the

server and workstation markets too.

Therearea few importantpointsto noteaboutthis architecturein thecontext of high perfor-

mancenetwork interfacing.Therearetwo mechanismsby which deviceson theI/O buscancom-

municatewith softwarerunningon thehostprocessor(s).In thefirst technique,thesoftwarecan

useprocessorinstructionsto reador write datadirectly from or to the device. This mechanism,

called“ProgrammedI/O”, worksby requiringthedevice to makesomeof its internalmemoryand

registersavailable to the hostprocessor;usually, this is achieved by mappingthe device into an

unusedportionof thesameaddressspacethatis usedby theprocessorto accessmainmemory. In

otherwords,by issuingloadandstoreinstructionswith thesespecialaddresses,theprocessorcan

7

reador write to theregisters(or memory)residentonthedevice. Thiskind of accessmethodis also

commonly referred to as “Memory-mapped I/O”.

Thesecondmethodusedto communicateinformationbetweenanI/O deviceandsoftwarerun-

ningonthehostprocessoris calledDMA (DirectMemoryAccess).Here,all communicationpasses

throughspecial“shared” datastructuresthat are allocatedin the system’s main memory. What

makesthesestructuressharedis thefactthatthey canbereadfrom or writtento by boththeproces-

sor and the device.

In practice,bothmethodsareusedin mostdevices. ProgrammedI/O providesa synchronous

accessinterfaceto thedevice, while DMA providesanasynchronousinterface. Usually, DMA is

the preferredtechniquewhen large amountsof dataare to be transferredto or from memory,

becauseit doesnot tie up theprocessorfor thedurationof thetransfer. ProgrammedI/O is useful

whensmallamountsof dataareto betransferred,or whentheinteractionneedsto besynchronous.

Usually, control interactions with the device are implemented using programmed I/O.

2.1. DMA Subsystems

Most modernNICs useDMA asthepreferredtechniquefor moving packetsto or from main

memory. TheDMA subsystemis thepartof theNIC thatis responsiblefor all DMA relatedactions.

Figure 2.1: Typical Host Architecture

CPU

MMU
&

Cache

Main

Primary I/O Bus

Display Disk

Processor-
Memory

Interconnect

Video
Camera

Memory

CPU

MMU
&

Cache

Network
InterfaceLink

Network

8

Oneof therequiredfeaturesof theDMA subsystemin a NIC is “scatter-gatherDMA”. This

refersto theability to beableto handlepacketswhich arefragmentedin memory. Suchfragmen-

tationoccursbecausepacketsareconstructedby network protocolsso that they usuallyresidein

differentregionsof thememory. Additionally, asinglepacketmaybebrokenupinto smallerpieces

that residein differentmemorylocations.This happens,for example,if the protocolwhich con-

structed the packet used separate buffers for the packet header and packet data.

2.1.1. Why is the DMA Subsystem so important?

Thedesignof theDMA subsystemin aNIC is madecomplicatedby thefactthattherearesev-

eraltrade-offs to consider. Oneof thesehasto dowith choosingbetweenbettermemoryutilization

andimprovedperformance.Another, which is moreof a softwareissuebut hasa majorimpacton

theDMA subsystem,hasto dowith theselectionof anappropriateAPI (applicationprogramming

interface)for applications:usually, APIs thataremoreconvenientandeasierto useresultin worse

performance.A poorlydesignedDMA subsystemwhichdoesnottakeinto accountthesetrade-offs

and software interactions can result in phenomenally bad overall performance.

Oneof themostimportantissuesto considerin thedesignof aDMA subsystemis thenumber

of “datatouch”operations.Any timethatpacketdatais readfrom or written to mainmemory, it is

consideredto have been“touched”. A designshouldtry to minimizedatatouches,becauseof the

largenegative impactthatthey canhaveonperformance.Thereasonfor this is thatmainmemory

bandwidthhasnot keptpacewith increasesin processorperformance,sothatany reductionin the

numberof timesmemoryis accessedfor agivenpieceof datacanresultin largeperformancegains.

To seethis,considerthefactthatthemainmemorybandwidthof atypicalPCwith a64-bitmemory

busis about2.2Gb/sfor readsand1.4Gb/sfor writes(thesearenumbersfrom aPIII/450MHzPC).

For simplicity of analysis,let usassumethatthememorybandwidthis 1.8Gb/sfor bothreadsand

writes. If therewerek datatouchoperations,theneachwordof datafrom thenetwork is effectively

accessedk times,which meansthat from theviewpoint of theconsumerof thedata,theeffective

maximumthroughputthatcanbeachievedis only (1.8/k) Gb/s. For two datatouches,thisnumber

goesdown to 900Mb/s,for threeto 600Mb/s,andsoon. Giventheveryhighraw bandwidthssup-

portedby our targetnetwork (1.2Gb/sfor theAPIC), it is easyto seethatfor anythingmorethana

single datatouch,we may not be able to exploit all of the network’s capacity. And with each

9

additionaldatatouch,theachievablethroughputdropsrapidly. Clearly, it is beneficialto keepthe

number of data touch operations to a bare minimum.

It is not unrealisticto seenumbersashigh asfive datatouches;in fact,many modernTCP/IP

protocolstacksincur at leastthatmany datatouches.To seewhy this is so,considerFigure2.2.

Part (a) of the figure shows the traditional protocol stackarchitectureusedin most of today’s

Figure 2.2: Data Touch Overhead in a Typical Protocol Stack

(a)

Socket

TCP UDP

IP v4/v6

Ethernet ATM0 ATM1

Layer

Process0 Process1 Process2 Process3
User
Kernel

Transport

Network

Drivers

Devices
Ethernet ATM0 ATM1

Application

Socket Layer

TCP

IP

NIC Driver

Kernel
Buffers

NIC

1

2

3

4

5

System call interface
User Buffer

Network

(a) (b)

(c)

MMU
&

Cache

Main

Primary I/O Bus

Processor-
Memory

Interconnect

Memory

Network
Interface

CPU

1234

5

10

operatingsystems(theexampleshown is for BSD Unix). Part (b) of thesamefigureshows what

happenswhenanapplicationwantsto transmitdata.Following thenumberedeventsin thefigure,

we have:

1. The application,which runsasa processin userspace,first generatesthe datato be

sentandwrites it to its own privatebuffer in user-space,following which it makesa

system call to the socket layer to transmit the data;

2, 3. Thesocketlayercopiesthedatafrom theuserbuffer into a setof kernelbuffersthat

are used to hold packets.

4. TCPreadsthedatasothatit cancomputethechecksumwhichhasto beinsertedin the

packet header.

5. The network interface reads the data from the kernel buffer and transmits it.

Figure2.2(c)showswhathappensin hardwarefor thesefivedatatouchoperations.Arrowsrep-

resentmovementof datacorrespondingto thefive datatouchoperations.Notice thatsomeof the

linesaredashed;adashedline representsthefactthatthedatamovementindicatedby theline may

notactuallyoccurif thecorrespondingdatais in cache.For example,if thesystemcall to transmit

a packet is madesoonafter theapplicationhasgeneratedor otherwiseaccessedthedata,thenthe

readportion of the copy (“2”) from userto kernelbuffer would with high likelihoodbe satisfied

from cache.Similarly, if TCPdecidesto transmitthedataimmediatelyor shortlyafterthesystem

call to sendit is issued,thenthe checksumcomputationstep“4” would be satisfiedfrom cache.

Thus,in thebestcasetherearethreedatatouches(to memory)for any givenpieceof data;in the

worst case, there are five.

Using our earlier example,with 1.8Gb/s of memorybandwidth,with five datatoucheswe

would be able to achieve a throughput of only (1.8/5)Gb/s, or 360Mb/s.

Figure2.2only showedthedatatouchesfor anoutgoingpacket;asimilarbut reversedsequence

applies on the incoming side.

Data touchesarenot bad just for throughputperformance;they alsoadverselyaffect packet

latency, becauseof theextra time theprocessorspendscopying data. Clearly, it is importantto be

able to minimize data touch operations.

11

2.1.2. NIC design choices that affect the DMA Subsystem

In thissection,we look atsomearchitecturalchoicesavailableto NIC designers,andhow they

affect the DMA subsystem.

 Cut-thr ough vs. Store-and-forward

Network adaptersfall into two maincategories:cut-through,andstore-and-forward. In acut-

throughadapter, it ispossiblethatthetransmissionof aframecanbeginevenbeforetheentireframe

hasbeenreadoutof mainmemory. On thereceiving end,acut-throughadaptercanstorepartof a

framein mainmemorybeforetheentireframehasbeenreceived. In a store-and-forwardadapter,

anentireframeneedsto bereadfrom mainmemorybeforetheadapterwill begin transmittingit.

Also, a store-and-forward adapterwill not write a frameinto main memoryuntil it hasfinished

receiving the entire frame. Cut-throughadaptershave the advantageof lower delay, andof not

requiringlocalmemoryon thenetwork interfacecard(NIC) to storeframes.They have thedisad-

vantagethat they might endup transmittingpartial framesif thereis an error, andof reporting

receipt of partial or corrupted frames (which leaves the job of cleaning up to the software).

Oneof thepossibletechniquesthatcanbeemployedto reducethenumberof datatouchesis to

movethetransportlayerchecksumcomputationfunctioninto hardwareontheNIC. This is easyto

doonastore-and-forwardNIC (thechecksumcanbecomputedwhilemovingdatabetweentheNIC

andmainmemory).But in cut-throughadapters,it is notpossibleto computeandinsertachecksum

in theheaderof anoutgoingpacket,becausetheheadermayalreadyhave beentransmittedby the

timewefinishcomputingthechecksum.Thismeansthateitherwewouldbeforcedto usea trans-

portprotocolwith trailerchecksumming,or incur theoverheadof computingthechecksumin soft-

ware.SincetheInternettransportprotocolsTCPandUDP bothuseheaderchecksums,we have to

incur theoverheadof computingthechecksumin softwarefor theseprotocols,at leastonthesend-

ing side.However, thereis atrick which is oftenquoted(but seldomimplemented)thatcanbeused

to allow the checksumcomputationfor an outgoingpacket to proceedwithout the overheadof a

datatouch. Referringto Figure2.2,if theprocessorwereto computethechecksumwhile copying

datafrom theuserbuffer to thekernelbuffer (steps2 and3), thenno extra datatoucheswould be

involved. This schemecannoteasilybe usedon the receiving end,becausethe outcomeof the

checksumverificationfor anincomingpacketneedsto beknown well beforethecopy from kernel

12

to userspacetakesplace.Sofor incomingpackets,theonly wayto avoid adatatouchfor checksum

computationis to implementit on theNIC in hardware. Notethat in this case,headerchecksums

arenot a problem,becausealthougha cut-throughadaptercannotusuallyverify thecorrectnessof

sucha frameby itself, it canprovide thecomputedchecksumover the frameto thesoftwareand

leavethejob of verificationof thechecksum(i.e.,comparingit to thevaluein thepacketheader)to

the software.

 On-board memory or not?

AnotherdesignchoicethataffectstheDMA subsystemis whetheror not theNIC hasanon-

boardmemorythatcanbeusedasa stagingbuffer for packets. Figure2.3shows how thenumber

of datatouchescanbereducedif aNIC containson-boardmemory. Figure2.3(a)is arepeatof Fig-

ure2.2(c),usedfor comparisons.In Figure2.3(b),thekernelbuffers(seeFigure2.2(a,b))areallo-

catedfrom memoryon theNIC, andthekernelmovesdatafrom userbuffers into theseon-board

buffers usingeitherprogrammedI/O or DMA. If programmedI/O is used,the checksumcanbe

computedduring thecopy loop, therebyresultingin only two datatouchoperations(asshown in

thefigure).If DMA is usedto movedatabetweenmainmemoryandthenetwork interface,thenthe

additionaldatatouchfor checksummingcanstill beavoidedif thenetwork interfacecomputesthe

checksumwhile performingthe DMA operation.Figure 2.3(c) shows a third alternative which

involvesnomainmemoryaccessesatall (zerodatatouches):theuserbuffersareallocatedfrom the

NIC’s on-boardmemory (we assumeon-boardchecksumsupport).Although this soundsvery

Figure 2.3: Impact of On-board Memory on Data Touches

MMU
&

Cache

Main

Primary I/O Bus

Processor-
Memory

Interconnect

Memory

Network
Interface

CPU

1234

5

MMU
&

Cache

Main

Primary I/O Bus

Processor-
Memory

Interconnect

Memory

Network
Interface

CPU

Memory

MMU
&

Cache

Main

Primary I/O Bus

Processor-
Memory

Interconnect

Memory

Network
Interface

CPU

1 2

Memory

(b) (c)(a)

13

attractive,it isusuallynotaverypracticalapproachbecauseit wouldrequirelargeamountsof mem-

ory on theNIC, andtheapplicationwould have to know in advancewhereit shouldwrite its data

to (i.e., to which NIC’s buffer).

What if we didn’t have on-boardmemory?As mentionedearlier, theAPIC doesnot have any

on-boardmemoryto keepcostdown. What we would like to seehappenis for the datato move

directly from theapplication’s user-spacebuffer to thenetwork interface,which canthendirectly

transmitthedata.Similarly, on receive, we would like to beableto receive datadirectly into the

userbuffer. As weshallseelater, theAPIC’sProtectedDMA andProtectedI/O featuresdoenable

this kind of data movement.

 On-board processor or not?

A numberof NICshaveon-boardprocessorsandfirmwarethatis usedto performvariousNIC

relatedtasks.Thishasbothadvantagesanddrawbacks;often,on-boardprocessorsdriveupthecost

of theNIC, but they providemoreflexibility in thesensethatmorefeaturescanbeaddedasneces-

sarywithout a lot of work. Usuallywith suchNICs, themethodby which thedriver for theNIC

interfacesto therestof theOSremainsthesame;however, someresearchershavearguedfor mov-

ing portionsof the protocolstackonto the NIC. Increasingly, this approachhasgaineddisfavor

becauseit requiresvery closeinteractionbetweentheOSon thehostandthesoftwarerunningon

the NIC’s processor.

2.2. Architectural Impact on Latency

So far, we have beenfocusingon the overheadof datatouchoperationsresultingfrom data

copying andchecksummingin theprotocolstack.Sincedatatouchesreducetheeffectiveavailable

memorybandwidth,they haveanadverseeffectonthroughput.However, becauseof theextratime

involvedin copying andchecksumming,they alsoaffectend-to-endlatency. Therelative impactof

theseoperationsonlatency is quitesmallhowever, exceptin a local-areanetwork (LAN) wherethe

network propagationdelaycanbeof theorderof a few tensof microseconds.Severaldistributed

computingapplications,suchasdistributedinteractive simulations,Network File Service(NFS),

remoteprocedurecall (RPC),etc. could benefitfrom a very low end-to-endlatency. For such

latency sensitive applications,it makes senseto not only minimize the impact of data touch

14

operations,but alsooperationssuchassystemcalls,interrupts,andcontext switching,all of which

have anadverseimpacton latency. In modernoperatingsystems,systemcallsandinterruptover-

headscanbeof theorderof a few to severaltensof microseconds,which is comparableto thenet-

work delayin aLAN. As weshallseelater, ProtectedDMA andProtectedI/O achieve thegoalof

directmovementof datato andfrom userspacewithout kernelinvolvement,therebyeliminating

systemcall latency. Thatleavestheoverheadof interrupts. Usually, interruptoverheadcannotbe

avoidedfor latency critical applicationsunlessthedevice is continuouslypolled. Thelatter is not

apracticalalternative,sothecostof fieldinganinterruptcorrespondingto alatency sensitiveevent,

such as packet arrival, cannot be avoided.

2.2.1. Impact of interrupts on latency

Interruptsposeanotherproblemfor latency sensitiveapplications,whichmanifestsitself in the

presenceof otherhighbandwidthapplicationswith which it mayhave to coexist. High bandwidth

applicationstypically haveahighpacketarrival rate,andthereforemaygetinterruptedveryoften.

To reducetheprocessoroverheadof having to serviceinterruptsveryfrequently, severalapproaches

have beensuggested,all of which try to reducethefrequency of interruptsby processingmultiple

interrupteventswith only asingleinterrupt.In amixedenvironmentwith bothlatency-critical and

high-bandwidthapplications,this canhave thenegative side-effect of significantlyincreasingthe

latency seenby delay-sensitive applications.This is becausetheseapplicationsdo not get timely

notificationof packet arrival events,sincetheseeventsgetprocessedinfrequently, andin batches

alongwith largenumbersof othereventscorrespondingto otherhigh bandwidthapplications.In

suchmixedenvironments,it would bebeneficialto have someway to allow latency-critical appli-

cationsto still have their interruptsservicedin a timely manner, withoutadverselyimpactinghigh-

bandwidthapplications(which areusuallynot latency-sensitive).As we will seelater, theAPIC’s

interrupt demultiplexing technique achieves this objective.

2.3. Receive Livelock

In an interruptdriven system,interruptservicetakespriority over all otheractivity. As men-

tionedearlier, if packetsarrive too fast,the systemwill spendall of its time processingreceiver

interrupts.It will thereforehavenoresourcesleft to supportdeliveryof thearriving packetsto appli-

cations,and no resourcesto allow the application to consumethe received data. The useful

15

throughputof thesystemwill dropto zero.This conditionis referredto asreceivelivelock [38]: a

stateof thesystemwhereno usefulprogressis beingmade,becausetheprocessoris entirelycon-

sumed with processing receiver interrupts.

Figure2.4(adaptedfrom [38]) demonstratesthepossiblebehavior of throughputasa function

of offeredinput load.Ideally, no matterwhatthepacket arrival rate,every incomingpacket is pro-

cessed.However, all practicalsystemshavefinite capacity, andcannotreceiveandprocesspackets

beyonda maximumrate(determinedby theprocessorspeedandtheapplicatiuon-dependentcost

of receiving andprocessinga packet). Given this practicalconstraint,we would like the packet

packet processingrateto remainpeggedat this maximum,evenwhentherateof arrival of packets

is higherthanthemaximum.However, becauseof thereceivelivelockeffect,thesystemthroughput

maydropoff to zeroasthepacket arrival rateincreases,asshown in thefigure.Notethat this is a

direct result of the fact that interrupt service takes priority over packet processing.

Relatedto theproblemof receive livelockis theproblemof starvationof transmitsunderover-

load.In mostsystems,packet transmissionis doneata lowerpriority thanpacket reception,on the

assumptionthatthis will causelowerpacket loss.However, underheavy receive traffic conditions,

the systemmay spendmostof its time servicinginterruptsfor incomingpackets,so that packets

Figure 2.4: Illustration of Receive Livelock

livelock

acceptable

ideal

Offered Load (input packets / sec)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

16

waiting to betransmittedwill not getanopportunityfor service.This is calledtransmitstarvation

[38].

All proposedtechniquesto alleviatelivelockrely onsomehow matchingtheinterruptrateto the

rateof consumptionof packets,but theproblemremainsonethatdogsall modernadapters.Wepro-

posea softwaretechniquethatcandelaytheonsetof receive livelock,therebyallowing for higher

throughputbeforetheonsetof livelock.In thecontext of theAPIC, wewill alsoshow thatby com-

biningProtectedDMA andProtectedI/O with InterruptDemultiplexing, wecancompletelyelimi-

nate the problem of receive livelock.

2.4. QoS Support in Network Interfaces

Most conventionalnetwork interfaces,barringATM interfaces,have usuallynot includedany

specialsupportfor provisioningqualityof service(QoS)for differentapplications.In otherwords,

they have treatedall traffic in a best-effort manner. In thecaseof ATM networkshowever, thenet-

work attemptsto provisiondifferentgradesof serviceto differentapplications.It accomplishesthis

by requiringapplicationsto contractwith thenetwork onhow muchtraffic loadthey would like the

network to carry. Theapplicationfor its parthasto ensurethatit keepsto its portionof thecontract,

which usuallymeanssomeconstraintsneedto be imposedon the rateat which traffic is injected

into thenetwork by theapplication.Suchconstraintscanbeimplementedin softwareon theend-

stations,but thiscanprovideonly averycoarse-grainedlevel of controlonthetraffic burststhatare

fed into thenetwork. By incorporatingspecialQoSsupportonanetwork interface,it is possibleto

offloadthepacketschedulingwork from theprocessor, andalsoto achievemuchfinergraincontrol

over theprofileof injectedtraffic. ATM network interfacestypically provide this level of QoSsup-

port in theform of pacedchannels. Eachapplicationflow is mappedinto a pacedchannel,andthe

network interfaceensuresthatall traffic from thechannelis injectedinto thenetwork atapre-con-

figuredpacing rate.

In a sense,the pacingrateis the “peak rate” for an application.However, this shouldnot be

taken to meanthat only constantbit-rate (CBR) applicationsare supportedby this paradigm:

Figure 2.5shows thata variablebit-rate(VBR) applicationcanenqueueburstsof data(for exam-

ple,videoframes)thatareto betransmittedonapacedchannelwith afixedpacingrate.Eachindi-

vidual burstwill betransmittedat thepacingrate,but whenthenetwork interfacerunsout of data

17

to transmitat theendof a burst,no moredatawill beinjectedinto thenetwork until thenext burst

is enqueuedfor transmissionby the applicationsoftware.Sincethereare idle periodsbetween

bursts, the resulting traffic profile fits the description of a VBR stream.

How shouldthepacingratefor a channelbechosen?If thechannelis thesourceof datafor a

switchedVC (SVC)thatwassetupusingsomesortof ATM signallingmechanism,thenthequality-

of-service(QoS)parametersnegotiatedwith the network during the connectionsetupphasewill

usuallyplaceanupperboundon themaximumrateat whichcellson thatconnectioncanenterthe

network. This “peakrate” becomesthepacingratefor theconnection,andit is up to thesoftware

to ensurethat the traffic burstsenqueuedon thechannelarecompliantwith othernegotiatedQoS

parameters.For a CBR source,thepacingrateshouldbesetequalto the“constant”bit rateof the

source,andthesoftwaredoesnotneedto doanythingmore— theAPIC will takecareof transmit-

ting data from the channel at the correct rate.

Whatcanwedo if thereis nocontractwith thenetwork thattellsushow to setthepacingrate?

Thishappenswith anATM permanentvirtual circuit (PVC),for example. Onealternative is to use

thenetwork interfacein best-effort mode,andrely on higherlayercongestioncontrol techniques

(eg.,TCPcongestioncontrol). Anotheralternativeis to varythepacingratein responseto feedback

mechanismfrom thenetwork. Thefeedbackcanbeassimpleasdetectionof apacket loss,or it can

bemorecomplex — for example,theATM availablebit-rate(ABR) mechanismusesexplicit feed-

back from switches within the network.

MostexistingATM network interfacesdonotsupportmorethanasmallnumberof pacedchan-

nels.It is assumedthat thesoftwarewill mapmultiple applicationflows into oneof thechannels.

Figure 2.5: Behavior of a paced channel

Burst scheduled by application

Within a burst, batches of cells
are paced out at a constant rate
called the pacing rate.

18

Thisbecomesdifficult to dowhentherearemany applicationswith varyingrequirements.Therea-

sonthat network interfaceshave not traditionally supportedlarger numbersof pacedchannelsis

becausetheproblemof hardwareschedulingfor many differentchannelswith varyingpacingrates

is non-trivial. TheAPIC designincorporatesanovel mechanismusinghardwared-heapsto address

this issue.This approachcanscaleto supportmany thousandsof pacedchannels,andalthougha

bettersolutionto thisproblemhassubsequentlybeenproposed,theAPIC’sapproachremainsavia-

ble, if somewhat expensive, alternative.

2.5. User-space Protocol Implementations

Traditionally, protocolimplementationshavebeenOSkernel-resident.In termsof throughput,

thismodelworksreasonablywell if thefrequency of datapathoperationsat theuser-kernelbound-

ary is low. This is thecasewhenanentirelykernel-residentimplementationof abyte-streamtrans-

port protocolsuchasTCPis beingused. This is becausesendandreceive datapathoperationsat

theuser-kernelboundarycanwork with largedatabufferscorrespondingto applicationdataunits

(ADUs), andthereforeneednotbevery frequent.In Unix for example,theseoperationsareimple-

mented using read and write system calls to a socket.

If communicationat theuser-kernelboundaryis in termsof individualpackets(alsocalledpro-

tocoldataunits,or PDUs),thentheoverheadof requiringasystemcall perpacketcanresultin very

poor throughput.Therearetwo importantscenariosin which this is important. Thefirst is in the

context of datagramapplications,for examplethoseusingUDP. The secondis in the context of

user-space library implementations of protocol stacks, which are desirable for several reasons:

• They enable implementation of smaller and more efficient OS kernels (microkernels);

• User-spaceprotocol implementationsare easierto program,debug, distribute, upgrade,

and maintain;

• Applications can customize protocols depending on their specific requirements;

• Theprocessschedulingpoliciesof theOSkerneltrivially cover bothapplicationandpro-

tocol processing, which makes the task of QoS enforcement within the end-system easier.

19

Recently, therehavebeenseveralresearchefforts[17,18,24,33,40]thathaveattemptedto make

user-level library implementationsof protocolstacks,in sucha way that they canbe linked with

applicationprograms.Most of theseefforts have relied on traditionalnetwork interfaces,which

necessitatethatthedevicedriverbekernel-resident.Thus,eventhoughprotocolswouldbein user-

space,transmissionandreceptionof datawouldrequiresystemcallsto thekernel.Systemcallscan

beexpensive; a null systemcall cantake on theorderof tensof microsecondsin modernworksta-

tionsrunningderivativesof theUnix operatingsystem.In andof itself, this is badfrom theview-

pointof minimizingend-to-endlatency for latency-senstiveLAN applications.But thehighcostof

systemcallscanalsoresultin poorerthroughputif theprotocolshave not beenimplementedcare-

fully. Most researcherswhohaveexploredlibrary implementationsof protocolshavegivenserious

attentionto amortizingtheoverheadof asystemcall overmultipleoperations(suchassend/receive

of apacket)by batchingtheminto asinglesystemcall. Thisplacesanunnecessaryburdenonpro-

tocolcoders,andmakesthecodelessportableandmoredependentontheunderlyingoperatingsys-

tem. Furthermore, it exacerbates the aforementioned latency problem.

To solve theseproblems,systemcallsandthekernelshouldberemovedfrom thecritical data

path. In other words, the device driver for the network interfaceshouldbe implementableas a

library in user-space.While this canbedoneeasilyif thereis only a singleapplicationprocess,it

becomesmuch more difficult when thereare multiple processesrunning on the host-processor

which needto accessthe network simultaneously. The problemarisesbecauseconventionalnet-

work interfacesarecontrolledbyadevicedriverthatoperatesin asystem-widetrustedcontext (usu-

ally, the kernel).With multiple processescontrolling the network interfacedirectly, the issueof

maintainingthe operatingsystem’s protectionpolicies betweenprocessesarises.Resolvingthis

issuerequirescooperationfrom thenetwork interfacein theform of specialsupportfor user-level

protocols.

Figure2.6illustratesthedifferencesbetweenthetraditionalkernel-residentcontrolmodel,and

the user-spacecontrol model.The figure distinguishesbetweentwo kinds of control operations:

thoseonthedatapath,andthoseonthecontrolpath. Datapathoperationsareexecutedevery time

somedatais sentor received,while controlpathoperationsarerelatively rare,andusuallyneedto

be executedonly onceor a few times in a connection’s lifetime. This distinction is important,

becauseit meansthat datapathoperationsareexecutedvery frequentlyandthereforeshouldbe

20

optimized,whereascontrolpathoperationsarerelatively rare,sothereis notmuchto begainedby

optimizingthem. Examplesof datapathoperationsinclude:queueinganddequeueingdatabuffers

on queuescorrespondingto DMA channels,informing the network interfacethat therearenew

buffersin thesequeues,changingthepacingrateof a channelin responseto applicationdemands,

etc. Examplesof controlpathoperationsinclude:settingupDMA channelsandconnections,add-

ing endpointsto a connection,etc. Notethatsomeoperations,suchassettingthepacingrate,can

beconsideredto becontrolpathoperationsif they areexecutedonly once(or rarely)aspartof an

initializationsequence,andcanbeconsideredto bedatapathoperationsif repeatedexecutionsare

necessary every time some data has to be sent or received.

Returningto thefigure,we seethat in thetraditionalmodel,whena user-spaceprocesswants

to usea network interfacedevice,bothcontrolanddatapathoperationsneedto passthrough(and

beblessedby) theOSkernel. In theuser-spacecontrolmodel,only controlpathoperationsneedto

passthrough(andbeblessedby) theOSkernel;thefrequentlyoccuringdatapathoperationsdonot

need any kernel intervention (and therefore are more efficient).

 Figure 2.6: Traditional versus User-space Control Model

Control PathData Path

OS
Kernel

UserA

Network

UserB UserC

OS Kernel

Network
Interface

UserA UserB UserC

Network Network
ATM

User-Space Control ModelTraditional Model

Interface

21

Sincewehaveremovedthekernelfrom thedatapath,thenetwork interfacehasto takeoverthe

job of “blessing”all datapathoperations.Here,“blessing”meansensuringthattheprotectionpol-

icies imposedby thekernelarenot violated. In thecontext of anATM network, theseprotection

policiesmanifestthemselvesassetsof operationsthatareconsideredto be“legal” for the“owner”

of an ATM connection.A userprocessis saidto be the owner of a connectionif it holdsan OS

grantedcapabilityfor thatconnection.Usually, theprocessthat is responsiblefor openinga con-

nectionbecomestheownerof theconnection.Referringto Figure2.7,it shouldbeillegal for user

processB to senddataonconnectionVCA which is ownedby userprocessA. Similarly, it should

beillegal for userprocessB to beableto receivedataarriving onVCC, whichis ownedby userpro-

cessC. As anotherexample,oneuserprocessshouldnotbeableto changethepacingrateof acon-

nectionfor which it doesnot hold a capability(i.e., it is not theowner). In thetraditionalmodel,

suchcheckswereperformedin softwareby thekernel. With theuser-spacemodel,they becomethe

responsibility of the network interface.

Note that in the context of the above discussion,a similar conceptcanbe appliedto TCP or

other transport level packet flows in an IP network, in the place of ATM connections.

It is importantto notethattheuser-spacecontrolmodelimpliesa differentsoftwarestructure.

In particular, largeportionsof thenetwork interfacedevice driver canbemigratedto user-space.

Wewill henceforthreferto thispartof thedriver, whichrunsin anuntrustedcontext andis typically

implementedasa library that canbe linked with the application,as the user-spacedriver. The

 Figure 2.7: Protection concerns in the user-space control model

User A User B User C

VCA VCB VCC

Network Interface

22

trustedportionof thedriver typically residesin thekernel,andis responsiblefor all controlopera-

tions,for dictatingprotectionpoliciesthatwill applyto user-spacedrivers,andfor fielding device

interrupts — we will henceforth refer to this part of the driver as the kernel driver.

As wenotedabove,theuser-spacecontrolmodelhelpsin termsof boththroughputandlatency.

Furthermore,it enablesefficient implementationof application-customizableuser-spaceprotocols.

Theuser-spacecontrolmodelis a relatively new paradigm,andasweshallsee,is supportedby the

APIC using two new mechanisms: Protected I/O and Protected DMA.

23

Chapter 3

Related Work

Several researchgroupshave attemptedto designand implementhigh-speedhost-network

interfacesover the pastfew years.The APIC designbuilds uponthe successof theseefforts by

adoptinga numberof useful featuresandimproving or improvising themfor our target environ-

ment.

3.1. Related work in network interface design

Oneof theearliesteffortsin high-speednetwork interfacedesignwasthenetworkadapterboard

(NAB) [32], whichwasespeciallydesignedto supporttheVMTP transportprotocol[4]. As shown

 Figure 3.1: Network Adapter Board (NAB) Ar chitecture

Processor

Host Interface
Host Block Copier

Memory

Controller

Checksum
Logic

Encryption
Logic

Network
Link

Host Bus

24

in Figure3.1, the boardincludesa microprocessorandmemorysubsystem.The buffer memory,

which is implementedusinga VRAM, is usedasa stagingareafor thetransmissionandreception

of packets.Theserialaccessportof theVRAM is usedfor transfersbetweenthehostandtheNAB,

andbetweentheNAB andthenetwork. Therandomaccessport is usedfor theon-boardprocessor

to manipulatedatain the memory. This processoris responsiblefor a lot of the “commoncase”

packet processing,which includea firewall function and the error-free transmissionof packets,

while thehostprocessoris responsiblefor the“rarecase”processing,includingacknowledgement

and retransmissionof packets.The main contribution of the NAB architecturewas the idea of

smartlypartitioningprotocolprocessingbetweenthehostCPUandtheboard,aconceptwhichhas

seen continued use in most modern NIC designs, including the APIC.

TheNectarcommunicationsaccelaratorboard(CAB) [1] is a host-network interfacethatcon-

nectsthrougha10MByte/sVME interfaceto thehostsystem.It toohasanon-boardprocessor, but

thedifferenceis thattheCAB processoris responsiblefor all of thetransportprotocolprocessing.

By mappingtheCAB’s on-boardmemoryinto theaddressspaceof theapplicationrunningon the

host processor, it is possible to achieve a zero-copy architecture,as was demonstratedin

Figure2.3(c).However, this style of NIC designhaslost favor becauseof the large amountsof

memorythatwouldberequiredon theNIC, andbecauseit requirescloseinteractionbetweensoft-

warerunningon thehostandthaton theNIC’s on-boardprocessor. Additionally, Clark et al. [5]

have arguedthat in thecaseof TCP/IPtheactualprotocolprocessingis of low costandrequires

very few instructionsonaper-packetbasis,andthuscouldbeleft on thehostwith minimal impact.

WashingtonUniversity’s Axon project[39] representsan attemptat designinga high perfor-

mancehostcommunicationsarchitecturefor high-bandwidthdistributedapplications.This archi-

tectureallows processesto sharetheir virtual addressspaces;whena processattemptsto accessa

segment/pagethatis not in its mainmemory, it canberetrievedfrom a localdiskor from aremote

machine.TheNIC designallows network datato becopieddirectly into theapplication’s address

spacewithoutany store-and-forwardhop,andarguesthatall per-packetdatapathprotocolprocess-

ing (includingthetransportprotocol)shouldbeimplementedin hardware.As mentionedabove, it

hassincebecomeapparentthathigherlevel protocolprocessingis bestleft to hostsoftwarefor rea-

sonsof flexibility andportability, andthe impacton performancewould be minimal. The Axon

architecturewasnever implemented,but asimulationof thearchitectureshowedpromisingresults.

25

ATM network interfacesbearingmentionincludetheonefrom ForeSystemsandCambridge

University/Olivetti Research[25], which puts minimal functionality in interfacehardware.This

approachassignsalmostall tasksto thehostprocessor, includingsegmentationandreassemblypro-

cessing.This approachsuffersfrom two drawbacks:first, modernhostprocessorarchitecturesare

optimizedfor dataprocessing,notdatamovement,andsothehostwouldhaveto devotesignificant

resourcesto managethe high-ratedatamovement.Second,operatingsystemoverheadof this

approachcanbesubstantialwithouthardwareassistancefor objectaggregationandeventmanage-

ment.

AnotherATM adapteris Bellcore’sOSIRISDecstation5000interface[10], whichconnectsthe

host’sTURBOchannelI/O busto a622Mb/sOC-12ATM link. This interfaceplacesall datamove-

mentandper-cell operationsin customhardware,while controlpathfunctionsincludingsegmen-

tationandreassembly(SAR)areimplementedusingtwo on-boardprocessors.While thisapproach

doessimplify theNIC design,it is oftenmorecost-effectiveto implementSARfunctionalityin cus-

tom hardware, and implement many higher level control operations directly on the host processor.

The University of PennsylvaniaATM network interface[41] wasdesignedfor the IBM RS/

6000workstation,andwasusedto connectit’sMicrochannelbusto a155Mb/sOC-3ATM link. It

featuredhardwareimplementationof the ATM segmentationandreassemblypipeline,usingoff-

the-shelfprogrammablelogic devicesandmemorychips.Theprotocolstackis partitionedsothat

all per-cell functionsarecarriedout usingdedicatedhardware,while hostsoftwareis responsible

for higher-level protocolprocessing,andfor controlling packer movementto/from memory. One

aspectof this interfacethatbearsmentionis that it canoptionallyusetheMicrochannelbus’ I/O

channelcontroller in orderto allow the network interfaceto have contiguousaccessto scattered

pagesin physicalmemory. This requirestheI/O channelcontrollerto haveamemory-management

unit (I/O-MMU), whichneedsto besetupby thehostprocessorprior to datatransfer. Useof this I/

O-MMU providesthenetwork interfaceor otherdevicestheability to directly streamdatainto or

outof theaddressspaceof user-spaceprocesses.SincemostmodernPCandworkstationarchitec-

turesdonot featureI/O channelcontrollerswith softwareprogrammableMMUs for virtual address

spaceaccessby devices,thisdesignis notgenerallyapplicableunlesssuchaMMU is implemented

on the NIC itself.

26

VanJacobson’s WITLESS[31] interfacedesignfirst introducedtheconceptof a single-copy

interface.Theideawasto have a sharedmemory(usuallyresidenton theNIC card)which allows

randomaccessby boththeNIC andthehostprocessorwithoutaffectingeachother’sperformance.

Whena programsendsdata,thenetworking codecopiesthedataimmediatelyinto buffers in the

sharedmemory. The variousprotocolhandlingroutineswork on the datain the sharedmemory,

includingprefixingof headerinformation,etc.Thenetwork interfacecanthentransmitthepacket

in a singleoperation.On theincomingside,the interfaceplacesreceivedpacketsin buffers in the

sharedmemorybeforeinformingthenetwork codeof theirarrival.Thedataremainin thesebuffers

until aprogramasksto receivethem,atwhichpoint they arecopiedinto theprogram’sbuffer. Note

thatin bothcases,sincetheprocessoris doingthecopying, it canalsocomputethechecksumover

thedatain thecopy loop, therebyavoiding anadditionaldatatouchoperationfor checksumming.

However, on theincomingside,thecomputedchecksumis usuallyrequiredby network protocols

beforethey cancopy datainto theapplication’saddressspace,sothataWITLESSNIC wouldhave

to provide on-board checksumming to avoid the overhead of an additional data touch.

Thereis asubtlepointwhichbearsemphasishere;notethattheWITLESSarchitectureis called

single-copybecausethe host processoris responsiblefor copying databetweenthe application

buffer andtheNIC-residentsharedmemory. If theNIC weredoingthecopying (usingDMA), the

architecturewould have beentermedzero-copy, asexemplifiedby theUniversityof Pennsylvania

interfacedesign.Notethat in bothcases,thenumberof datatouchoperationsis identical,thedif-

ferenceis in whetherhost-processorcyclesareusedto do thecopying or not.Thereis someconfu-

sionasto whatto call anarchitecturewheretheapplicationbuffersthemselvesresideon theNIC,

in whichcasetherearenocopiesmadeatall, by eitherthehostprocessoror theNIC, andthenum-

ber of datatouchoperationsto itemsin the system’s main memoryis zero.Somearguethat this

approachshouldbe termedzero-copy, but sincethis style of architectureis almostnever used

(becauseit ties the applicationdesignvery closelyto the systemarchitecture),we will ignoreits

nomenclature for the purposes of this thesis.

TheWITLESSsingle-copy architecturehastheadvantageover zero-copy architecturesin that

it canachievethesamenumberof datatoucheswithoutrequiringany changesto applicationsusing

the socket API; it hasthe disadvantagethat processorcycles are spentcopying the data,and it

requires large memories resident on the NIC.

27

There are two implementationsof the WITLESS architecturein the literature. The HP

Medusa[2] interfacewastargetedat connectinga HP PA-RISC Apollo series700workstationto

anFDDI network. Thesecondgenerationof this design,calledtheAfterburner[9], wasdesigned

to connectthe samemachineto a variety of network links (including HIPPI andATM) at upto

1 Gbps.

3.2. Network interfaces supporting user-space control

Chapter2 introducedtheconceptof a user-spacecontrolmodelfor network interfacesto sup-

port user-spaceprotocols.With this model in mind, the APIC includessupportfor two special

mechanismscalledProtectedDMA andProtectedI/O. In parallelwith theAPIC effort, therewere

two otherresearchefforts thatattemptedto achieve thesameobjective, althoughthey did it using

mechanisms different from those used by the APIC.

Thefirst of these,proposedby Druscheletal. [14], wasasoftwareextensionappliedto theon-

boardprocessoron theBellcoreOSIRISinterfacedescribedearlier. Equivalentto a variantof the

APIC’s ProtectedI/O feature,this schemeintroducestheconceptof anapplicationdevice channel

(ADC). An ADC allowsanapplicationrunningin user-spaceread/writeaccessto only thosemem-

ory-mappedI/O registerson the interfacethat correspondto connectionsthat areownedby the

application.Thememory-mappedI/O registerson thedevice cancorrespondeitherto device con-

trol registers,or to physicalmemoryresidentonthedevice.In thelattercase,theprotocolsrunning

in userspacecanmove datadirectly to andfrom buffersresidenton thedevice usingprogrammed

I/O with an ADC.

Figure3.2demonstrateshow theADC mechanismworks.Theper-connectionregisterson the

network interfacearemappedinto its memory-mappedaddressspacein suchawaythatall registers

correspondingto a connectionfall into thesamephysicalpageframe,andno pageframecontains

registersfor morethanoneconnection.Thus,all deviceregistersfor aparticularconnectioncanbe

accessedthroughphysicaladdressesthatfall within thesamepageframe(or setof pageframes,if

the machine’s pagesizeis not large enoughto hold all the registers)in the physically addressed

memory-mappedI/O spaceof thedevice.Whenauserprocessmakesaconnectionsetuprequestto

theOSkernel(asa controlpathoperation),thekernelmodifiesthesystempagetableentriessuch

thatthepagecorrespondingto theconnectionis mappedinto theprocess’virtual addressspacewith

28

read/writepermissions.Theprocessnow becomestheownerof theconnection,andit cancontrol

theconnectionby readingor writing theregisterson theinterfacedirectly, withouthaving to make

systemcallsor otherwiseinteractwith any trustedcode.Theprocesscannot,however, controlother

connectionsthatit doesn’t alsoown, becausethepagescorrespondingto thoseconnectionsarenot

mappedinto its virtual addressspace.To summarize,thesystem’svirtual memory(VM) protection

mechanisms are overloaded to provide protected access to per-connection device registers.

In thecaseof theOSIRISinterface,theADC conceptis usedto allow userprocessesto read

andwrite to buffer descriptorsresidentin theon-boardmemory. Eachpagein thatmemoryis bound

to anATM connection,andcontainsa queueof transmitor receive buffer descriptors.In addition,

theoperatingsystemkernelhasto providetheon-boardprocessorwith alist of mainmemorypages

whichanapplicationusingtheADC isallowedtoaccess.In theoutbounddirection,theuserprocess

usesanADC to enqueuea buffer descriptorcontaininga pointerto thedatato betransmitted.The

OSIRIS’ on-boardprocessorchecksto seeif the pointeraddressfalls within oneof the allowed

physicalpagesfor theconnectionbeforecommencingDMA to readandsendthedatafromthemain

memorybuffer. If it is determinedthattheaddressis notvalid for theADC onwhichit wasqueued,

the on-boardprocessorassertsan interrupt, and the operatingsystemin turn raisesan access

 Figure 3.2: Providing protected access to registers using VM overloading

.

.

.

.

.

.

.

.

.

Control/status
registers for
Conn0 are
addressed

VA space for
process A

VA space for
process B

User-Access Per-Channel Registers
Region of physical (memory-mapped I/O)

PAGE
TABLE

MAPPINGS

Connk

through this
physical page frame

.

.

.

Conni

Connk

Connj

Process A owns and
controls Conni and Connk

Process B owns and
controls Connj

Connj

Conni

.

.

.

address space of the APIC

29

violation fault in theoffendingapplicationprocess.Theaddressesof receive buffersenqueuedby

an application are similarly checked in the inbound direction.

TheU-Netinterfacework from Cornell[19] implementsamechanismthatis functionallyiden-

tical to ADCs..TheU-Net interfacewasimplementedasa modificationto thefirmwareon a Fore

SystemsSBA-200ATM adapter, whichfeaturesanon-boardi960processor. Becausethetargethost

is a SparcStation-20/10,theadapterresideson theSBus.Like mostI/O buses,theSBushasfewer

addresslinesthanthemainmemorybus,which limits theregion of memorythatcanbeaccessed

by I/O devices.Thisnecessitatesdatatransferto andfrom speciallydesignatedcommunicationseg-

mentsin themainmemory. As with ADCs,U-Netcommunicationsegmentshaveto beboundto an

ADC channel(referredto asa“endpoint”in U-Netpapers).Thisrequirespre-programmingthenet-

work interfacewith a list of all thepagescorrespondingto asegment.Again,it is theresponsibility

of theon-boardprocessorto verify thatanapplicationis only sendingfrom or receiving into seg-

mentsthat have beenboundto an endpointthat it owns. This involves matchingeachqueued

address against the list of valid pages for an endpoint.

U-Net specifiesa softwarearchitecturefor usewith a U-Net enablednetwork interface.This

architectureenablesuseof Active Messages[20], which allow receiptof a messageto result in

upcallsto anapplicationroutinethatis specifiedin themessage;theActiveMessagesenableseffi-

cientoverlappingof communicationandcomputationin multiprocessors.U-NetstyleADCsallow

theActiveMessagesconceptto beextendedto multiprocessorsconstructedfrom networksof work-

stations running in a more distributed environment (e.g. over a LAN).

Morerecently, anindustryconsortiumcomprisingCompaq,Intel,andMicrosoftannouncedthe

developmentof a Virtual Interface(VI) Architecture specification[43], which is targetedat stan-

dardizingthemechanismby which network interfacesprovide directuser-spaceaccessto applica-

tions over system-areanetworks (SANs). The VI architecturerequiresapplicationsto register

addressrangescorrespondingto virtually contiguouswired memoryregionswith theVI network

interface.This informationis usedby theadapterto build pagetablescorrespondingto legal pages

in useby eachapplication,similarto theADC concept.Becauseit is targetedfor usein aSAN envi-

ronmenthowever, theVI architecturespecifiesthecommunicationprotocolswhich includesetup

to establishanend-to-endconnectionidentifierthatis usedto tagpackets(similar to anATM VC).

It also supportsunconventional data transferoperationssuch a remotedirect memory access

30

(RDMA), in whichthesenderof amessageisallowedtospecifythedestinationbuffer for atransfer.

Also supported is reliable delivery of messages through a low-level transport protocol.

3.3. Desk-Area Networks

As mentionedearlier, theAPIC architectureallowsmultipleAPICsto beinterconnectedto one

anotherandto I/O devicesin orderto form a desk-areanetwork (DAN). A DAN is anarchitecture

in whichapacketswitchservesasaworkstationinterconnect.Workondesk-areanetworkswaspio-

neeredattheUniversityof Cambridge[26], andwasalsopursuedindependentlyatMIT by Tennen-

houseetal [27] aspartof theVuNetproject.While theCambridgedesignaimsto useasinglesuch

interconnectfor all componentsincludingCPU,memory, anddevices,theVuNetsystemis more

like a system-areanetwork in that it targetsinterconnectionof multiple workstations,storage,and

I/O devices to one-another.

Bothof theseeffortsareaimedatusingageneralswitchbasedinterconnectwithin ahostcom-

puter. TheCambridgeDAN wasbuilt usingaFairisleATM switchandahome-grown multiproces-

sor operatingsystemthat runson eachof the nodesconnectedto the switch.Eachdevice in this

architecturehasan associatedport controller featuringa processor-memorysubsystem;the port

controller is responsiblefor communicatingwith otherport controllersandto the hostoperating

system.The VuNet systemrelies on a switch which is a dumb crossbar;it is assumedthat the

devicesconnectedto theswitchwill containfunctionalityto enablethemto commandtheswitchto

routecells to theappropriateoutputports.This will usuallyinvolve a ATM virtual circuit lookup

within the network interface connecting devices to the switch.

3.4. Reducing Interrupt Overhead

Interruptoverheadcanplay animportantrole in determiningtheperformanceof a high band-

width network interface.Therehavebeenvarioussuggestionsaimedat reducingthisoverhead.For

example,in the context of the OSIRIS interface,Druschelet al. [14] suggestdisablingtransmit

interruptsaltogether, andcheckingfor thecompletionof transmissionasapartof otherdriveractiv-

ity. On receive, they interruptonly whennew dataarrivesandthereis no old datathat hasnot

alreadybeendequeuedby thedriver; thishasthedesirableeffectof theinterruptbeingissuedonly

once per burst of incoming packets. Traw et al [41] suggestdisallowing interface interrupts

31

altogether, andinsteadpolling theinterfaceonperiodichardwareclock interrupts.Theseproposals

do not addresstheadverseimpactsuchschemeshave on latency-sensitive applications,andthere

has been very little in the literature on supporting such mixed environments.

3.5. Receive Livelock Elimination

Thereceivelivelockproblemmentionedin thepreviouschapteris describedin [38]. Therehave

sincebeenefforts to addressthis problem.Jeffrey Mogul andK.K.Ramakrishnandescribea soft-

ware-centricmethod[34] which works to avoid livelockby requiringtheoperatingsystemkernel

to carefully schedulenetwork interrupts the sameway it schedulesprocessexecution. This

approachrequiresthat thesystemcheckto seeif interruptprocessingis takingmorethanits fair

shareof resources,and if so, disabling interruptstemporarily. The operatingsystemcan infer

impendinglivelockbecauseit is discardingpacketsdueto queueoverflow, or becausehigherlayer

protocolprocessingor usercodeis makingnoprogress,or by measuringthefractionof CPUcycles

usedfor packetprocessing.Interruptscanbere-enabledwheninternalbuffer spacebecomesavail-

able, or upon expiration of a timer.

A schemeto avoid receivelivelockby carefuldesignof anetwork interfaceis describedin [30].

This approachrequiresthenetwork adapterto beequippedwith enoughintelligenceto beableto

detecthostinput loadlevelsandusethis informationto dynamicallymodulatetherateat which it

interrupts the host for packet input.

Anothersolutionto livelock is lazyreceiverprocessing(LRP) [13]. In theLRP paradigm,the

network interfaceis tightly coupledtohigherlayersof theprotocolstack,andit demultiplexespack-

etsto their destinationsocketqueue.Protocolprocessingis performedat thepriority of thereceiv-

ing application,ratherthanat interruptpriority. Theassumptionhereis that thenetwork interface

hasanon-boardprocessor, thefirmwareof which is speciallydesignedto interfacewith thehost

processor’s protocol stack in order to demultiplex packets directly to their destination sockets.

3.6. QoS support for network interfaces

Therehave beenseveral researchpapersthatdescribemechanismsto implementQoSin net-

work switchesandrouters[44,11].However, therehave beenrelatively few schemesdesignedto

work in the context of a network interface.Onereasonis that network interfacesfor non-ATM

32

networkstypically provide best-effort serviceonly for all packets,anddo not attemptto shapethe

outgoingtraffic streatin any way. With ATM network interfacestoo,theQoSsupporthasbeenfairly

limited in mostcommercialadapters.For example,theEfficientNetworksATM interfacesupports

a small numberof pacedchannelsfor which a pacingratecanbe specified,andall connections

should be mapped into one of these channels.

A pacingschemebasedonActiveVCI rings is describedin [35]. In thisscheme,VCI numbers

areenteredinto slotsin acirculararray. Eachslot in thearraycorrespondsto atransmitopportunity

on thewire; a freerunningpointeradvancesthroughthearrayonceperopportunity. If thecurrent

arrayslot containsavalid VCI, acell is transmittedon thatconnection,otherwisethetransmission

opportunityis lost. In eithercase,thepointeris advancedto thenext slot in thecirculararray. The

sizeof thearraylimits theminimumratethatcanbespecified.Thesoftwareis assignedthetaskof

settingup theelementsin thering to matchthedesiredratesof thedifferentconnections.Unfortu-

nately, thecontentsof thering have to bemodifiedevery timeaconnectionbecomesidle or active.

More recently, following recognitionof someof theweaknessesin theAPIC’spacingscheme,

JonathanTurnerproposeda novel pacingalgorithmbasedon timing wheels[42]. Turner’s scheme

allows spacingbetweentwo consecutive cellson a connectionto vary from the ideal (determined

basedon theconnection’spacingrate)by a few percent,but correctsfor this variationover time in

orderto preventdrift. Throughtheuseof thisapproximation,Turnerachievesscalabilityin thepac-

ing algorithm without excessive logic cost.

As shown in Figure3.3,Turner’s schemeworksby maintainingmultiple timing wheels,each

of which hasa nominal cell rate associatedwith it. The pointer in eachwheel advancesat the

wheel’s nominalrate;if the ratefor wheel i is onecell every b cell times,thenthepointerwould

advanceby oneeveryb cell times.Whenthishappens,thelist of cellswaiting in thecurrentslot is

movedto theoutputlist, whichcontainscellsreadyto betransmittedon thelink. Theoutputlist is

servicedat therateof onecell percell time. To schedulea channelto transmita cell in thenext i

cell times,we insertthecell i positionsaheadof thepointerin thewheelwith thefinestgranularity

(i.e.,thehighestnominalrate).If i is solargethatthewewouldwrapin thiswheel,thenwesucces-

sively try wheelswith coarsergranularities,until anappropriatewheelhasbeenfound.Becauseof

thecoarsergranularityof somewheels,wemaynotbeableto schedulethecell exactly i cell times

33

in thefuture;in thatcase,we keeptrackof thedifferencein a channeltable,anduseit to make up

by adjusting the spacing between future cells correspondingly.

 Figure 3.3: Turner’s Pacing Algorithm

output list

∆
∆
∆
∆
∆
∆
∆
∆

ε
ε
ε
ε
ε
ε
ε
ε

link

link

link

link

link

link

link

link

channel table

cell
spacing

target
time

pacer channel index

wheel 1 wheel 2 wheel 3

34

Chapter 4

Contrib utions

In thischapter, wefirst list thedifferentproblemareasrelatedto high-speedadapterdesignthat

areaddressedby theresearchpresentedin this thesis.Wewill thenlist ourcontributions,show how

they addresstheproblemareasidentified,andin light of therelatedwork presentedin Chapter3,

demonstrate an advancement in the state-of-the-art.

4.1. Problem Statement

As outlinedin Chapter2, therearea few differentproblemareasthat canbe identifiedwith

respect to high speed network interface design:

• MemorybandwidthandI/O buslimitationsconstrainthenumberof high bandwidthmul-

timedia devices that can be used within a host.

• Typical implementationsof current protocol stacks involve many data touches.This

resultsin poorthroughputinto andoutof memoryfor bandwidth-intensiveapplications,as

well as higher latencies for latency-sensitive applications.

• To enableefficient user-spaceprotocol implementations,network interfacesneedto be

able to support the user-space control model effectively.

• Thereis no easyway for bandwidthintensive applicationsto co-exist with latency sensi-

tive applicationsgivencurrentnetwork interfacedesigntechniquesandoperatingsystem

structures.

35

• Thereceive livelockproblemcontinuesto remaina majorobstacleto achieving high per-

formance in modern network interfaces.

• For QoSsupport,network interfacesneedto beableto performpacingover largenumbers

of connections with different and independent pacing rates for each connection.

4.2. Overview of Solutions

TheAPIC directlyaddressesmany of theseproblems,while simultaneouslyenablingconstruc-

tion of low cost interfaces that have no on-board processor or memory.

Thenumberof high-bandwidthdevicesin a systemis constrainedby thetotal memoryband-

width availableto thesedevices.TheAPIC allows morememoriesto beused,in orderto increase

thetotaleffectivememorybandwidth.It doesthisby permittingselecteddevicesto havededicated

stagingmemories,andby allowing constructionof a packet-switcheddesk-areanetwork compris-

ing thesedevices.A uniquedaisy-chaineddesk-areanetwork architectureis described,andthecon-

ceptof remotecontrolof devicesis introducedto effectively supportthis architecture.Unlike the

Universityof Cambridgeor VuNetdesk-areanetworks,theAPIC doesnot requireaprocessorded-

icatedto eachdevice.It alsodoesnotrequireageneralpurposeswitchto form theheartof thedesk-

areanetwork; theAPIC’s daisy-chainedarchitectureallows for gracefulcostscalingin proportion

to the number of connected devices.

The APIC allows for a zero-copy architecture.Zero-copy is enabledthroughtwo different

mechanisms.For monolithickernel-residentprotocols,aDMA techniquereferredto asPool DMA

canbecombinedwith packet-splittingto allow datatransfersbetweenanapplicationandtheAPIC

to occurwith no interveningcopies.For user-spaceprotocols,theAPIC supportszero-copy with

theuser-spacecontrolmodelusingtheProtectedDMA andProtectedI/O mechanisms.Theuser-

spacecontrolmodelremoveskernelinterventionfromthedatapath,andthereforepermitstheAPIC

to supportvery low latenciesfor applicationsthatdemandit. All earlierattemptsatproviding zero-

copy behavior have required at least one of the following:

• have requiredprotocolprocessingto be implementedon the network interfacecard(e.g.

CAB, Axon), thereby requiring complex interaction with the host operating system

36

• have required the system to provide an I/O MMU (e.g. UPenn interface)

• have required an on-board MMU on the NIC (e.g. OSIRIS, U-Net).

TheAPIC doesnotsuffer from any of thesedrawbacks.In addition,all but theUPenninterface

haverequiredon-boardprocessorsto implementthezero-copy functionality, while theAPIC design

is able to make do without one.

The APIC hasoneof the first implementationsof the user-spacecontrol model for network

interfaces.While theADC andU-Network wasdonesimultaneously, theAPIC’sapproachhassev-

eral key advantages.The ProtectedI/O mechanismis very similar to the ADC and U-Net

approaches,but it allowsfor muchfinergrainedprotectionpoliciesto beenforced;in particular, the

operatingsystemcanenforceprotectiondown to individual registersonthedevice.This is notpos-

siblewith theADC or U-Netapproaches.Additionally, ProtectedDMA is anovel mechanismthat

supportsDMA directly to andfrom userbufferswithout theneedfor on-boardor system-supplied

I/O MMUs. SincemostsystemsdonotsportanI/O MMU, andsinceprovisioningoneonanetwork

interfacecan increasethe cost of the interface, there is a significantadvantageto the APIC’s

approach.

Existingnetwork interfaceandoperatingsystemdesigntechniquesdo not gracefullysupport

simultaneousexecutionof bandwidth-intensiveandlatency-sensitiveapplications.To giveananal-

ogy here,operatingsystemschedulershave for a long time provided themeansfor theprocessor

resourceto be effectively sharedby CPU-intensive applicationsand delay-sensitive interactive

applications.However, thesameis not truefor thenetwork resourcethatis managedby a network

interface;no known solutionsexist in the literatureto the problemof allowing high-bandwidth

applicationsto coexist with delay-sensitive ones.Theproblem,asmentionedearlier, is thatband-

width-intensive connectionsperformbetterwith a low frequency of interruptevents,which imply

that interruptsneedto be widely spacedapart in time, or that the interfaceneedsto be polled.

Latency-sensitiveapplications,on theotherhand,wouldpreferimmediatedeliveryof eventnotifi-

cationsthroughinterrupts.Thesearecontradictinggoalsif theinterruptpolicy usedfor bothtypes

of connectionsis thesame.TheAPIC solvesthis problemthroughtheintroductionof a new tech-

niquecalledinterrupt demultiplexing, which allows the interruptpolicy to beseparatelyspecified

for the two types of applications.

37

Theinterruptdemultiplexing techniquealsoenablestheAPIC to addresstheproblemof receive

livelock.Taken by itself, this techniquecandelaythe onsetof livelock by allowing moreuseful

work to bedoneoneachpacketonaper-interruptbasis.Takentogetherwith theuser-spacecontrol

modelasimplementedby ProtectedDMA andProtectedI/O, theAPIC cancompletelyeliminate

receive livelock.This is achieved by allowing both protocolprocessinganddriver processingto

occuratthesamepriority astheapplication.Unlikewith LazyReceiverProcessing(seeChapter3),

theAPIC’sapproachdoesnot requirethenetwork interfaceto runspecialsoftwarethatis awareof

andcloselyinteractswith thehostoperatingsystem.This is asignificantadvantage,giventhenum-

berof differentoperatingsystemsandthenumberof time operatingsystemsneedto beupgraded.

Also, unlike theotherapproachesto thereceive livelockproblemdescribedin Chapter3, thestrat-

egy usedby theAPIC doesnotrequirecomplex feedback-basedtechniquesthatrely onmodulating

theinterruptfrequency in responseto changesin load,makingtheAPIC approacheasierto imple-

ment and more portable to different operating environments.

TheAPIC alsoeffectively supportsquality of serviceby allowing thespecificationof pacing

ratesindependentlyfor large numbersof connections.This is achieved throughthe innovative

d-heappacingalgorithmthatwill bedescribedin Chapter5.TheActiveVCI ringsschemeoutlined

in Chapter3 suffers from the following drawbacks:it requiresvery large amountsof memoryto

handlefine grainedspecificationof rates;enablinganddisablingconnectionsareintensive opera-

tions thatcantake a long time to complete,which is significantbecausea connectionneedsto be

disabledwhenever it runsoutof data,andre-enabledwhenevernew datais availableto betransmit-

ted; and it requirescomplex algorithmsto addor drop connections.The APIC approachsuffers

from none of these disadvantages.

Turner’spacingscheme,alsodescribedin Chapter3, is possiblyabetterwayto dopacingthan

the APIC’s approach,but it wasdevelopedafterwards,andin responseto the deficienciesrecog-

nizedwith respectto theAPIC scheme.TheAPIC’sschemedoeshavetheadvantagethatit is ideal

to averyfinegranularity, whichcouldbecomeimportantif thereceiving devicehasverysmallbuff-

ersor expectsan even rateof traffic reception.However, except in thesecases,Turner’s scheme

appears to be the preferred state-of-the-art solution to the pacing problem.

In conclusion,Table4.1presentsacomparisonof theAPIC vis-a-vissomeof theothernetwork

interface designs presented in Chapter 3.

38

 T
ab

le
 4

.1
: C

om
pa

ris
on

 w
ith

 O
th

er
 N

et
wo

rk
 In

te
rf

ac
es

O
n-

bo
ar

d
pr

oc
es

so
r?

O
n-

bo
ar

d
m

em
or

y?

Lo
ca

tio
n

of
P

ro
to

co
l

P
ro

ce
ss

in
g

Lo
ca

tio
n

of
S

A
R

pr
oc

es
si

ng

N
um

be
r

of
da

ta
 c

op
ie

s

S
up

po
rt

fo
r

us
er

-s
pa

ce
co

nt
ro

l?

Q
oS

su
pp

or
t?

N
A

B
X

X
H

os
t

N
/A

>
1

C
A

B
X

X
F

irm
w

ar
e

N
/A

0

A
xo

n
X

X
F

irm
w

ar
e

N
/A

0
X

Fo
re

 S
ys

te
m

s,
O

liv
et

ti
H

os
t

H
os

t
>

1

O
S

IR
IS

X
X

H
os

t
F

irm
w

ar
e

0
(r

eq
ui

re
s

on
-b

oa
rd

M
M

U
)

X

U
P

en
n

X
H

os
t

H
ar

dw
ar

e
0

(r
eq

ui
re

s
sy

st
em

 to
ha

ve
 I/

O
M

M
U

)

W
IT

LE
S

S
,

M
ed

us
a,

 A
fte

r-
bu

rn
er

X
H

os
t

N
/A

1

U
-N

et
X

X
H

os
t

F
irm

w
ar

e
0

(r
eq

ui
re

s
on

-b
oa

rd
M

M
U

)

X

A
P

IC
H

os
t

H
ar

dw
ar

e
0

X
X

39

Chapter 5

Ar chitecture Overview

This chapterprovidesan overview of the APIC architecture,including many of its features.

Severalof thenovel mechanismsalludedto in previouschaptersaredescribedhere,alongwith indi-

cationsasto how they might beused.Notehowever thatmany detailsaswell assomeof themore

arcane features of the chip have been omitted from this document.

5.1. APIC as a Network Interface Device

The primary andmost importantfunction of the APIC chip is that of an ATM host-network

interfacedevice. In otherwords,its mainjob is to connectacomputersystem(PC,workstation,or

server) to anATM switchport (seeFigure5.1). Whenfunctioningin this capacity, theAPIC pre-

sentstwomaininterfacesto theoutsideworld:oneisabidirectionalI/O businterfaceto theattached

computersystem,andtheotheris anATM port interfacethatis usedto send/receiveATM cellsto/

from anATM switch. SincetheAPIC is anelectronicdevice,bothof theabove interfacesareelec-

tronic. However, theconnectionto theswitch is usuallyover optical fiber, so in thenormalcase

thereneedsto beaspecialtransceiverdevice thatconnectstheAPIC’sATM port to anopticalfiber

(transmit/receive)pair. Thus,atraditional-stylenetwork interfacecard(NIC) built aroundtheAPIC

would hold, in additionto an APIC chip, the transceiver device andsomesupportlogic. Sucha

boardwouldplug into anavailableI/O busslot in thecomputersystem,andpresentasocket in the

backplane for the optical fiber pair that will connect it to the switch.

In Figure5.1,theNIC transmitsdataby doingadirectmemoryaccess(DMA) to readdatafrom

specifiedbuffers in thesystem’s mainmemory, andinjectinganATM cell streambuilt usingthat

40

datainto theATM network. Similarly, whentheNIC receivesdatain cellsonits ATM port,it writes

thedatainto buffersin themainmemory, againusingDMA. Thus,from theNIC’sperspective,the

mainmemoryis theproducerandconsumerof ATM data. If adevice(for example,thecamera)has

datato sendto theATM network, theprocessorwill first have to arrangeto get thedatafrom the

camerainto themainmemoryfrom wheretheNIC canreadandtransmitit. Similarly, if a video

streamarriving on theATM input port of theNIC hasto besentto thedisplay, it will have to go

throughthesystem’s mainmemory. As describedearlier, this canbea problemif therearemany

high bandwidthdevicesin thesystem,becauseof thelimited mainmemorybandwidth.This leads

usto thesecondmainfunctionof theAPIC, which is to serve asa building block for a Desk-Area

Network (DAN) thatwould allow datastreamsto bypassthemainmemoryandprovide a direct

path from the network to various devices in the system.

5.2. APIC-based DANs

In orderto supportdesk-areanetworking,theAPIC incorporatesasecondATM portwhichcan

beusedto daisychainmultipleAPICstogetherasshown in Figure5.2. Notethatthis is adeviation

from conventionalATM network adapters,whichusuallyhaveonly asingleATM port. In thedaisy

chainedDAN shown in thefigure,thereis oneprimaryAPIC chipwhich interfacesto thesystem’s

I/O bus,andservesastheprimarynetwork interfacefor thesystem.All theremainingAPICsare

eachconnectedto anI/O deviceandsomememory. These“I/O modules”mayoptionallyalsohave

 Figure 5.1: Location of an ATM NIC in a Computer System

CPU

MMU
&

Cache

Main

Primary I/O Bus (PCI)

ATM

Display Disk

Processor-
Memory

Interconnect

Video
Camera

Memory

CPU

MMU
&

Cache

Network
InterfaceOptical

Fiber Pair

ATM
Network

41

a local controlprocessor, but moretypically they arecontrolleddirectly by thesystem’s mainpro-

cessor(s).With thisDAN architecture,datacanmovedirectlybetweenthenetworkandI/O devices,

withouthaving to passthroughthesystem’smainmemory. Thus,for example,theAPIC couldtake

a videodatastreamoriginatingat thecameraandtransmitit to theATM network asanATM cell

stream.Notethatcellsfrom thisstreammaytransit(unchanged)throughotherAPIC chipsenroute

to thenetwork. Asanotherexample,anATM cell streamcontainingvideodatathatis receivedfrom

thenetwork canbesentdirectly to adisplaydevicewithouthaving to gothroughthesystem’smain

memory. TheDAN canalsobeusedto directlycommunicatebetweendifferentdeviceswithin the

samesystem.As anexample,avideostreamfrom thediskcouldbesentto thedisplaydeviceusing

the APIC interconnect.

☞ TheconnectionbetweentheATM portsof two APICscanbeeitherelectronic(PCBtracesor a

ribbon cable)or optical fiber. In the latter case,optical-to-electronictransceiver deviceswill

needto beused. Distancesof up to 10 feethave beenachievedusingribboncable;for longer

distances, optical fiber is needed.

 Figure 5.2: An APIC Interconnect as a Desk Area Network

APIC

Display/
HDTV

Disk/
RAID Video

Jukebox

Video
Camera

Primary I/O Bus (PCI)

CPU

MMU
&

Cache

Main

Processor-
Memory

Interconnect

Memory

CPU

MMU
&

Cache

APIC APIC APIC APIC

M M M
M

ATM
Network

42

A daisy chain is not the only interconnecttopology that is possibleto build using APICs.

Figure5.3showsaninterconnectwith aperfectshuffle topology, whichhastheadvantageof lower

delayfor cells:thenumberof hopsfrom any APIC to any otherAPIC is O(lg n), asopposedto O(n)

for thedaisychain,wheren is thetotalnumberof APICsin theinterconnect.(Notethatto simplify

thefigure,wehavechosennotto show theindividualdevicesthatwouldbeconnectedto eachAPIC

over its busport). It is alsopossibleto build othertopologiessuchasatoroidalmeshor amanahat-

tan street network using APIC chips.

Althoughwe have describedtheuseof thetwo ATM portsof theAPIC only in thecontext of

desk area networks, other uses can be envisioned as well. For example, APICs can be used:

• to build local area networks (LANs);

• for processor interconnects in parallel (super)computers;

• to build ATM switchport cardsthatcouldbeusedto selectively processpacketsentering

or leaving a switch port, or for traffic scheduling and/or policing;

• as a network tap used to monitor traffic on an ATM link and collect statistics.

 Figure 5.3: Perfect Shuffle Topology

APIC APIC APIC APIC APIC APIC APICAPIC

ATM
Network

43

• to build serversandclientswith enhancedreliability resultingfrom dual pathsbetween

servers and clients.

☞ WashingtonUniversity is currentlyworking on a few projectsthat utilize the APIC in oneor

moreof theapplicationscenariosmentionedabove. Oneof theprojectsusestheAPIC to con-

structswitchport cards(SPCs).AnotherprojectusestheAPIC asa network monitoringtool.

A third projectusestheAPIC to attachanIP processorto eachportof anATM switch,thereby

enabling the construction of very high performance and scalable gigabit IP routers.

5.3. Ports and Connections

5.3.1. The ATM Ports

TheprototypeAPIC chip supportsa 1.2Gb/smaximumlink rateon eachof its two input and

two outputATM ports. Theseportscomplywith theATM Forum’s UTOPIA (UniversalTestand

OperationsPHY Interfacefor ATM) standard,whichspecifiesthe(electronic)interfacebetweenan

ATM-layer device (the APIC) anda PHY-layer device (the optical/electronictransceiver). Each

UTOPIA port hasa 16bit datapathwhich is usedfor speedsof 622Mb/s (OC-12)and1.2Gb/s.

Operation at 155Mb/s (OC-3) is also possible using only 8bits of the 16bit data path.

5.3.2. The Bus Port

TheAPIC’s I/O businterfaceis compliantwith theindustrystandardPCI localbus. BothPCI-

32 (32 datalines)andPCI-64(64 datalines)versionsaresupported.Only the33 MHz versionof

the PCI bus is supported,giving us a bus peakrate of 1.05Gb/s for PCI-32 and 2.11Gb/s for

PCI-64. TheAPIC is theoriticallycapableof sourcingandsinkingdataat themaximumpossible

rate achievable on the PCI bus.

☞ Themaximumachievabledatarateis lower thanthepeakbusratebecauseof addressandturn-

aroundcyclesbetweentransactions,duringwhichnodatacanbetransferredonthebus. Larger

transactionson thebusaremoreefficient,becausetherearefewer wastedcyclesrelative to the

numberof usefulcycles. Theobtainabledatarateis alsodependentonotherfactorssuchasthe

maximummemorybandwidth(whichis sometimesaslow as500Mb/s),thecurrentloadonthe

busandmemorysubsystems,andthearchitectureandperformanceof thebridgechipsbetween

the PCI bus and memory.

44

5.3.3. Virtual Connections (VCs)

TheAPIC supportsatotalof 256ATM virtual connections(VCs)eachfor transmitandreceive.

EachsupportedVC canbeconfiguredto useany VPI in therangefrom 0 to 255,andany VCI in

therangefrom 0 to 65535. In otherwords,theentireVPI/VCI rangeis supported.Theonly con-

straintis thatno two openreceive VCs canhave thesamelow-order8 bits in their VCIs. All state

associated with a VC is stored on-chip.

☞ Thenumberof supportedVCsmaysoundlikevery few comparedto thenumbersbeingquoted

by many commercialvendors.Wefeel that256is morethanenoughfor workstationsandPCs.

For demandingserver applications,moreVCs mayberequired. Our choicein this matterwas

guidedby the numberwe felt could fit comfortablyon the chip, becausewe wantedto avoid

having any additionaloff-chip memoryto hold VC state. At onetime, we did consider(and

indeed,spentconsiderableeffort in) trying to maintaintheVC statein thehost’s memory, and

implementinga typeof cachingmechanismto bring only requiredVC stateinto thechip in an

on-demandfashion. However, the hardwareandtiming issuesinvolved with sucha design

provedvery difficult to tackle.Futureversionsof thechip thatusea smallerfeaturesizecould

easilyholdstatefor 1024or moreVCseachfor transmitandreceive,which is enoughevenfor

all but the most demanding server applications.

5.4. Basic Operation

Thedefaultbehavior of theAPIC (afterreset)is to forwardwithoutmodificationany cellsarriv-

ing at oneof thetwo input ATM portsto theotherATM port for output. We will henceforthrefer

to thispaththroughthechipasthetransitpath. Therearetwootherpathsthatcellscantakethrough

the chip: areceive path and atransmit path. These are described below.

In orderto achieve anything otherthandefault transitforwardingthroughthedevice, it is nec-

essaryfor thecontrollingprocessorto configureVCsonthechip(wewill describethemethodused

to configure the chip later).

TheAPIC will passall cellsreceivedonaninputATM port thatbelongto anopenreceive(Rx)

VC to thehost. This is doneby writing thedatafrom thecell into buffersin memoryaccessedover

the APIC’s bus port. This is thereceive path.

45

Notethatthememorythatis accessedover thebusport is eitherthehost’smainmemoryor the

local memory for a device; we will henceforth refer to this as an APIC’s external memory.

On theoutgoingside,a transmit(Tx) VC canbeconfiguredto senddataon a specifiedoutput

port. Datafor a Tx VC is readfrom buffersin externalmemoryby theAPIC andusedto generate

astreamof ATM cells. Theseareforwardedto thespecifiedoutputport,wherethey areinterleaved

with transit cells before being transmitted This is thetransmit path.

5.4.1. Segmentation and Reassembly

The datathat is read(written) from (to) externalmemoryis in the form of ATM Adaptation

Layer (AAL) frames. Theprocessof breakinganAAL frameinto ATM cellswhich canthenbe

transmittedis calledsegmentation,andtheprocessof takingoneor morereceivedcellsandrecon-

structinganAAL framefrom thosecellsis calledreassembly. ATM network interfacedevicesare

often referredto asSAR (segmentationandreassembly)devices.The APIC supportstwo AAL

types: AAL-0 and AAL-5.

5.4.2. Packets and Frames

Throughoutthisdocument,weusethetermframeto referto eitheranAAL-0 frameor anAAL-

5 frame,andthe termpacket to refer to thehigherlevel unit of datathat is encapsulatedwithin a

frame. Onthetransmitside,apacket is usuallypassedto theAPIC drivercodeby eitheranetwork

layer protocol (eg., IP), or a native ATM transportlayer protocol. The driver is responsiblefor

encapsulatingthepacket in a frame,andpassingtheframeto theAPIC for segmentationandtrans-

mission. Onthereceiving end,theAPIC passesreassembledframesto thedriver, which is respon-

sible for extracting the packet from the frame and delivering it to the appropriatehigher layer

protocol. It is veryimportantto notethattheAPIC operatesonly onframes,andis for themostpart

oblivious to the existence of packets.

5.4.3. Cut-through Behavior

In Chapter2, we describedthedifferencebetweena cut-throughadapteranda store-and-for-

ward adapter. The APIC is designedasa cut-throughadapter. Whenthe APIC hasto transmita

frame,it readsportionsof theframecalledbatchesinto its on-chipmemoryandtransmitsthoseas

soonasthelink becomesavailable. Batchesarecomposedof oneor morecellsworthof data;they

46

aredescribedfurtherin Section5.5.5.Onthereceiving end,theAPIC will attemptto write batches

of cellsbelongingto a frameto externalmemoryassoonasthebusbecomesavailable;notethatit

does not wait to receive all cells belonging to the frame before doing this.

☞ An APIC NIC canpossiblyalsobeusedasa store-and-forwardadapterby addingsomelocal

memoryon theNIC boardinto which theprocessorplacesframesto betransmitted,andwhich

the APIC canuseto storereceived frames. However, thereareseveral hardwarelevel issues

relatedto addingsuchlocal memoryon the boardthat have not beenaddressedby the APIC

designteam,sincewe felt thatthevalueof doingthiswasquestionable(it increasesthecostof

the boards without much added benefit).

Oneof theprimarymotivationsfor designingtheAPIC asacut-throughadapteris to avoid the

needfor any on-boardmemoryon theNIC (andtheneedto have extra pinson thechip to access

sucha memory). This significantlyreducesthecostof a NIC, andachievesbettersharingof the

system’s mainmemoryresource.It alsoeliminatestheproblemof decidingthesizeof on-board

memory:noonesizeworksfor all applications.But moreimportantly, it meansthatanAPIC NIC

hasno scarceresourceson theboard;aswe will seelater, this allows for betterstructuringof pro-

tocol stack implementations in an operating system.

Of course,ourchoicedoesmeanthatwehaveto livewith thedrawbacksassociatedwith having

acut-throughdesign(seeChapter2). Oneproblemhasto dowith thefactthatacut-throughadapter

canendup transmittinga partial frameif thereis anerror, andit couldreportreceiptof partialor

corruptedframesto software.Thisproblemis notaseriousone,sincesucheventsarerare,andit is

easyto recover from themin software. Of moreconcernis the problemof (transportprotocol)

headerchecksums.Becauseof pre-existing standards(TCP),it is not possibleto mandatethatthe

checksumfield shouldresidein thepackettrailer. Of course,wecouldjustleavethechecksumming

all to software,but this canhave anadverseimpacton TCPperformancewhich we would like to

avoid. The APIC provides for a TCP checksumassiston the receiving end, as describedin

Section5.9.1.However, aswe mentionedearlier, theproblemis morewith thesendingside,and

here the APIC offers no hardware level solution.

☞ We will seelaterthateventhis is not sucha seriousproblem,becausecurrentimplementations

of TCP/IPrequireacopy of datafrom userspaceto thekernelonthesendingside;asmentioned

47

in Chapter2, by rolling the checksumcomputationinto this copy loop, most of the cost of

checksumcomputationcanbeeliminated.Althoughthereis asimilarcopy (from kernelto user

space)onthereceiving end,it is muchmoredifficult to roll thatchecksumcomputationinto the

copy loop becauseof recovery (rollback) problemsif the checksumturnsout to be incorrect

(Note:thereceivesidehardware-level checksumassistmakesthisanon-issuein theAPIC con-

text).

5.4.4. Channels and Connections (VCs)

Throughouttherestof thischapter, wemakeastrongdistinctionbetweenachannelandacon-

nection(or VC). A connectionis anATM virtual circuit (VC); we will usetheselatter two terms

interchangeablyto meanthesamething. A connectionis thereforeanATM layerentity:eachcon-

nectionis associatedwith a fixedVPI andVCI. A channelcorrespondsto a DMA datastream.

Eachchannelis associatedwith asingleFIFOqueuein externalmemorythatservesasasourceor

sinkfor datathatis reador writtenby theAPIC.Althoughin many casesthereis aone-to-onemap-

ping betweenconnectionsandchannels(i.e., they refer to thesamedatastream),this neednot be

thecase.For example,in somecasesasinglechannelcansourcecellsthataretransmittedonmul-

tipleconnections.Thereverseisalsopossible,thoughnotveryuseful:multiplechannelscansource

cells all belongingto the sameconnection. Similar one-to-many andmany-to-onerelationships

betweenconnectionsandchannelsarepossiblein certainspecialcasesin thereceivedirectiontoo.

5.5. Summary of Features

The APIC designhasbeentargetedto permit efficient operationin many differentsoftware

environments,andto supporta wide spectrumof applications.Sinceoneof our primarygoalsin

thisundertakingwasto make thechipflexible enoughto serveasa researchplatformfor highper-

formanceprotocolimplementations,notall of thefeaturesdescribedmaybeusefulfor agivenfla-

vor of application. In thissection,wegiveahigh level overview of someof theimportantfeatures

supported by the chip.

5.5.1. Multipoint and Loopback

At anabstractlevel, theAPIC canbethoughtof asaswitchwith threeinputsandthreeoutputs:

two input/outputpairscorrespondingto thetwo ATM ports,andthethird correspondingto thebus

48

port. Dataoriginatingatany of thethreepossibleinputscanbeswitchedto any subsetof thethree

outputs.Someof thepossibilitiesareshown in Figure5.4. TheAPIC allows thesubsetof outputs

to bespecifiedseparatelyfor eachreceive VC (datainput is from oneof the two ATM ports)and

eachtransmitchannel(datainput is from thebusport). Noticethatpoint-to-point,multipoint,and

loopbackconnectionsareall enabledby thismechanism.Theloopbackfeatureis usefulfor testing

theoperationof a port,while themultipoint featurecanbeusedto implementbroadcastin a daisy

 Figure 5.4: Instances of Multipoint and Loopback Connections

 Figure 5.5: An Example Multipoint Application

bus

p0 p1

bus

p0
p1

bus

p0
p1

bus

p0 p1p0 p1

bus

bus

p0
p1

bus

p0 p1

bus

p0
p1

APIC

Display/
HDTV

Disk/
RAID Video

Jukebox

Video
Camera

Primary I/O Bus (PCI)

CPU

MMU
&

Cache

Main

Processor-
Memory

Interconnect

Memory

CPU

MMU
&

Cache

APIC APIC

M M M
M

ATM
Network

49

chain,or to supportmultipointapplications(for example,directingavideostreamfrom thenetwork

both to a display as well as to a disk for local storage — see Figure5.5).

5.5.2. AAL-0

As mentionedearlier, the APIC supportstwo typesof ATM adaptationlayers:AAL-0 and

AAL-5. AAL-0 isalsocalledthenull AAL, anditsmainfunctionis toallow thehostto individually

sendandreceive completelyspecifiedATM cells. AAL-0 is intendedto beusedfor thefollowing

purposes:

• To communicatewith a device that operateson raw ATM cells anddoesnot understand

any AALs.

☞ Washington University’s Multimedia Explorer (MMX) is a device that falls into this category.

• Whenit is necessaryto sendspecialtypesof controlcellsinto thenetwork withouthaving

to first establisha connection,or wherespecialformattingof a cell andits headerarenec-

essary.

☞ For example,WashingtonUniversity’s Gigabit ATM Switch is controlledusingspeciallyfor-

matted control cells that can be sent using AAL-0.

• For software emulation of AALs not supported by the APIC.

Thereis nostandardAAL-0 frameformat;animplementationis freeto chooseits own format.

TheAPIC usesa56byteformat,whichconsistsof aspecial4 bytewordcalledaninternalheader,

followed by the first 4 bytesof the ATM cell headerand48 bytesof cell payload. The internal

headercontains(amongotherinformation)theATM port thatthecell shouldbetransmittedon (or

wasreceivedon). WhentransmittinganAAL-0 frame,theAPIC constructsthecorrespondingcell

by strippingthe internalheaderandaddingtheATM headererrorcheck(HEC) bytebetweenthe

cell headerandthepayload. On receive, theAPIC removestheHEC bytefrom theincomingcell,

prependsaninternalheader, andwritestheresultingAAL-0 frameto externalmemory. This pro-

cess is illustrated in Figure5.6.

50

5.5.3. AAL-5

Although several standardAALs have beendefined(AAL-1, AAL-2, AAL- 3/4, AAL- 5) for

different classesof ATM traffic, AAL-5 has(arguably) becomethe defacto AAL of choicefor

almostall applications,becauseof its simplicity. For this reason,AAL-5 is the only adaptation

layer(otherthanAAL-0) implementedby theAPIC in hardware. If supportfor someotherAAL

is needed,it canbeimplementedin software(albeitata lossin performance)usingtheAAL-0 fea-

ture of the APIC.

5.5.4. Traffic Types

Thereareseveral placesboth within the APIC andin externalmemorywheredata(cells or

frames)canbeenqueuedononeof asetof two or morequeues,only oneof whichcanbeserviced

at a time. In mostsuchcases,thepolicy usedto servicethequeuesis basedon the traffic typeof

the datacontainedin the queue. Note that eachqueueis assumedto hold dataof a singletraffic

type. However, it is possible for multiple queues in a set to hold data of the same traffic type.

Considerfor examplethe setof transmitDMA channelsthat are ready(i.e., they have data

queuedfor transmissionin externalmemory). Thesechannelsneedto be servicedby the APIC

accordingto somepre-definedservicepolicy. Servicingachannelin thiscasecorrespondsto read-

ing enoughdatafrom thecorrespondingqueuein externalmemoryto make a batchof cells,and

queueingthosecellswithin thechip for transmissionon theappropriateoutputport. Thedecision

 Figure 5.6: AAL-0 Frames and SAR

Internal Header

ATM cell header

ATM cell payload

without HEC byte

ATM cell header
without HEC byte

ATM cell payload

AAL-0 Frame Format ATM Cell Format

4

4

48

4

1

48

(Total 56 bytes) (Total 53 bytes)

HEC byte

51

of whenandfrom which channelto readthenext batchof datais madebasedon thetraffic types

associated with the various channels.

TheAPIC definesthreetraffic typesfor transmitdata:low delay, paced, andbest-effort, andtwo

traffic types for receive data:low delay andnormal delay.

Wewould like to pointoutasubtletyhere,thefull importof whichwill becomeapparentonly

afterwehavefinisheddiscussingtheinternaldesignof thechip. It shouldbeclearby now thattraf-

fic typesareassociatedwith certaindatastreams.Earlier, we pointedout thedifferencebetween

channelsand connections,and noted that both have an associatedsequentialdata stream(see

Section5.4.4.). Sothequestionarises:is a traffic typeassociatedwith a channelor a connection?

In theAPIC context, thetraffic typeis a propertyof a channelfor transmitdata,anda connection

for receive data. Becauseof this peculiarity, we talk of low delay, paced,andbest-effort channels

for transmit, and low delay and normal delayconnections for receive.

 Receive Traffic Types

Onreceive, thetraffic type(low delayor normaldelay)is usedonly for internalqueuingin the

APIC. At placeswheresuchqueueingoccurs,low delaytraffic is alwaysgivenpriority overnormal

delaytraffic. Sincethereis very little buffering on thechip itself (a little morethan256cells),the

traffic type for receive does not play as significant a role as for transmit.

 Transmit Traffic Types

Ontransmit,oneimportantAPIC configurationparameterthataffectsthediscussionof thedif-

ferenttraffic typesis themaximumsourcing rate. Thisparameterdeterminesthemaximumrateat

whichanAPIC will sourcedata. Of course,theconfiguredvalueshouldtake into accountphysical

limitations such as the link rate and the maximum bandwidth achievable on the bus.

Low Delay

Low delayis thehighestpriority traffic typefor transmitchannels.TheAPIC will alwaysread

andtransmitdatafrom low delaychannelsin preferenceto pacedor best-effort channels.If there

aremultipleactivelow delaychannels,they will beservicedin roundrobinorder. Low delaytraffic

is transmitted at the maximum sourcing rate of the APIC.

52

Paced

Next to low delaytraffic, pacedtraffic hasthehighestpriority. As mentionedin Chapter2,data

from a pacedchannelis transmittedat a peakratethat hasbeenconfiguredfor that channel;this

pacing rate is independently specifiable for all transmit channels.

Best Effort

The lowestpriority transmittraffic type is best-effort. A best-effort channelusesup all the

remainingbandwidththatis leftoverafteraccountingfor low delayandpacedchannels.If thereare

multiplebest-effort channels,they areservicedin round-robinorder, sothey will endupsharingthe

leftover bandwidthequally. Notethattheleftover bandwidthis whatis remaininggiventhemaxi-

mumsourcingrateof theAPIC. Notethatif thereareno active low delayor pacedchannels,then

a best-effort channelbehavesalmostexactly like a low delaychannel.Thebest-effort traffic class

is work-conserving.

☞ Thefact that theAPIC sharesavailablebandwidthequallybetweenall active best-effort chan-

nelscanbeexploitedasa fair queueing(FQ) mechanism.Sincesoftwaredoesnot needto be

involved,this is a very low costsolutionto theproblemof FQ. TheidealFQ disciplineis bit-

by-bit roundrobin(alsocalledgeneralizedprocessorsharing,or GPS). Usingbest-effort chan-

nelsto implementfair queueinggivesus a nearlyoptimal fair queueingdiscipline,which we

call “cell-by-cell round-robin” (CCRR). Future versionsof the APIC could implementa

weightedversionof CCRRthat canbe usedasan implementationof weightedfair queueing

(WFQ).

5.5.5. Batching

TheAPIC hasto issuetransactionsonthePCIbuseverytimeit wantsto write or readasequen-

tial blockof datato or from externalmemory. Eachtransactionhassomeoverheadassociatedwith

it.

☞ Eachtransactionrequiresoneaddresscycle. For reads,thereis additionallya turnaroundcycle

betweentheaddresscycleandthefirst datacycle,becausethedirectionof movementof dataon

thebuschanges.Thereis usuallyadeadtick betweeneverypairof transactions.And for reads,

there may be several wait cycles during which data is being fetched from the memory.

53

Additionally, modernmemoryarchitectures(SDRAM, Rambus,Page-modeDRAM) tendto

favor largesequentialaccesses.For thesereasons,largertransactionsareusuallymoreefficientthan

smalleronesandresultin higherperformance.Thepayloadfrom a singleATM cell (48 bytes)is

toosmallto beaneffective transactionsize. For this reason,theAPIC attemptsto movebatchesof

cells to and from external memory in a single transaction.

☞ Batchingis alsousefulif theAPIC is interfacingto theserialportof aVRAM. Thesizeof the

serialaccessmemory(SAM) of a VRAM canbe aslarge as512 bytes. If a transfercycle is

requiredfor very small partial fills of the SAM, then therewill be no throughputadvantage

gained by using the serial port.

For transmitchannels,theAPIC usesaconfigurablebatch sizeparameterto determinethemax-

imum numberof cells thatcancomprisea singletransaction.Batchsizesof 1 to 8 cellsaresup-

ported. For receivechannels,thereis nobatchsizeparameter;theAPIC attemptsto createaslarge

a batch as possible from cells received on that channel.

5.5.6. Remote Control

Whenoperatingin atraditionalNIC environment,anAPIC devicedriverrunningonahostpro-

cessorcontrolstheAPIC by usingmemory-mappedI/O to reador write theAPIC’s on-chipregis-

ters.WhataboutthecasewhenanAPIC is connectedto anI/O device in a DAN environment? If

wecouldhaveaspecialcontrolprocessorassociatedwith eachdevicethatcanissueloadsandstores

to theAPIC’s registerspaceover thePCI bus,andhasaccessto theshareddatastructuresin the

APIC’s externalmemory, thenthereis no problem. However, in mostcasesdedicatinga control

processorto eachdevicein theDAN will beprohibitively expensive. Whatwewould like is for the

APIC aswell asits connecteddevice to becontrolleddirectly by thehost’s mainprocessor. The

APIC accomplishesthiskind of “remotecontrol” by definingthreespecialtypesof ATM cells:con-

trol cells, responsecells, andinterruptcells. In aDAN environment,thecontrollingprocessorwill

usuallybethehostprocessor, but theremotecontrolfeatureof theAPIC is completelygeneral:we

assumethatcontrolcellscanoriginateanywhere,includingfrom remotehostsin theATM network.

Thismeansthattheremotecontrolfeaturewouldpermitisolated“ATM devices”thataredistributed

over a wide geographicalarea(eg., surveillancecameras)to all be controlledfrom a centralized

control computer.

54

Control cellsaresentto remoteAPICsondedicatedcontrolVCs. They definethecontroloper-

ationthathasto beperformedat theremoteAPIC. How doesa controlcell targeta specificAPIC

in a daisy-chainof APICs? We usea pin-configured16-bit addresscalledtheAPIC ID to identify

thetargetAPIC for thecontroloperation.Thecontroloperationitself is encodedasareador write

operationto aninternalor externaladdress(whichis specifiedin thecontrolcell). Internalaccesses

areusedto accesstheAPIC’son-chipregisters.If aninternalaccessis specified,theAPIC internal

registercorrespondingto thespecifiedaddressis reador written. NotethattheAPIC presentsthe

sameregisteraddressspacefor bothlocal (memory-mapped)controlandremote(controlcell) con-

trol. Externalaccessesareusedto accessshareddatastructuresin the remoteAPIC’s external

memory, andto controlany devicesthatresideon theremoteAPIC’s localPCI bus. If anexternal

accessis specified,theremoteAPIC will becomebusmasteron its local PCI bus,andissuea read

or write transactionto thespecifiedaddress.This mechanismcanbeusedto programthedevice

connectedto a remoteAPIC: senda controlcell to thatAPIC commandingit to reador write to a

specified control register in the device’s memory-mapped I/O address space.

Responsecellsserveasanacknowledgementfor acontrolcell, andalsoreturnasuccess/failure

indicationandthe resultfrom thecontrol operation (if it wasa successfulreadoperation)to the

controllingprocessor. Unlikecontrolcells,responsecellsarenotsentonaspecialcontrolVC; the

cell headerusedin a responsecell is completelyspecifiedwithin the correspondingcontrol cell.

This leaves the choice of the VC for response cells entirely up to the controlling processor.

A CRCfield in controlandresponsecellsallowsfor errordetection.To ensurereliablecontrol

in thefaceof cell lossand/orcorruption,theAPIC implementsanalternatingbit protocol. This is

a stop-and-wait protocol,which meansthatonly onecontrol cell operationcanbeoutstandingat

any time,andthenext controlcell cannotbesentuntil thefirst hasbeenacknowledged. Thecon-

trolling processorcanretransmita control cell if no responseis received in sometimeoutperiod.

Thealternatingbit protocol’sonebit sequencenumberis usedto guaranteeat-mostoncesemantics,

i.e., theoperationspecifiedin thecontrolcell will neverbeperformedmorethanonce,andthecor-

rect response from the operation will always be returned.

Interrupt cellsareusedto reportasynchronousevents(interrupts)thatoccurata remoteAPIC

to thecontrollingprocessor. Thereis nospecialinterruptcell format. WhentheremoteAPIC raises

its interrupt line in responseto someevent, it canoptionally alsoresumea speciallyconfigured

55

transmitchannelcalledthe interrupt channel. Thischannelshouldbesetupby thehostasapaced

channelwith avery low pacingrate,andprimedwith somecellsthatcanhaveany formatthecon-

trolling processorwishes(they caneven containno dataat all). When the interrupt channelis

resumed,it causescells(whichwecall interruptcells)to begin beingtransmittedfrom thatchannel.

TheVC correspondingto the interruptchannelis expectedto besetupso that it terminatesat the

APIC thatis directlyconnectedto thecontrollingprocessor. Thiswill meanthattheinterruptcells

will be received by that APIC andresult in a real interruptbeingissuedto the control processor.

Thelattercanthenexaminetheinterruptcell thathasbeenreceivedto decidewhich remoteAPIC

generatedit, andtake appropriateaction. This includesacknowledgingtheinterruptandsuspend-

ing theinterruptchannelsothatno moreinterruptcellsaretransmitted.Sincewe assumethatthe

pacingratefor aninterruptchannelis setupsothatit is very low, in mostcasesonly asingleinter-

rupt cell will be transmittedin responseto which thecontrolprocessorwill suspendthe interrupt

channel.However, if for somereasonthefirst interruptcell is lost, theremoteAPIC will transmit

another. Thesecellswill continuebeingsentat thepacingrateof the interruptchannel,until the

processorreactsby issuingcontrol cells to acknowledgethe interruptandsuspendthe interrupt

channel. This guarantees that a remote interrupt will never be lost.

5.6. User-Space Control

In Chapter2, we introducedtheconceptof user-spacecontrolof a network interface.We will

now seehow theAPIC supportstheuser-spacecontrolmodel.In particular, two novel techniques

arepresentedwhichenablethisfeaturein theAPIC: ProtectedI/O andProtectedDMA. Theformer

isusedtoenableuser-spacedriverstoperform“protected”memory-mappedI/O accessestoon-chip

registers. Thelatterallows thesesamedriversto have “protected”accessto theshareddatastruc-

turesin mainmemory(i.e., theDMA channelqueues).In eithercase,thedegreeof protectionthat

is enforcedby theAPIC dependson policiesdefinedby thekerneldriver; theAPIC only provides

themechanismsneededto enforcethesepolicies. ProtectedI/O andProtectedDMA arecoveredin

the sections that follow.

5.6.1. Protected I/O

As mentionedabove,ProtectedI/O is themechanismthatenablesportionsof anAPIC’smem-

ory-mappedI/O spaceto bemadeaccessibleto untrusteduser-spacedriver code. Thedecisionof

56

which portionsof theregisterspaceshould(or shouldnot) beaccessibleto a particularuser-space

processis madeby trustedsoftware(thekerneldriver). It is importantto rememberthatprotected

I/O is only a mechanismprovidedby theAPIC; thepolicy is in thehandsof software(thekernel

driver) runningon thehostprocessor. TheProtectedI/O schemeis in many respectssimilar to the

ADC work presented in Chapter 3.

TheAPIC’smemory-mappedregistersfall into two categories:global registers, andper-chan-

nelregisters. Thesetof globalregisterscontainstatethatisof globalrelevance,suchastheinterrupt

statusregister, the softwareresetregister, etc. Thereis onesetof per-channelregistersfor each

channelsupportedby theAPIC; thesehold statethatvariesfrom channelto channel,suchasthe

channel pacing rate, the corresponding connection’s VPI and VCI, etc.

☞ Althoughwe mentionedearlierthatthereneednot bea one-to-onemappingbetweenchannels

andconnections,theProtectedI/O featureonly makessensewhenwe considerchannelsto be

boundto connections.Notethatthisappliesonly to channelsthatarecontrolledusingprotected

I/O.

Figure5.7 shows that the APIC’s memory-mappedI/O addressspaceis divided into three

regions. Oneregion is usedto accessall the global registers. The othertwo regionsareusedto

 Figure 5.7: Memory-Mapped I/O Address Space of the APIC

User Access
Per-Channel Registers

Kernel Access
Per-Channel Registers

Global Registers

Mapped into kernel’s
VA space

Page frame for each channel
mapped into VA space of
corresponding owner process
(see text and next figure)

57

accesstheper-channelregisters. Eachphysicalper-channelregisteris mappedinto bothof these

regions,andthereforecanbeaccessedby loads/storesto eitherof two addresses.Themappingof

addresses to registers is such that:

1. Eachof thethreeregionsin theAPIC’s addressspaceoccupiesanintegral numberof physical

page frames.

☞ A physical pageframeis the addressspacecorrespondingto a singlepagein the machine’s

physical addressspace:it is the granularityat which the memory-managementunit (MMU)

enforcesvirtual memory (VM) pageprotections. The pageframe size varies in different

machines, but it is always a power of 2; a typical value is 4KB.

2. In theuser-accessper-channelregisters region (seefigure),all theregisterscorrespondingto a

channelfall into thesamephysicalpageframe,andnosinglepageframecontainsregistersfor

more than one channel.

Thephysicalpageframescontainingglobal registersandkernel-accessper-channelregisters

areassumedto bemappedby thekerneldriver into thekernel’s virtual address(VA) space.This

gives the kerneldriver unrestrictedaccessto all of the APIC’s physical registers. Additionally,

whenever a userprocessis grantedthe ownership(capability)for a connection,the kerneldriver

will mapinto thatprocess’VA spacethepageframefor thecorrespondingchannelfrom theuser-

accessper-channelregistersregion. This wasillustratedin Figure3.2, which is repeatedhereas

Figure5.8for convenience.Noticethatonly theownerprocessof aconnectionwill beableto con-

trol it by modifying the correspondingregisters. The user-spacedriver accessestheseregisters

usingonly virtual memoryloadsandstores—therearenosystemcallsinvolved. A processcannot

accesstheregistersfor connections/channelsthatit doesnot own, becausethekerneldriver would

not have mappedthecorrespondingpageframesinto its VA space.Whatwe have donehereis to

overloadthesystem’s virtual memory(VM) protectionmechanismsto provide protectedaccessto

per-channel device registers.

Sinceit is possiblefor thekernelto mapin pagesfrom user-accessregionof theAPIC’saddress

space,why doweneedaseparatekernel-accessregion?Theproblemis thatbecauseeachconnec-

tion/channeloccupiesonepageframein theuseraccessregion,thekernelwouldhaveto mapin as

many pagesasthetotal numberof connections(or at least,thosethatareopen).On mostsystems,

58

thekernelpagetablecontext cannotsupportlargenumbersof pages,makingit impossibleto map

theentireuser-accessregioninto thekernel’saddressspace.Wecanexploit thefactthatmostof this

regionis sparse;theactualnumberof registersperconnection/channelis verysmall,sowecancon-

catenatetheregistersfor all theconnections/channelsinto asinglecontiguousregionof thephysical

addressspace,which canbeeasilymappedinto thekernel’s addressspace.This formsthekernel-

accessregionof theaddressspace.Notethatthekernel-accessregionisdense,while theuser-access

region is sparseto allow registersfor differentconnections/channelsto fall into differentphysical

page frames.

Theschemedescribedabovedoesnotgive thekerneldriverfinegraincontroloverwhich indi-

vidualper-channelregistersareaccessibleto theownerprocessof achannel.For example,should

a processbeallowedto changethepacingratefor a channelthat it owns? Clearly, this is a policy

decisionthatshouldbeleft to theAPIC driverprogrammer, ratherthanbeinghardwiredin thechip.

☞ Oneway to achieve this kind of fine grainaccesscontrolwould beto mapeachdevice register

into a separatepageframein theAPIC’s addressspace;thenthekerneldriver canselectively

map thesepagesinto process’addressspacesbasedon its register accesspolicies. This

approachis not feasiblewhentherearemany registersperchannel,becausethenumberof page

mappingsin eachprocess’context becomeslarge, resultingin inefficienciesfrom potentially

slowerpagetablelookupsin theMMU, andthrashingin thetranslationlookasidebuffer (TLB).

 Figure 5.8: Providing Protected Access to Registers using VM Overloading

.

.

.

.

.

.

.

.

.

Control/status
registers for
VC0 are
addressed

VA space for
process A

VA space for
process B

User-Access Per-Channel Registers
Region of physical (memory-mapped I/O)

PAGE
TABLE

MAPPINGS

VCk

through this
physical page frame

.

.

.

VCi

VCk

VCj

Process A owns and
controls VCi and VCk

Process B owns and
controls VCj

VCj

VCi

.

.

.

address space of the APIC

59

ProtectedI/O enablesfinegrainaccesscontrolto per-channelregistersby augmentingeachset

of per-channelregisterswith anAccessMaskRegister(AMR). As shown in Figure5.9,eachbit in

anAMR controlsaccessto oneotherregisterin thecorrespondingsetof per-channelregisters. If a

bit in theAMR is set,thentheAPIC will allow write accessesto thecorrespondingper-channelreg-

ister from the user-accessregion of its addressspaceto succeed;if the bit is cleared,only read

accessesarepermitted.Any accessesmadeto registersusingaddressesin thekernel-accessregion

alwayssucceed:this providesthemeansby which thekerneldriver canprogramtheAMR itself.

Sinceuserprocessescanaccessper-channelregistersonly throughthe user-accessregion of the

APIC addressspace,their accessis limited to thoseregistersthathave their correspondingbits set

in the channel’s AMR.

☞ Theschemedescribedabove canbeextendedto includetheoptionof providing no access(in

additionto read-writeandread-only)to registersby having two bits in the AMR per register

insteadof just one. However, this addedfunctionalityis not includedin thecurrentAPIC pro-

totype,becausetherewereno per-channelregistersthat(we felt) neededto becompletelyhid-

den from applications.

Notethatthefine-grainedaccessprotectionsupportedby ProtectedI/O is notavailablewith the

ADC or U-Net approaches described in Chapter 3.

 Figure 5.9: Fine Grain Access Control Using Protected I/O

1 0 0 1 0
Access

Mask
Register

01234

Register
#1

Register
#2

Register
#3

Register
#4

Kernel
Access

User
Access

R/W

R/W

R/W

R/W

R/W R/W

R/O

R/O

R/W

R/O

60

5.7. DMA Modes

TheAPIC usesDMA for all movementof transmit/receive datafrom/to externalmemory. It

alsousesDMA to read/writecontroldatastructurescalledbufferdescriptorsthatarestoredin exter-

nalmemory, andwhichareusedto implementtheFIFOqueuesof buffersneededfor scatter/gather

DMA operations.All buffer descriptorsare16 bytesin size,andcontaininformationfor a single

databuffer. This informationincludesthe physical addressof the buffer in externalmemory, its

length,andsomeflags. In addition,eachbuffer descriptoralsocontainsapointerto anotherbuffer

descriptor, which is usedto createlinkedlistsof buffer descriptors.Figure5.10showsa linkedlist

of buffer descriptors,with eachdescriptorpointingto a differentbuffer. We will henceforthrefer

to such linked lists asdescriptor chains, and to the linked list pointer in each descriptor as alink.

Descriptorchainsarebuilt by thedriver software,andareusedby theAPIC asFIFO queues

thatserve assourcesandsinksfor data. Figure5.11illustrateshow a descriptorchainis usedby

theAPIC to transmitdata. For eachsupportedDMA channel,theAPIC alwayshasoneon-chip

workingdescriptorcalledthecurrentdescriptor. Thecurrentdescriptoris visibleto thedriversoft-

warethroughAPIC device registers,andit is initialized by thedriver to bethefirst descriptorin a

chainof descriptorsfor thatchannel.Whenever thedriver hasnew bufferscontainingdatathat is

to betransmitted,it setsup a descriptorfor eachsuchbuffer andappendsthesedescriptorsto the

tail endof thedescriptorchain. TheAPIC transmitsdatafrom thebuffer pointedto by thecurrent

descriptor(i.e., thecurrentbuffer) until thereis nomoredatain thatbuffer. It thenwritesbackthe

 Figure 5.10: A Descriptor Chain

...

descriptors

buffers

link

61

currentdescriptorto externalmemory, follows the link pointer to readthe next descriptorin the

chain,andthenstartsreadingandtransmittingdatafrom thebuffer pointedto by this new current

descriptor. The driver candequeuebuffers that containdatawhich hasalreadybeentransmitted

from theheadof thedescriptorchain,andfreeor recycle themasneeded.In Figure5.11,thepor-

tion of thedescriptorchainshown to theleft of theAPIC canbethoughtof asaFIFOqueuethatis

thesourceof bufferscontainingdatato betransmitted,while thepartof thedescriptorchainto the

right of theAPIC canbethoughtof asaFIFOqueuethatis thesink for buffersthathavebeenused

up (i.e., the data has already been transmitted). This is illustrated in Figure5.12.

☞ Note thatdescriptorchainsaresimply an implementationtechniquefor achieving thedesired

FIFOqueuebehavior. OtherFIFOqueueimplementationtechniquescouldalsohavebeenused.

Onepopularalternativethatis usedin many NIC designsis to haveanarrayof descriptors,with

headandtail indicesthatwrappasttheendof thearray(i.e.,circulararrays).Oneproblemwith

this approachis that the sizeof the arrayneedsto be fixed at someconservative number. A

linked list, on the other hand, can be of variable length and can grow on demand.

 Figure 5.11: Transmitting Data Using a Descriptor Chain

 Figure 5.12: FIFO Queue Model for a Transmit Descriptor Chain

APIC

New transmit data

DoneBuffers containing

Current
descriptor

External Memory

Network

Memory image
of current
descriptor

Partially
transmitted

buffer
transmitting

External Memory

data yet to be
transmitted

buffers queued by
driver software Buffers dequeued

by driver software
and released

APIC
New transmit data
buffers queued by
driver software

Buffers dequeued
by driver
software and
released

62

In thereceivedirection,descriptorchainscanalsobeusedin muchthesamewayasin thetrans-

mit direction. Themaindifferenceis thatin placeof bufferscontainingdatato betransmitted,the

driver providestheAPIC with emptybuffersthathave to befilled with receiveddata. Thedesired

FIFOqueuemodelis shown in Figure5.13,andits implementationusingadescriptorchainis illus-

trated in Figure5.14. Note the similarities and differences between Figures5.11 and5.14.

The APIC supportsthreedifferent DMA modes:Simple DMA, Pool DMA, and Protected

DMA. We now go on to describe these three mechanisms.

5.7.1. Simple DMA

Eachchannelthat is configuredto useSimpleDMA is associatedwith a dedicatedchainof

descriptors,asshown in Figure5.15. SincetheAPIC supportsa maximumof 256channels,there

is on-chipstoragefor 256currentdescriptors,onefor eachsupportedchannel.Figure5.16shows

the FIFO queue model that is supported by simple DMA.

 Figure 5.13: FIFO Queue Model for a Receive Descriptor Chain

 Figure 5.14: Receiving Data Using a Descriptor Chain

APIC
Empty buffers
queued by
driver software

Filled Buffers
(filled with
received data)
dequeued by
driver for
processing

APIC

Empty buffers
Filled buffers

Full buffersPartially
filled
buffer

Empty buffers

Current
descriptor

External MemoryExternal Memory

Network

Memory image
of current
descriptor

dequeued by
queued by driver
software

driver for
processing

63

SimpleDMA canbeusedby kernel-resident(or trusteduser-level server) protocolimplemen-

tationsonly. Thisisbecauseif untrusteduser-levelprogramsweregivenwriteaccesstodescriptors,

they couldqueuearbitrarybuffersfrommainmemoryfor transmissionor reception(includingthose

nototherwiseaccessibleto theprocess).As mentionedearlier, theProtectedDMA modeshouldbe

used for user-space driver implementations.

TheAPIC allowsSimpleDMA to beusedin boththetransmitandreceivedirections.However,

SimpleDMA canbevery inefficient in its useof memoryresourcesif it is usedin thereceivedirec-

tion, especiallyif thenumberof openchannels(andVCs) is large. This is becauseSimpleDMA

requiresfree(or empty)buffersto bededicatedto eachopenreceivechannel.Thismeansthatfree

buffersqueuedononechannelcannotbeusedby another. Sincethereis nowayto anticipatewhen

 Figure 5.15: Illustration of Simple DMA

 Figure 5.16: FIFO Queue Model for Simple DMA

APIC
.
..

.

..

External Memory External Memory

Descriptor

Descriptor

Descriptor

.

..

chain for chan 1

chain for chan 2

chain for chan N

APIC
.
..

.

..

Buffer source
for channel 0

Buffer source
for channel 1

Buffer source
for channel N

Buffer sink
for channel 0

Buffer sink
for channel 1

Buffer sink
for channel N

64

datawill arrive on a particularchannel,theamountof buffer spaceneededfor thefreebufferscan

become very large. Pool DMA is designed to address this shortcoming of Simple DMA.

5.7.2. Pool DMA

PoolDMA allowsasetof receivechannelsto all sharethesamepoolof freebuffers,asshown

in Figure5.17. TheAPIC fetchesa new descriptorfrom a globalpool chain whenever a channel

needsanemptybuffer to storenewly arriveddata. Beforeit writes theold “full” descriptorback

however, theAPIC fills in thenext descriptorlink field in thatdescriptorwith theaddressof thenew

descriptor. Thisresultsin thedemultiplexing of full buffersinto separatechainsof descriptors,one

per channel. The FIFO queue model for Pool DMA is shown in Figure5.18.

 Figure 5.17: Illustration of Pool DMA

 Figure 5.18: FIFO Queue Model for Pool DMA

APIC
.
..

External Memory External Memory

“Full” descriptor

“Full” descriptor

“Full” descriptor

.

..

Pool Chain

chain for chan 1

chain for chan 2

chain for chan NEmpty buffers

APIC
.
..

Buffer sink
for channel 0

Buffer sink
for channel 1

Buffer sink
for channel N

Free buffer
source for
all Pool DMA
channels Pool of

free
buffers

65

☞ It is importantto keepin mindthatwhile SimpleDMA andProtectedDMA modescanbeused

for bothtransmitandreceivechannels,PoolDMA canbeusedonly by receivechannels;it does

not make sense and cannot be used for transmit channels.

Althoughweshowedonly asinglepoolchainfor illustrationpurposes,theAPIC actuallysup-

portsa totalof four (globallyshared)poolchains.For eachchannel,it is possibleto specifywhich

pool chainto use. It is alsopossibleto havedatafrom resourcemanagement(RM) andoperations

andmaintenance(OAM) cellsdepositedinto buffersdrawn from apoolchainthatis differentfrom

theoneusedfor the restof thedata. Also, aswe will seelater, it is possibleto split framesinto

header, data,andtrailerportions,andto usebuffersdrawn from differentpoolchainsfor thesethree

portions of a frame.

5.7.3. Protected DMA

Whenwedescribedtheuser-spacecontrolmodel,wementionedthatuser-spacedriversneedto

usetheProtectedDMA modesupportedby theAPIC. ProtectedDMA is in many wayssimilar to

SimpleDMA, but it enablescertainprotectionchecksto becarriedoutby theAPIC onbuffersand

descriptorsthatareenqueuedbyuntrustedcoderunningin user-space.Toenablethiskindof check-

ing, ProtectedDMA definestwo typesof descriptors:kernel descriptors and user-descriptors.

Insteadof having a singledescriptorreferencingeachbuffer, ProtectedDMA requiresa pair of

descriptorsto referto eachbuffer. Onedescriptorin thepair is akerneldescriptor, while anotheris

a userdescriptor. This is illustratedin Figure5.19. BeforetheAPIC canusea buffer from a Pro-

tectedDMA channel,it alwaysreadsbothdescriptorsfor thebuffer. Theuserdescriptorcontains

valuessuppliedby theuser-spacedriver, andthereforecannotbetrusted.Thekerneldescriptoron

theotherhandis initializedby thekerneldriverandis notaccessibleto theuser-spacedriver, sothe

valuesin akerneldescriptoraretrustworthy. TheAPIC performsits protectionchecksby compar-

ing valuesin thekerneldescriptoragainstcorrespondingvaluesin theuserdescriptor. Thekernel

descriptoris thereforeusedto certify the valuessuppliedby the user-spacedriver in the user

descriptor. Only if thisvalidationsucceedscantheAPIC safelyDMA datato or from theassociated

buffer.

It is importantto recognizethattheFIFO queuemodelimpliedby ProtectedDMA is identical

to that for SimpleDMA (seeFigure5.16). Both associatea singlededicateddescriptorchainfor

66

eachchannel.Thedifferenceis only in waytheFIFOqueuesareimplemented:in theSimpleDMA

case,thereis a singledescriptorperbuffer andno protectionchecksmadeby theAPIC, while for

Protected DMA there is a pair of descriptors for each buffer, and implied protection checks.

To useProtectedDMA, the user-spacedriver is requiredto allocatespecialcommunication

buffers(usingmalloc or asimilarutility), to wire thesein memory(usingasystemcall likeBSD

mlock), andto makeasystemcall to thekerneldriverto associatedescriptorpair(s)with thebuffer

and initialize the kerneldescriptor(s). Theseareall assumedto be control pathoperations,and

shouldnot needto bedonevery frequently. In fact, in mostcasesit maybesufficient to perform

theseactionsfor asetof communicationbuffersjustoncewhentheprogramis started.Notethata

singlecommunicationbuffer mayspanmultiplenon-contiguousphysicalmemorypages,soit may

be necessaryto associatemultiple descriptorpairswith the buffer (onepair for eachpagein the

buffer).

Oncetheafore-mentionedcontrolpathoperationsarecompleted,theuser-spacedriver is free

to createchainsof descriptorpairspointing to the communicationbuffers by modifying fields in

userdescriptorsonly. It canenqueueportionsof thesebuffers in any desiredorderonto thepro-

tectedDMA channel’sdescriptorchain. No systemcallsareneededfor thesedatapathoperations.

Theprotectionchecksperformedby theAPIC ensurethataccessesto illegal descriptorsor buffers

will be rejected. For each descriptor pair that is read by the APIC, two types of checks are made:

 Figure 5.19: Illustration of Protected DMA

APIC
.
..

.

..

External Memory External Memory

Descriptor

Descriptor

chain for chan 1

chain for chan N

User
Descriptor

Kernel
Descriptor

67

1. Buffer Notarization: Kernel descriptorsare initialized by the kernel to contain the actual

physicaladdressof thebuffer they reference,andits length(seeFigure5.20(a)).Userdescrip-

tors areinterpretedby the APIC to containan offset into the buffer, anda length. Thus,the

applicationis allowed to queuesubsetsof communicationbuffers. The APIC certifiesthe

validity of a buffer by ensuringthat the sum of the offset and length specifiedin the user

descriptoris nogreaterthanthelengthspecifiedin thekerneldescriptor. Wecall thischecking

processbuffer notarization.

2. Link Notarization: Although buffer notarizationis sufficient to ensurethat a userprocess

never queuesan illegal buffer, it cannotguaranteethat the user will not queuean illegal

descriptor. To getaroundthis, theAPIC hasto subjectthenext descriptorlink in userdescrip-

torsto anothercheckwhichwecall link notarization. Figure5.20(b)showshow link notariza-

tion works. Every protectedDMA channelis allocateda dedicatedset of 2·n contiguous

physicalmemorypagesthatwill beusedto hold userandkerneldescriptorsfor thatchannel.

The valueof n is fixed, and is configuredinto the operatingsystemkernelat compile time.

Thefirst n pagescontainonly kerneldescriptors,andwill bereferredto asthekerneldescrip-

tor pool. Likewise,thelastn pagescontainonly userdescriptors,andwill bereferredto asthe

userdescriptorpool. Pairsof userandkerneldescriptorsarealwaysallocatedsuchthatboth

descriptorsare locatedat the sameoffset relative to the start of their respective descriptor

pools. All thepagesin theuserdescriptorpoolaremappedwith read/writepermissioninto the

process’virtual addressspace,while thepagesin thekerneldescriptorpool areaccessibleto

 Figure 5.20: Notarization for Protected DMA

Kernel
Descriptor

User
Descriptor

Buffer

Descriptor
Pool Base

Descriptor
Separation

Descriptor
Separation

Kernel Descriptor Pool)

User Descriptor Pool

Offset

(a) Buffer Notarization

(b) Link Notarization

= n· pagesize

= n· pagesize

(no access by user)

(R/W by user)

Descriptor
Separation

68

thekernelonly. TheAPIC per-connectionstateincludesa pointerto thedescriptorpool base

of theprocesswhichownstheconnection.Thisallowsuserprocessesto beableto useoffsets

within thedescriptorpool to referencedescriptors,ratherthanphysicalmemoryaddresses.It

alsomakesthe job of link notarizationeasyfor theAPIC. As shown by thedottedarrows in

thefigure, theAPIC alwaysreadsthekerneldescriptorfor a buffer beforereadingthecorre-

spondinguserdescriptor. Kerneldescriptorsalwayscontainthe relative offset of the corre-

spondinguserdescriptor(this descriptorseparation is alwaysn·pagesize); theAPIC usesthis

to determinethe addressof the userdescriptor. Userdescriptorsspecifythe link to the next

descriptorasanoffset into the descriptorpagepool. In orderto notarizethis link, the APIC

hasto ensurethatthenext kernel(user)descriptorfalls within thecorrespondingkernel(user)

descriptorpool. It doesthis by makingsurethat theoffsetspecifiedin theuserdescriptoris

no larger than the descriptor separation specified in the corresponding kernel descriptor.

If a descriptorpair fails eithernotarizationcheck,thecorrespondingconnectionis suspended

andtheAPIC issuesanexceptioninterruptto theprocessor;thekernelcanthentakewhateveraction

it deemsfit. If adescriptorpairpassesnotarization,theAPIC createsanew resultantdescriptorby

combiningvaluesfromthetwodescriptors(in theexpectedmanner),andusesthisresultantdescrip-

tor is thenjust likeanormal(simpleDMA) descriptor. WhentheAPIC is donetransmittingor fill-

ing the buffer, it writes backthe resultantdescriptorto the locationof the userdescriptor. This

allows the userprocessto be able to examinethe statusof the buffer/connection. The kernel

descriptoris only readandneverwritten,sincethekernelis notresponsiblefor keepingtrackof the

state of the connection.

Thus,with two simple inequalitychecks,the APIC ensuresthat no illegal buffers or buffer

descriptorscanbequeuedby auserprocess.Onceaprocesshasqueuedabuffer, it caninform the

APIC thatthishasbeendoneby issuingachannelattentioncommandto theAPIC (usingprotected

I/O), thuscompletelyremoving thekernelandsystemcalls from thecritical datapath. Protected

DMA canthereforebeusedby untrusteduser-spacelibrary protocolimplementations,with thecon-

fidencethat thesecurityandprotectionmechanismsof theoperatingsystemwill not becompro-

mised.

Note that protectedDMA requiresdatabuffer pagesprivateto an applicationto be wired in

memory. While this is routinely done for kernel buffers, it can result in significantly poorer

69

utilizationof memoryresourcesif many userprocesseslock down largepoolsof physicalmemory

for their own exclusive use.This is oneof thedrawbacksof usingtheprotectedDMA schemefor

achieving zero-copy semantics.We now describean alternateschemecalled “packet splitting”

which doesnot have this limitation, but canstill supportzero-copy semantics;however, this alter-

nateschemerequiresa kernelimplementationanddoesnot allow for directcontrolof theadapter

from user-space.

5.7.4. Packet Splitting

For AAL-5 receivechannels,theAPIC includessupportfor anovel featurecalledpacketsplit-

ting. As we shallsee,this featureis usefulin implementingzero-copy protocolstacks,andin dis-

trbuted shared memory (DSM) implementations.

In normaloperation(packet splitting turnedoff), the APIC completelyfills buffers with data

receivedon a channelbeforegettinga new buffer from thedescriptorchain. Theonly exceptions

to this arewhentheendof anAAL-5 frameis reached,or whenthe typeof datareceivedon the

channelchanges(for example,if anOAM or RM cell is received). In thesetwo cases,theAPIC

switchesto a new buffer early, regardlessof whetherthecurrentbuffer hasbeencompletelyfilled

or not. Notethatthenew buffer maybedrawn from thechannel’sdedicatedchainif SimpleDMA

or ProtectedDMA is beingused,andfrom oneof thesharedpoolchainsif PoolDMA is beingused.

Also notethatanAAL-5 framecanspanmultiple buffers,but a singlebuffer cannotcontaindata

from two or more frames.

 Figure 5.21: Pool DMA with Packet Splitting

APIC

.

..

Header Chain

Data Chain

Trailer Chain

H
D

TH
D

T

H
D

TH
D

packetpacket

packet

Chain for
Channel 0

Chain for
Channel N

.

..

70

Whenpacketsplittingis enabledonachannel,theAPIC will split areceivedAAL-5 frameinto

aheaderportion,adataportion,andatrailerportion,andwrite theseportionsinto differentbuffers.

In otherwords,themomenttheAPIC detectsa header-databoundaryor a data-trailerboundaryin

a receivedframe,it will switchto a new buffer. In thecaseof SimpleDMA andProtectedDMA,

(asalways)thisnew buffer is drawn from thechannel’sdedicateddescriptorchain. For PoolDMA

however, thesharedpool chainthat is to beusedfor eachportionof thepacket canbeseparately

configured.Thus,for example,we couldhave all packet headersandtrailersfrom arriving frames

beingdepositedin buffersdrawn from poolchain0,while thedataportionsof theframesaredepos-

itedin buffersdrawn from poolchain1. In themostgeneralcase,wecouldusecompletelydifferent

poolchainsfor headers,data,andtrailers. This is illustratedin Figure5.21,wherewehavechosen

to nametheseparatepool chainsbasedon thepartsof arrvingframesthatwill bedepositedin the

corresponding buffers; thus, we have a header chain, a data chain, and a trailer chain.

How do we definetheheader, data,andtrailer portionsof anAAL-5 frame? In otherwords,

how doestheAPIC detectheader-dataanddata-trailerboundariesin anAAL-5 frame? First, we

assumethat the only trailer informationin a frameis the AAL-5 trailer itself. Sincethe AAL-5

trailer containsa lengthfield, that canbe usedto find the locationof the data-trailersplit. We

assumethat the headercontainsall protocol headerinformation: this includesthe network and

transportlayerheaders.TheAPIC cannotautomaticallyfind thelocationof theheader-datasplit,

 Figure 5.22: Zero-Copy Using Packet Splitting and Page Remapping

.

.

.

.

.

.

Data 1

Data 3

Data 2

H
1

H
3

H
2

Physical Memory

.

.

.

.

.

.

Data 1

Data 3

Data 2

Application’s Virtual
Address Space

Application
Buffer

Page table mappings

Header
buffers

Data
Pages

(APIC’s External Memory)

71

soaheaderlengthvalueneedsto beconfigured.Thisvaluecanbeindependentlyspecifiedfor each

channel, which means that the header length needs to be fixed for the lifetime of a connection.

☞ Evenwith variablelengthheaders(eg.,TCP/IP),theheaderlengthdoesnotusuallychangedur-

ing a connection’s lifetime. Theheaderlengthcaneitherbenegotiatedduringtheconnection

setupphase,or thevaluefrom thefirst datapacket canbeusedif we assumethat theprotocol

softwareis written in suchawaythatit canrecover in casetheheaderlengthsuddenlychanges.

Whenusedwith PoolDMA, packet splitting providesa powerful techniquefor implementing

zero-copy protocolstacks,andfor efficient implementationsof distributedsharedmemory(DSM).

Figure5.22demonstrateshow PoolDMA with packetsplittingcanbeusedin conjunctionwith the

host’s virtual memorypagemappinghardwareto implementa zero-copy kernel-residentprotocol

stack. Wemake theassumptionthattheprotocolwill usepacketsthatcarryenoughdatato fill one

(or anintegralmultiple)of thereceiving host’spages.Thiscanbeaparameternegotiatedat trans-

portprotocolconnectionsetuptime. Theleft partof thefigureshowsphysicalmemoryinto which

theAPIC DMAs receiveddata. Framesreceivedby theAPIC aresplit into headers,data,andtrail-

ers:theheadersandtrailerscanbewritten into smallbuffersdrawn from onepoolchain,while the

datacanbedepositedinto emptypagesthataredrawn from a differentpool chain. Sincethedata

partof thepacketsareassumedto bea multiple of thereceiving host’s pagesize,eachframewill

fill oneor morepagescompletelywith receiveddata;nopagewill beleft partiallyfilled. As packets

arereceived,theappropriatetransportprotocolcanexaminetheheaderbuffersandusethesequence

numberinformation containedthereinto determinewherethe correspondingdatapagesshould

residein theapplication’s virtual addressspace.Theseprotocolscanthenproceedto modify the

virtual memorypagetableentriesappropriately, so that the pagescontainingreceived datanow

appearcontiguousin the application’s addressspace,even thoughthey may be discontiguousin

physicalmemory. This avoids theneedfor copying datainto theuser’s buffer. It is importantto

notethatthis schemeworksevenin thepresenceof network errorsor loss:asandwhena retrans-

mittedpacket is receivedcorrectly, its correspondingdatapagescanbemappedinto theapplica-

tion’s VA spaceat the appropriatelocation,therebyfilling up any holesin the sequencenumber

space that were caused because of lost packets.

72

☞ Thecostof modifyingpagestablescanbequitehigh in somearchitectures.Thisoverheadcan

usuallybeminimizedby processingpacketsin batches,therebyavoiding theneedto flushthe

TLB for every packet. This is known aslazy updating of page tables.

Above,we describedtheoperationof a zero-copy protocolstackonly in thereceive direction.

This is becausezero-copy onthetransmitsideis trivially achievedby directlyqueueingapplication

buffers, interspersedwith kernelbufferscontainingheadersandtrailers,to theAPIC on a Simple

DMA channel.No pageremappingis necessary, but it is importantto wire theapplicationbuffer

pages in main memory before they can be queued for transmission.

5.8. Interrupt Mechanisms

Interruptsareissuedby theAPIC to reporttheoccurenceof asynchronousevents,suchascom-

pletion of transmissionandreceptionof a frame,or an error condition.The APIC includesthree

differentmechanismsthataredesignedto improve interruptresponseby reducingthefrequency of

interrupts,andtheoverheadsassociatedwith servicinganinterrupt.In particular, InterruptDemul-

tiplexing, describedbelow, canbeusedto addressthereceive livelockproblemthatplaguesmost

high performance network interfaces.

5.8.1. Interrupt Demultiplexing

Becauseof thehighoverheadassociatedwith servicinganinterrupt,it is importantto minimize

thefrequency atwhichinterruptsareissuedto theprocessor. Therearethreemaincomponentscon-

tributing to this overhead:the time taken by the kernel to field the interruptandcall the device

driver’s interruptserviceroutine(ISR), the time takento processthe interruptin the ISR, andthe

indirect performancehit that resultsfrom cacheddata belongingto the current context being

replacedin cacheby new dataasa resultof servicingtheinterrupt.As mentionedin Chapter3, the

researchcommunity’sefforts to reduceinterruptoverheadhavebeentargetedatachieving batching

of multipleeventnotificationsintoasingleinterrupt,therebyamortizingthecostof aninterruptover

many differentevents.Sucheventbatchingmechanismswork well for highbandwidthapplications,

whichareusuallynotverysensitiveto delay. For delay-sensitiveapplicationshowever, suchmech-

anismscanaddsignificantly to end-to-endlatency, becauseblind batchingof eventsnecessarily

makessomeeventswait longerbeforethey arereportedto theprocessor, evenif thoseeventshave

73

agreaterurgency thanotherpendingevents.Thiscanprovetobeaproblemin amixedenvironment

where both high-bandwidth and latency-sensitive applications have to coexist.

TheAPIC incorporatesamechanismcalledinterruptdemultiplexing, whichattemptsto satisfy

the conflicting requirementsof both bandwidth-intensive and delay-sensitive applications,by

adoptingdifferenteventbatchingpoliciesfor differentconnections.Thus,thedrivercanchooseto

batcheventsfor high bandwidthapplications,but avoid batchingand immediatelydeliver event

notifications for latency-sensitive applications.

In theAPIC, interruptdemultiplexing is implementedby includingaone-bitflagin thestatefor

everychannel.Thisbit flagservesasachannel-specificinterruptenable: only if it is setwill inter-

ruptsbe issuedin responseto packet arrival (or completionof packet transmission)on thecorre-

spondingchannel.Theflag is initially setby thedriver. Whenaninterruptis issuedin responseto

aneventon thatchannel,theAPIC automaticallydisablesmoreinterruptsfrom occuringfor that

channelby clearingthebit, which remainscleareduntil thedriversetsit againatsomefuturetime.

Thedriver would usuallynot re-enableinterruptsfor thatchanneluntil it hasfinishedcompletely

processingall pendingpacketsfor thechannel.In themeantimehowever, it mayfield interruptsfor

moreurgentevents,suchaspacket arrivalson latency-sensitive channels,impendingunderflow of

a receive descriptor chain, or an error event.

If thefrequency of interruptsis toohigh, thenregardlessof how efficiently wecanbatchinter-

ruptevents,theCPUwill spendall its timeservicinginterrupts.Thishappensbecausewith theway

operatingsystemsandprotocolstacksarecurrentlystructured,interruptprocessinghasahigherpri-

ority thaneitherprotocolprocessingor applicationprocessing.Thus,all of theprocessingpower

wouldbeusedonly for driverprocessingandinterruptoverhead,andtheprotocolsandapplications

would never getanopportunityto consumethereceiveddata.As describedin Chapter2, this con-

dition is called receive livelock.

The interruptdemultiplexing featurecanbe usedto delay the onsetof livelock by a simple

restructuringof theprotocolstackarchitecturein BSD-like operatingsystemarchitectures.This is

illustratedin Figure5.23.Part(a)of thefigureshowsthetraditionalwayin whichinterruptsarehan-

dled:whenpacketsarereceivedon theinterface,theinterruptserviceroutine(ISR) is only respon-

sible for taking thepacket off thedevice’s receive queueandplacingit on a protocolinput queue

74

(e.g.,theIP inputqueuefor internetpackets);beforetheISRreturns,it acknowledgesthehardware

interrupt,andschedulesa software interruptwhich will run at a later point in time, andwill be

responsiblefor performingprotocolprocessingon thepacketandfor deliveringit into theapplica-

tion’ssocketbuffer. Becausethesoftwareinterruptrunsatalowerpriority andcanthereforebepre-

emptedby a hardwareinterrups,we canhave a conditionof receive livelock whereif the rateof

packet arrivals is high enough,mostof thetime is spentin thehardwareinterruptserviceroutine,

andthesoftwareinterrupt(andalsotheapplicationitself) doesnotgetanopportunityto doprotocol

processing on the received packets.

Part (b) of theFigure5.23shows how a simplerestructuringof thedriver, in conjunctionwith

interruptdemultiplexing, canhelp with this situation.The ISR, insteadof taking packetsoff the

hardware receive queue,simply schedulesa software interrupt,acknowledgesthe interrupt,and

returns.Recallthatwith interruptdemultiplexing, theAPIC automaticallydisablesfutureinterrupts

from thechannelon which thepacket wasreceived.Thesoftwareinterruptis now responsiblefor

pulling packetsoff thedevicereceivequeue,anddirectlymakinganupcallto theappropriateupper

layerprotocolto performprotocolprocessinganddeliver thepacket to thesocket layer. Thesoft-

wareinterruptcanrepeatthis procedurefor all pendingpacketsreceivedfrom thatchannel,before

it re-enablesinterruptson thatchannel.Noticethatbecauseof interruptdemultiplexing, thedriver

cancontinueto receive interruptson otherunrelatedchannelswhich mayrequiremoreurgentser-

vice. This kind of structuringhasthe desirableeffect that, even with a very high rateof packet

arrival, theprocessorgetsanopportunityto do protocolprocessingof all receivedpackets.This is

becauseprotocolanddriver processingnow occurat the samepriority, andfuture interruptsare

 Figure 5.23: A Different Way of Structuring a NIC Dri ver

NIC Driver

softintr
fielding

code

ipintr()

IPq

ISR() hardintr
fielding

code
interrupt

NIC Driver
softintr
fielding

code

ipintr()

ISR()
hardintr
fielding

code
interrupt

(a) Traditional Model (b) New Approach

75

lockedout (for thesamechannel)while theprotocolprocessingis takingplace.Thus,a lot more

usefulwork is gettingdonethanin thetraditionalarchitecturewhereonly the ISR wasgettingan

opportunity to run.

It is importantto notethat theschemedescribedcannotprevent livelock,only delayits onset.

This is becausealthoughtheprotocolprocessinganddriver interrupthandlingarenow occuringat

thesamepriority, theapplicationis still ata lowerpriority. Thus,with ahighenoughrateof arrival

of packets,theapplicationwill notgetachanceto consumethereceiveddata,resultingin livelock.

It is also important to note that this schemecan only work if the device doesnot have scarce

resourcesthatcanrundry while waiting for higherlayer(protocol)processingto occur. In thecon-

text of theAPIC, this is truebecauseanAPIC NIC doesnothaveany on-boardmemorythatcanbe

quicklydepletedwith rapidlyarrivingpackets.Thiscouldbeusedasanargumentfor usingthemain

memory for all of the device’s queues.

At thispoint, it shouldbeclearthattherealsolutionto solvingthelivelockproblemis to make

everything(driverprocessing,protocolprocessing,andapplicationprocessing)in thedatapathhap-

penat thesamepriority, therebyremoving thepossibilityof onetypeof processingfrom locking

outanother. With conventionalprotocolstackstructuring,this is notpossible.However, if webring

theuser-spacecontrolmodelinto thepicture,we have a completesolution.Becausein thatmodel

thedriver, protocols,andapplicationall run in userspacefor datapathprocessing,they all havethe

samepriority, which is determinedby theoperatingsystem’s scheduler. Thus,thereis no potential

for any onetypeof processingto consumeall CPUresources.Notehowever that this approachis

practicalonly whenusedtogetherwith interruptdemultiplexing. Otherwise,oneapplicationdis-

ablinginterruptswouldresultin interruptsbeingdisabledfor all otherapplications,effectively lock-

ing those applications out of using the network interface.

Wenow describehow weenvisionacompletesolutionto theproblemof receivelivelockwould

work in thecontext of theAPIC. Thedriver’s hardwareinterruptserviceroutinewould have only

onetask:discover which channeltheinterrupteventis for by queryingtheAPIC (usingthenotifi-

cationlist mechanismdescribedbelow in Section5.8.3.),find theapplicationprocessresponsible

for thatchannel,andwakeup theprocessif it is currentlysleeping.Theapplicationprocessimple-

mentstheuser-spacecontrolmodel,usingProtectedDMA to directlymovepacketsto andfrom the

network; it is assumedto be in a continuousloop pulling packetsoff the network interface,and

76

doingprotocolandapplicationprocessingonthosepackets.As partof this loopit mayalsobetalk-

ing to otherdevices,sendingandreceiving data.If theprocessrunsout of work to do, it enables

interruptsfor thechannelby usingprotectedI/O to write to anAPIC on-chipregister, andthengoes

to sleepwaitingonaneventonaspecialfile descriptorthatrefersto theappropriatereceivechannel

on theAPIC. If multipledevicesor channelsareinvolved,theprocesscouldwait onaneventfrom

any of themby doingaselectsystemcall on thesetof file descriptorsreferringto thosedevicesor

channels.Becauseinterruptshavebeenenabled,arrival of new dataonachannelwill causeaninter-

rupt thatwill resultin theprocessgettingwokenup.And becauseof thewayinterruptdemultiplex-

ing works,all futureinterruptswill have beendisabledon thatchanneluntil theprocessdecidesto

re-enablethembeforeit goesto sleepagain in the future.Note thatbecauseof interruptdemulti-

plexing, a processservicinga latency sensitive applicationwill get woken up andnotified of an

eventon thecorrespondingchanneleven if a bandwidth-intensive applicationcurrentlyhasinter-

ruptsdisabledfor its channel.Also notethattheCPUschedulernow hasfull controloverhow pro-

cessingresourcesare handedout to different applications,becauseall types of processingis

occuringin the context of the correspondinguserprocess.And, of course,interrupt livelock is

impossible because there everything runs at the same priority within a user process.

5.8.2. Orchestrated Interrupts

The APIC alsosupportsthe conceptof orchestratedinterrupts, which areinterruptsthat are

issuedin responseto anevent that is expectedandto which theprocessorassignsspecialsignifi-

cance.In theAPIC context, thismanifestsitself asinterruptsthatwouldbeissuedwhentheAPIC

readsin aspeciallymarkeddescriptor(i.e.,abit flagis setin thedescriptor).Thiscanbeveryuseful

in two situations.First, in thetransmitdirection,it canbeusedto signalaninterruptuponcomple-

tion of transmissionof a batchof packets:the lastdescriptorcorrespondingto the lastpacket that

hasbeenqueuedfor transmissionwouldbemarkedsothattheAPIC interruptswhenit reachesthat

descriptor. Second,in thereceive direction,orchestratedinterruptscanbeusedto notify thepro-

cessorwhena descriptorchainunderflow is imminent. For example,with PoolDMA, thedriver

canarrangefor theAPIC to issueaninterruptwhenit is closeto runningoutof freebuffersfrom a

pool chain:this is signalledby a descriptorthat is closeto theendof thepool chain,andhasbeen

speciallymarkedby thedrivertocausetheinterrupt.TheISRwouldrecognizethistypeof interrupt

77

andtakeappropriateaction,which in thiscasewould involve replenishingthepoolchainwith new

free buffers.

5.8.3. Notification Lists

While interruptdemultiplexing andorchestratedinterruptsserve to reducethe frequency of

interrupts,they donothaveany effecton thetime takento actuallyserviceaninterrupt. TheAPIC

includesaneventreportingmechanismcallednotificationlists to addressthis issue.Oneof thepri-

marytasksof theISR is to discover activity on variouschannels,andtake appropriateaction. For

a latency-sensitive application,this mayinvolve immediatelyprocessingdatathathasarrivedon a

channel,while for a high bandwidthapplication,thecorrectactionwould probablybeto postpone

processingdatafrom thechannelto asoftwareinterrupt. For aprotectedDMA channel,it maybe

necessaryto wake up thecorrespondinguserprocessif it is sleepingawaiting anevent (eg., data

arrival) on thechannel. Clearly, it is importantfor thedriver to beableto quickly discover what

kindsof interrupteventshave occured,andthechannelsthatcausedthoseeventsto occur. It is a

highoverheadpropositionto poll everychannel’sregistersto discoveractivity onthechannelseach

timeaninterruptis serviced.To avoid this,theAPIC keepstrackof thesetof all channelsthathave

hadoccurencesof interrupt-relatedevents(we call suchchannelsactivechannels), andmakesthis

setavailableto thecontrollingprocessorin theform of alist calledthenotificationlist. Everyentry

in thenotificationlist containsthechannelID of anactivechannel,andabit vectorof thedifferent

kindsof eventsthathaveoccuredonthatchannel.Thedriveraccessesthislist by repeatedlyreading

aspecialAPIC deviceregistercalledthenotificationregister. Eachtimethis registeris read,anew

entryfrom thenotificationlist is returned,andthatentryis deletedfrom thelist. Whenthereareno

more entries on the list, a value of zero is returned.

5.9. Miscellaneous Features

5.9.1. TCP Checksum Assist

As mentionedearlier, theAPIC provideshardwareassistanceto thesoftwarefor computingthe

TCPchecksumfor AAL-5 receivechannels.RecallthatbecausetheAPIC is acut-throughadapter,

it is not possibleto provide TCPchecksumassistin thetransmitdirection(becausethechecksum

field residesin the TCP header);however, on transmitthe checksumcomputationcaneasilybe

rolled into the application-to-kernel copy loop.

78

How cantheAPIC computetheTCPchecksum,giventhat it hasno knowledgeof TCPor IP

packet formats? In otherwords,how canit know which partsof anAAL-5 framecorrespondto a

TCPpacket? Theanswerto thisquestionis thattheAPIC only providesassistanceto thesoftware

in computingtheTCPchecksum;it doesn’t calculatethechecksumitself. This assistanceis pro-

videdin theform of achecksumvaluethathasbeencomputedusingtheTCPchecksumalgorithm

overentireAAL-5 frames,ratherthanjust theportionof theframescorrespondingto TCPpackets.

Thisvalueis madeavailableto thesoftwareby writing it into thelastdescriptorfor theframe. The

software is then responsiblefor using this value to computethe actualTCP checksumover the

packet. This is accomplishedby computingthechecksumover portionsof the framethatarenot

partof theTCPpacket,and“subtracting”theresultfrom thechecksumvalueover theentireframe

(whichhasbeencomputedin hardwareby theAPIC). Notethatthis“subtraction”operationis pos-

siblebecausetheTCPchecksumoperationis bothcommutative andassociative. Sincethepartof

anAAL-5 framethatis notpartof thecorrespondingTCPpacket is usuallyquitesmall(comprising

theAAL-5 trailer, somepaddingbytes,someIP headerfields,andpossiblyanLLC/SNAP header)

relative to thesizeof theTCPpacket, theoverheadof verifying thechecksumin softwareis small

compared to an all-software implementation of the TCP checksum.

5.9.2. Flow Control

In local anddesk-areanetwork environments,theAPIC canoperatein a practicallyloss-free

mannerthroughtheuseof oneorbothof two featuredflow controlmechanisms.Thesemechanisms

areresponsiblefor deassertinga flow control grant to upstreamdevicesconnectedto both ATM

ports,if theAPIC findsthatits on-chipcell storememoryis closeto full (theoccupancy threshold

is a configurableparametercalledtheflow threshold). An upstreamdevice maychooseto ignore

theflow controlsignal,andcontinuesendingcells(asit wouldif it wereanATM switch). However,

if theupstreamdevice is alsoanAPIC chip (i.e., we areoperatingin a daisychainenvironment),

thenit wouldrespondto theflow controlgrantbeingdeassertedby stoppingfurthertransmissionof

cellsonthelink. TheAPIC implementstwo kindsof flow control:ahardware-level flow controlas

definedby the UTOPIA specification,anda genericflow control (GFC) that works at the ATM

layer.

79

 UTOPIA Flow Control

TheUTOPIA specificationincludesaspecialsignalwire thatcanbeusedto assertflow control.

Thiskind of flow controlonly worksif theupstreamdevice is connectedto theAPIC directlyover

UTOPIA. It cannotbe usedif there is an optical fiber connectionbetweenthe APIC and its

upstreamdevice. Therefore,thehardwareUTOPIA flow control featureis usefulonly in the fol-

lowing scenarios:

1. Whenthedownstreamdevice is anoff-the-shelfoptical link interfacechip thatusestheUTO-

PIA flow control signal to tell its upstream device (the APIC) to stop sending more data.

2. Whenmultiple APICsareconnectedtogetheron thesameboard,or by ribboncable,without

any intervening optical fiber.

 Generic Flow Control (GFC)

Whentwo APIC chipsareconnectedby optical fiber carryingonly ATM cells, the UTOPIA

flow control mechanismcannotbe usedbecausethe correspondingUTOPIA grantsignal is not

propagatedover opticalfiber. To addressthis problem,theAPIC includesa secondmechanismto

assertflow controlgrantsto anupstreamAPIC, which doesnot make useof any specialhardware

signal. This mechanism,which we call GenericFlow Control (GFC), hasto bespeciallyenabled

by aconfigurationpin onthechip. WhenGFCis enabled,theAPIC includesabit in theGFCfield

of every cell sentto theupstreamAPIC which signalsto thatAPIC whethertheflow controlgrant

(for thecorrespondingdownstreamlink) is assertedor not. If thereareno cells to besentto the

upstreamAPIC, the APIC sendscells anyway on a specially designatedflow control VC; the

upstreamAPIC knowsto extracttheflow controlbit from cellsreceivedonthisVC andthendiscard

thesecells. NotethattheGFCfeaturedependson thefactthatATM links usuallycomein pairsto

supportbidirectionaldatatransfer:therefore,cells going in onedirectioncancarry flow control

information for cells flowing in the opposite direction.

5.9.3. Cache Coherent Bus Transfers

TheAPIC interfacesto thesystemprocessorover a PCI bus.All DMA transfersbetweenthe

APIC andthesystem’s mainmemoryusuallyoccurthrougha bridgechipsetwhich is responsible

for switchingdatabetweenprocessors,memory, anddeviceson thePCI bus.Sincetheprocessor

80

cacheswork in cache-linesizedblocksof data,thebridgemustbeableto handlepartialreadsand

writes to cache-lines,while ensuringconsistency of cacheswith contentsin memory. For DMA

transfersto andfrom memory, theAPIC implementstwo specialPCIbustransactiontypesthatare

intended to improve efficiency of large transfers of bulk data:

Memory ReadMultiple: Undernormalcircumstances,if aPCIdevicewantsto readdatafrom

amemorylocation,it wouldneedto issueavanilla“MemoryRead” command.However, many

bridgechipsetsaredesignedto achievemaximumperformancefor largesequentialtransfersif

they areallowedtoprefetchoneormorecache-lines,theintentbeingtokeeptheirinternalpipe-

line buffersfull. TheAPIC usesaspecialPCItransaction,“MemoryReadMultiple,” whichpro-

videsahint to thebridgethattheAPIC intendsto fetchmorethanonecache-lineworthof data,

andthereforeit is acceptableto do read-aheadof cachelines for improvedperformance.The

APIC usesthis specialtransactioneven if it doesnot intendto transfera lot of data;this may

have the effect of making some smaller transactions less efficient.

Memory Write Invalidate: Undernormalcircumstances,if a PCI device wantsto write data

to amemorylocation,it wouldneedto issuea“MemoryWrite” command.If theword(s)being

written to arepartof a cache-linethatis currentlylocatedin theprocessor’s write-backcache,

andif that cache-lineis marked asdirty (i.e., it hasbeenmodifiedby the processor),thenin

orderto maintaincachecoherency thebridgechipsetwould needto readthecache-linefrom

the processorcache(while simultaneouslyinvalidating it), make changesto the appropriate

word(s)beingmodifiedby thedevice, andthenwrite thecache-linebackto memory. If how-

ever, thebridgeknew thattheentirecache-linewasgoingto bewritten to by thedevice,thenit

couldsimply invalidatethecorrespondingprocessorcacheentryandwrite thenew cache-line

contentsdirectly to memory. The APIC breaksall writes over the bus into an initial portion

whichis partof acacheline, followedby oneor morecompletecachelines,followedby afinal

portionwhichagainis only partof acacheline.For theinitial andfinal part-cacheline transfers,

theAPIC usesthenormalMemoryWrite transactiontype.However, for thepart in themiddle

whichconsistsof wholecache-lines,theAPICusesaspecialPCItransactiontypecalled“Mem-

ory Write Invalidate,” which allows thebridgechipsetto carryout theoptimizationdescribed

above.Useof MemoryWriteInvalidatetransactionscansignificantlyimproveburstwritespeed

over the PCI bus for most types of bridge chipsets.

81

Chapter 6

Inter nal Design of the APIC Chip

Thischapterdescribesthefunctioningof theinternalsof theAPIC.A functionalblockdiagram

of the chip is shown in Figure6.1. Pathstaken by datathroughthe chip areshown usingheavy

arrows, while control pathsareshown usingthin arrows. Several control pathsthroughthe chip

havebeenomittedfrom thefigurefor clarity — they will beintroducedasnecessaryin theprocess

of describing the operation of the chip.

Beforewe describetheoperationof eachmodulein thechip, identify thetwo input UTOPIA

ATM portson thetop left cornerof thefigure,thetwo outputUTOPIA ATM portson thetop right

corner, andthePCIbusportat thebottomof thefigure. Along with a few configurationpins,these

portsrepresentall of thesignalpinspresentedby thechipto theoutsideworld. Wenumberthetwo

ATM portsasport 0 andport 1, andthebidirectionalbusportasport 2. Takentogether, inputport 0

andoutputport 0 compriseonebidirectionalATM port pair, while input port 1 andoutputport 1

compriseanother. In a daisy-chainedDAN interconnect,eachport pair is connectedto another

APIC, or to an optical link interface device.

☞ It is possiblefor inputport0 andoutputport0 to connectto differentdevices(andsimilarly for

inputport1 andoutputport1). An exampleis theperfectshuffle topologyshown in Figure5.3.

Oneof therepercussionsof doingthis is thattheGFCflow controlfeatureof theAPIC canno

longerbe used,sincethat featureassumesa bidirectionalATM link betweenpairsof APICs.

Anothersideeffectrelatesto theroutingof cellsonthetransitpath;thiswill bediscussedbelow.

82

6.1. Clock Regimes

Thechipoperatesin six differentclock regimes,shown asshadedareasin Figure6.2. Eachof

thetwo inputandtwo outputATM portsoperateswith its own separateclock(regimesA, B, C,and

D in thefigure). Clock regimeE is clockedfrom thePCIbus,which is nominally33MHz but can

be lower in somemachines.Clock regimeF in thefigure is known astheAPIC’s internal clock

domain. Thefrequency of thisclock is fixedat85MHz to enableoperationof all ATM portsat the

maximumpossiblerate(1.2Gb/s),regardlessof theclock ratesfor individual portsor for thePCI

bus.

 Figure 6.1: Functional Block Diagram of APIC Internals

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

UTOPIA
ports

UTOPIA
ports

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

VC

.

.

.

.

Cell

Tx
Sync

Store

Rx
Sync

DataPath

Register
Manager

Interrupt/
Notification

ManagerBusInterface

Output
Sync

Output
Port

Output
Port

Trans-
lation
Table

(VCXT)

(IntrNfyMgr)

(RegMgr)

intr

83

6.2. Module Functions and Paths Taken by Cells Through the Chip

6.2.1. Synchronization Modules

For everysignalthatpassesfrom oneclockregimeto another, thereneedsto besynchronization

logic thatis responsiblefor meta-stabilityresolution.Along thedatapaths,thissynchronizationis

handledby the InputSync, OutputSync, TxSync, andRxSyncmodules. Notice that eachof these

modules straddle two different clock regimes.

 Figure 6.2: APIC Clock Regimes

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

VC

.

.

.

.

Cell

Tx
Sync

Store

Rx
Sync

DataPath

Register
Manager

Interrupt/
Notification

ManagerBusInterface

Output
Port

Output
Port

Output
SyncA

B

C

DF

E

Trans-
lation
Table

(VCXT)

(RegMgr)

(IntrNfyMgr)

84

6.2.2. Input and Output Ports

Returningto Figure6.1,theInputPort andOutputPort modulesareresponsiblefor implement-

ing the UTOPIA interfaceprotocol. The InputPortsalsoverify the headererror check(HEC) of

incomingcells,anddiscardthecell if it is incorrect. If theHECverifiescorrectly, theHECbyteis

strippedandthe cell is passedon to the correspondingInputSyncmodule. The OutputPortsare

responsiblefor computingandinsertingtheHECbytein all cellsbeforethey areoutputonthelink.

Finally, theInputPortandOutputPortmodulesareresponsiblefor generatingandreactingto flow

control signals (both UTOPIA and GFC flow control).

6.2.3. BusInterface

TheBusInterfacemoduleimplementsthePCIbusprotocol. It implementsregistersfor thePCI

configutationspace,andhandlesslave accessesto theseconfigurationregistersinternally. When

theAPIC is the targetof a memory-mappedslave access,it forwardsthe requestto theRegister-

Manager (aka RegMgr) module,which is responsiblefor handling the correspondingregister

access.TheBusInterfacemodulealsoimplementsbusmastering:it acceptsreadandwrite transac-

tion requestsfrom theDataPath module,arbitratesfor thebus,andcompletesthespecifiedtrans-

action once it is granted ownership of the bus (i.e., when it becomes bus master).

6.2.4. RegisterManager

As mentionedabove, theRegisterManager moduleis responsiblefor handlingaccessesto all

on-chipcontrol/statusregisters(exceptfor PCIconfigurationregisters,whicharehandledinternally

by the BusInterfacemodule). The operationof the RegisterManageris illustratedin Figure6.3.

Registeraccessescanoriginatefrom oneof two places:from theBusInterfacemoduleif theregister

is beingaccessedusingmemory-mappedI/O on thePCI bus(alongcontrolpath➀ in thefigure),

andfrom theDataPathmoduleif theregisteris beingaccessedusingacontrolcell (controlpath②).

Theregistersthemselvesaredistributedthroughoutthechip in five differentmodules(shown with

adeepershadein thefigure): theRegisterManageritself, theVC TranslationTable➂, thePacer➃,

the Requestor➄, and the Interrupt/NotificationManager➅. Theseare the only programmable

modulesin the APIC; all othermodulescanbe consideredto be “dumb”. The RegisterManager

forwardsregisteraccessrequestsfrom theBusInterfaceor DataPathto theappropriatetargetmod-

ule, using the address of the register that is being accessed as a demultiplexing key.

85

Transit Path

It is easiestto explain theoperationof theremainingmodulesin thedesignby tracingthevar-

iouspathstakenby datathroughthechip. In Figure6.4,weshow thetransitpath. To simplify the

figure,wehaveomittedseveralmodulesthatarenot involvedin thetransitpath(i.e.,all modulesin

thebusclockregime). Theredarrow tracesthepathtakenby atransitcell receivedatinputport0.

6.2.5. VCXT

TheVCTranslationTablemodule,whichwewill henceforthreferto astheVCXT, holdsatable

containingentriesfor all openreceiveVCs;thistableis filled in by theAPIC’scontrollingprocessor

 Figure 6.3: Operation of the RegisterManager Module

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

VC

.

.

.

.

Cell

Tx
Sync

Store

Rx
Sync

DataPath

Register
Manager

Interrupt/
Notification

ManagerBusInterface

Output
Sync

Output
Port

Output
Port

Trans-
lation
Table

(VCXT)

(IntrNfyMgr)

(RegMgr)

1

2

3

4

5

6

86

by writing to appropriateAPIC registers.For everycell receivedon inputports0 and1, theVCXT

usestheVPI/VCI fieldsfrom thecell to performa lookupin this table. If thereis amatchingentry

in thetablefor thecorrespondingVC, andif thatentryis markedas“open” (or valid), thedatafrom

the entry is used to decide what to do with the incoming cell.

 Figure 6.4: Transit Path Forwarding

 Figure 6.5: VC Translation Process in the VCXT Module

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

VC

Cell
Store

Output
Sync

Output
Port

Output
Port

Trans-
lation
Table

(VCXT)

and

VCopenVCtag VCXdata

.

.

.

.

.

.

.

.

.

<1><16> <17>

VCindexVCtag

0

1

255

.

.

.

VPI VCI
<8> <16>

(from incoming

VC Table

 ATM cell header)

=?

<16> <8>

Translation
Success

Translated
VCXdata

Indication

87

Figure6.5 illustratesthe lookup mechanismusedin the VCXT. The low order8 bits of the

VCI, whichweshallcall theVCindex, is usedto index into theVC table. Thelattercontains256

entriescorrespondingto the256receiveVCsthataresupportedby theAPIC. The8 bitsof theVPI

andthehigh order8 bits of theVCI accountfor theremaining16 bits from theVPI/VCI fields in

thecell; we referto these16 bits astheVCtag. Thesebits arecomparedagainsta VCtag that is

partof theentryresultingfrom thetablelookup. If they match,andif thetableentryis markedas

valid (i.e.,theVCopen bit is set),thentheincomingcell is saidtohavebeensuccessfullytranslated.

For suchcells, the VC translationdata(VCXdata for short)field from the correspondingtable

entryis usedto decidewhatto dowith thecell. TheVCXdata field containsseveralsubfields(such

as:thesetof outputportsto which thecell shouldbedirected,whetherthecell shouldbetreatedas

low delay or not, etc.).

☞ Clearly, the lookupmechanismusedin theVCXT implies thatno two receive VCs supported

by theAPIC cansharethesamevaluefor thelow order8 bitsof theVCI (theVCindex). This

is trueevenif theVCsusedifferentinputportsof theAPIC. In asingleAPIC environment,the

usual case would be to use VCIs ranging from 0 to 255.

With multiple APICsin a daisychain,it is possiblefor two receive VCs thatterminateon dif-

ferentAPICsin thechainto sharethesameVCindex , solongasthey differ in theVCtag part

of theVPI/VCI. In fact,for local communicationbetweenAPICsin adaisychain,it is recom-

mended(thoughnot required)that theVCtag besetequalto the16-bit valueof theAPICid

(which is pin configurednever to bethesamefor any two APICson theinterconnect).In this

case,the VPI/VCI allocation problem for local communication(within the interconnect)

becomes the localized decision of choosing an unusedVCindex .

If anincomingcell is notsuccessfullytranslated(i.e.,thereis nomatchingvalid entryin theVC

table),thentheVCXT treatsthecell asatransitcell. Suchcellsshouldbeforwardedto the“other”

ATM port (i.e., the ATM port oppositeto the oneon which the cell arrived). In the examplein

Figure6.4,thetransitcell camein onport 0, soit shouldbesentoutonport 1. Hadthecell entered

the APIC on port1, it would leave on port0.

Thus,for incomingcellsthataretransitcells,theVCXT knowstheoutputportfor thecell based

on theport it camein on. For non-transitcells,it obtainsinformationaboutthesetof outputports

from theVC tablelookup. If this setof outputportsincludesonly port 2, thenthecorresponding

88

VC is termeda receiveVC, and cells belongingto this VC follow the receivepath (which is

describedlater). If thesetof outputportscontainsmorethanoneport, thenwe have a multipoint

VC; cellsbelongingto suchVCsmayfollow morethanonepaththroughthechip(for example,the

transit path as well as the receive path).

☞ Notethatjust becausea cell follows thetransitpaththroughthechip doesnot meanthatit is a

transitcell. A cell maybesuccessfullytranslatedin theVCXT, andtheresultingsetof output

portsmaycontainjust thesingleport thatis oppositeto theonethecell camein on. In thiscase,

thecell wouldbehaveverymuchlikea transitcell, andit would follow thetransitpaththrough

thechip. A cell canevenbemadeto loopbackto its entryport by settingtheVC tableentry

appropriately. This kind of behavior is importantfor architecturesotherthanthedaisychain

(for example,theperfectshuffle of Figure5.3),wherethedefault transitport of theAPIC may

not be the right place to forward an incoming “transit” cell.

TheVCXT encapsulatesvariousinformationderivedfrom theVC tablein an internal header

which is taggedon to thecell beforeforwardingit to theCellStore module. For transitcells, the

internalheaderis derivedbasedon default valuesandon theport thecell camein on, ratherthan

from a tableentry. Amongotherinformation,the internalheadercontainsthesetof outputports

for the cell, whether the cell should be given low delay processing priority, etc.

6.2.6. CellStore

TheCellStoremodulecontainsthemainon-chipcell buffer thatwill beusedto temporarilyhold

the ATM cells pendingavailability of the appropriateoutputport(s)(including port 2 — the bus

port). Thecapacityof this cell buffer is 256cells. TheCellStoremodulealsoimplementsseveral

FIFO queuesthatcontainpointers(8-bit indices)to cellsstoredin thecell buffer. Usingthis tech-

nique,the256cellsworth of storagein thecell buffer canbesharedamongstmany FIFO queues.

Oneof theseFIFO queuesis calledthe freequeue; it holdspointersto freeslotsin thecell buffer.

TheremainingFIFOqueuesarecalledbusyqueues; they hold(pointersto) cellsawaitingoutputon

oneor moreof the threeoutputports. Whenever theCellStorereceivesa cell from theVCXT, it

storesthecell in theslot that is pointedto by theentryat theheadof thefreequeue.This entryis

thentakenoff thefreequeueandput ontooneor moreof thebusyqueues.Sincewe arecurrently

focusingon thetransitpath,we introduceonly thebusyqueuesfor ports0 and1; thebusyqueues

for port 2 will bediscussedwhenwe cover receive pathprocessing.As shown in Figure6.6, the

89

CellStoremoduleimplementstwo busyqueueseachfor ports0 and1: onefor low delaytraffic, and

theotherfor normaldelaytraffic. All transitcellsareautomaticallycategorizedby theVCXT as

low delay(this is indicatedby abit in theinternalheaderthatis attachedto thecell), sothesecells

will be always be put on thelow delay queue for the appropriate output port.

☞ As we will seelater, the low delaybusy queuecan,in additionto transittraffic, containcells

from low delaytransmitchannelsandfrom low delayreceive VCs. Thenormaldelayqueues

cancontaincells from best-effort andpacedtransmitchannelsandfrom normaldelayreceive

VCs. Note that the normal delay queues for ports0 and1 never carry any transit traffic.

EachOutputPortreadscellsfrom thecorrespondingbusyqueuesin theCellStoreandtransmits

thesecellsat themaximumlink rate,so long asit hasa grantfrom thedownstreamdevice (using

eitherUTOPIA or GFCflow control). Thelow delaybusyqueueis alwaysgivenpriority over the

normaldelaybusyqueue.In otherwords,nocellswill betransmittedfrom thenormaldelayqueue

for a port until the low delay queue for that port has been completely drained.

Receive Path

Now thatwehavefinisheddescribingthetransitpath,wemoveon to thereceivepathwhich is

shown in Figure6.7. An incomingcell is consideredto bea receive cell if it is successfullytrans-

latedin theVCXT, andif thesetof outputportsfrom theresultingVCXdata field of theVC table

includes port2 (the bus port). In this case, the cell will follow the receive path through the chip.

 Figure 6.6: FIFO Queues in the Cell Store (Port 2 queues not included)

Busy Queues for
output port 0

Busy Queues for
output port 1

Free queue

Low delay queue

Normal delay queue

Low delay queue

Normal delay queue

➯
Cells
from
VCXT ➯

Cells
to
OutputPorts

90

Whena receive cell arrivesat the CellStore,it is put onto oneof the busy queuesfor port 2.

Figure6.8expandsonFigure6.6to includethesetof busyqueuesfor port 2. As for ports0 and1,

thereis a low delaybusy queuefor port 2. However, while ports0 and1 wereassociatedwith a

singlenormaldelaybusyqueue,theCellStoreimplements256normaldelaybusyqueuesfor port 2,

onefor eachof the256receiveVCsthataresupportedby theAPIC. Thiskind of per-VC queueing

is requiredto supportcell batching(seeSection5.5.5),aswill beevidentoncewedescribetheser-

vice discipline used to empty these queues.

 Figure 6.7: The Receive Path

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync.

.

.

.

Cell

TxSync

Store

RxSync

DataPath

IntrNfyMgr
BusInterface

Output
Sync

Output
Port

Output
Port

RegMgr

VCXT

PCI-32/64 Bus intr

1

2

3

4

91

☞ Notethatall low delaycells,regardlessof theirVC, areputinto thesinglelow delaybusyqueue.

This impliesthatthereis no per-VC queueingfor low delayVCs,andconsequently, low delay

VCscannotbenefitfrom cell batching.This is acceptablebecausecell batchinghelpsimprove

throughput,andour assumptionthat low delayVCs carrysmall amountsof datainfrequently

implies that they do not also require very high throughput.

On the output side, the RxSyncmodule readsreceive cells from the CellStoreand creates

batchesof oneor morecells for processingby theRequestor/DataPathsubsystem.Thefollowing

rules are used to decide which busy queue the next cell should come from:

1. The low delayqueueis alwaysgiven priority. In otherwords,if the low delayqueueis not

empty, it will always be serviced in preference to the normal delay queues.

2. If thelow delayqueueis empty, thencellswill bedrawn from oneof thenormaldelayqueues.

TheCellStorekeepstrackof thesetof normaldelaybusyqueuesthatarenot empty. This set

 Figure 6.8: FIFO Queues in the CellStore

Busy Queues for
output port 0

Busy Queues for
output port 1

Free queue

Low delay queue

Normal delay queue

Low delay queue

Normal delay queue

➯
Cells
from
VCXT ➯

Cells to
OutputPorts
or RxSync

Low delay queue

Normal delay queue

Normal delay queue

Normal delay queue

Busy Queues for
output port 2

.

.

.

.

.

.

for VCindex = 0

for VCindex = 1

for VCindex = 255

92

is maintainedasa list of VCindex values. Whenever a receive cell is placedin a normal

delayqueuethatis notalreadyin theset,thatqueueis addedto thesetby appendingthecorre-

spondingVCindex to thetail endof thelist. This list is usedto servicethenormaldelaybusy

queues.Thequeuerepresentedby theVCindex at theheadof thelist is servicedfirst, andit

is completelydrainedbeforemoving on to thenext queuein the list. This policy guarantees

thatall thebusyqueueswill beservicedeventually. Also, sincethebusyqueuefor eachnor-

mal delayVC is completelydrainedbeforemoving on to anotherbusyqueue,thebatchingof

cells belonging to the same VC is maximized.

☞ Somemayarguethat this policy is unfair because,in overloadconditions,it would give all of

thebandwidthavailableonthebusto asingleVC. While this is true,webelievethatit is better

for at leastoneVC to get its datathroughduringcongestion,asopposedto losingsomedata

from all VCs.

Anotherargumentagainstsuchapolicy is thatit couldresultin datafrom oneVC beingsignif-

icantly delayedby datafrom anotherVC. This is trueonly in overloadconditions;otherwise,

theinterval betweenwhena queueis drainedcompletelyandwhenit canbeservicedagain in

thefutureis limited by thesizeof thecell buffer (256cells). If betterdelaycharacteristicsare

desired, low delay VCs should be used.

6.2.7. RxSync

Continuingour discussionof the receive path (Figure6.7), we alreadymentionedthat the

RxSyncmodule,in additionto servingasa synchronizationmodulebetweenclock regimes,also

performsthe taskof creatingbatchesof cells belongingto the sameVC. To aid in this task,the

RxSync has a small amount of internal storage (8 cells worth).

6.2.8. Requestor

The Requestormoduleis responsiblefor decidingwhena batchfrom the RxSyncshouldbe

processed➀, andfor figuringouthow to processthesebatches.TheRequestorcontainsmostof the

per-channelstatefor bothtransmitandreceivechannels.Also, a largechunkof the“brains” of the

APIC (i.e., thecontrol logic) areconcentratedin theRequestormodule. Someof thetasksof the

Requestor are:

93

• To arbitratebetweenrequeststo transmitcellsthataregeneratedby thePacermodule,and

requests from the RxSync to process received cells➀.

• To do all of the DMA processing for the different DMA modes, and to figure out where in

external memory data should be written to (or read from).

• To breakup transmitor receive requestsfrom thePacerandRxSyncmodulesinto appro-

priatesizedtransactionsthatcanbe issuedon thebus,taking into accountthingslike the

host’s cache line size, etc.

• To report interrupt events to the Interrupt/Notification Manager module.

6.2.9. DataPath

TheRequestordoesnot itself moveany data;it implementsthecontrollogic thatdecideswhen

datashouldbemoved,whereit shouldbemoved,andhow muchto move. It providesthis informa-

tion to theDataPath module➁, which is responsiblefor actuallymoving thedata. On thereceive

path,theDataPath takestransactionrequestsfrom theRequestorandprocessestheserequestsby

issuingcommandsto theBusInterfacethatresultin databeingreadout of theRxSyncandwritten

to externalmemory. While thedatais in flight, theDataPathmoduleis alsoresponsiblefor data

path operations such as computing the AAL-5 CRC and TCP checksum over received frames.

TheRequestorandDataPathmodulesform apipelinedsubsystem:while theDataPathis mov-

ing datacorrespondingto a transactionrequest,the Requestoris computingthe next transaction

requestthatshouldbeissued.This pipeliningensuresthattheAPIC cankeepup with thefull rate

of the PCI bus.

6.2.10. IntrNfyMgr

As cellsarereceivedandthedatafrom thesecellsis written to externalmemory, variousinter-

rupteventsmayoccur. Theseeventsarerecognizedby theRequestor, andarepassedonto theData-

Pathmodulealongwith thecorrespondingtransactionrequest➁. TheDataPathblindly forwards

theseeventnotificationsto the Interrupt/NotificationManager (IntrNfyMgr for short)module,as

soonasthetransactionis completed➂. TheIntrNfyMgr moduledecideswhetheror not theinter-

rupt eventshouldresultin anactualinterruptto theprocessor. If so,it raisesthebusinterruptline

94

➃, andalsoresumestheremoteinterruptchannel(if onehasbeenconfigured).Finally, theIntrN-

fyMgr module also maintains the APIC’s notification list.

Transmit Path

We now go oneto describethe transmitpath,shown in Figure6.9. We begin our discussion

with the Pacer module,which is responsiblefor generatingrequeststo transmitbatchesof cells.

ThePacergeneratestheserequestsbasedon thecurrentlyactive setof low delay, paced,andbest-

effort channels.Notethat for pacedchannels,thePacergeneratesrequestsperiodically, basedon

 Figure 6.9: The Transmit Path

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync.

.

.

.

Cell
Store

DataPath

BusInterface

Output
Sync

Output
Port

Output
Port

intr

TxSync

VCXT

1

2

3

IntrNfyMgr

RegMgr

RxSync

95

thechannel’spacingrate. TheRequestorarbitratesbetweenrequestsfrom thePacer➀ andrequests

fromtheRxSync(for processingof receivedcells). Thearbitrationalgorithmusedby theRequestor

is based on the following simple priority order:

control cell > low-delay Rx > low-delay Tx > normal-delay Rx > all other Tx

If thewinning requestis from thePacer(i.e., it is for Tx), thentheRequestorbreaksup therequest

for the batchof cells into appropriatesizedtransactionrequests,which it issuesto the DataPath

module➁. Theprocessis very similar to thatusedon thereceive path,exceptthatin this casethe

transactionrequestsresultin databeingreadfrom externalmemoryandencapsulatedin cells that

canthenbetransmitted.Duringtheprocessof issuingtransactionsto readdatafrom externalmem-

ory, theRequestormayrecognizeinterruptevents,which it passes(throughtheDataPath➁) to the

IntrNfyMgr ➂. This is again very similar to the receive path interrupt and notification processing.

The transmitcells,onceconstructedin the DataPath,aretaggedwith an internalheaderthat

specifiestheoutputport for thecell (theinternalheadercancomedirectly from externalmemoryif

thechannelusesAAL- 0). ThesetaggedcellsareforwardedthroughtheTxSyncto theVCXT. For

transmitcells that do not have to be loopedback to port 2, the VCXT merely forwardsthe cell

unchangedto theCellStore. Thelatterputsthecell on oneof thebusyqueuesfor theappropriate

outputport,from whereit canbereadoutby thecorrespondingOutputPortmoduleandtransmitted

on thelink. Thechoiceof busyqueuein theCellStore(low delayor normaldelay)is specifiedin

thelow delaybit that is partof theinternalheader;this bit is setif thecell camefrom a low delay

transmit channel, and is cleared if it came from a paced or best-effort channel.

Control Cell Path

Figure6.10showsthepathtakenby acontrolcell andthecorrespondingresponsecell through

theAPIC. Note that theresponsecell leavestheAPIC on thesameport pair that thecontrolcell

entered. In the exampleshown, the control cell entersfrom input port 1, so the corresponding

responsecell will leave from outputport 1. This is becausetheresponsecell shouldbereturnedto

thesendingentity. Contrastthis with thetransitpath,wherea cell leavestheAPIC from theport

opposite to the one it came in on.

Controlcellsarrive on thespecialcontrolVC that is characterizedby VCindex = 0x21,and

VCtag = APICid . Here,theAPICid is a 16-bit pin configuredvaluethat is differentfor every

96

APIC alongthepathtraversedby thecontrolcell enrouteto its targetAPIC. Think of this in the

context of a daisychainof APICs. In effect, theAPICid servesasanaddressfor thetargetAPIC.

TheVCXT recognizesincomingcontrolcellsbasedon this encodingof theVPI/VCI. It forwards

such cells to the CellStore with an internal header that specifies:

1. that the cell is a control cell,

2. that it should be output to port 2, and

3. that it should be treated as a low delay cell.

 Figure 6.10: Control and Response Cell Path

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

.

.

.

Cell
Store

DataPath

BusInterface

Output
Sync

Output
Port

Output
Port

intr

TxSync

VCXT

1

2

IntrNfyMgr

RegMgr

RxSync

3

45

.

.

.

97

Consequently, thecell endsup in thelow delaybusyqueuefor port 2 in theCellStore.As was

thecasefor thereceivepath,theRxSyncreadsthecell outfrom thisqueue,andgeneratesareceived

cell requestto theRequestor➀. Recognizingthecell asacontrolcell, theRequestorissuesaspecial

“control cell transaction” to the DataPath module➁.

All of thecontrolcell processingis carriedoutwithin theDataPathmodule. First, thecontents

of the cell arereadout from the RxSync. Next, the CRC for the cell is verified,andthe cell is

droppedif theCRCis incorrect. Following this, theDataPathcomparesthesequencenumberbit

in thecell to theexpectedsequencenumber(asperanalternatingbit protocol). If they match,the

operationspecifiedin thecell is carriedout anda new responsecell is generated.Otherwise,the

contentsof the cell areignoredandthe previous responsecell (i.e., the onecorrespondingto the

previoussuccessfulcontrolcell operation)is used. In bothcases,aCRCis computedandinserted

in theresponsecell. Oncethis is done,thecell is treatedasa transmitcell andforwardedwith the

appropriateinternalheaderto the TxSync,from whereit makesits way alongthe usualtransmit

pathto the appropriateoutputport. It is importantto noteherethat the ATM headerusedin the

response cell is derived from the contents of the corresponding control cell.

As discussedearlier, control cell operationscanbeeitherinternalaccessesto theAPIC’s on-

chip registers,or externalaccessesto memoryor anotherdevice thatcanbeaccessedover thePCI

bus. For internalaccesses,theDataPathcarriesout theoperationby issuingrequestsdirectly to the

RegisterManagerto reador write the specifiedregister ➂. For external accesses,the DataPath

issues write➃ or read➄ transaction requests directly to the BusInterface module.

Multipoint and Loopback Paths

We have so far discussedintra-chip pathsfor point-to-pointconnectionsonly. The transit,

receive, and transmit paths can be combined in various ways to yield multipoint intra-chip paths.

Figure6.11showsonepossiblemultipointreceivepath.Cellsbelongingto aVC thatoriginates

at oneof thetwo ATM portscanbedirectedto any combinationof thethreeoutputports. Theset

of outputportsfor sucha VC is controlledby asubfieldin theVCXdata field of theVCXT table.

For the example in the figure, all three output ports would belong to this set.

98

A noteabouttheimplementationof themultipointcapabilitywithin theCellStoremoduleis in

order. Theinformationaboutthesetof outputportsfor a cell is forwardedto theCellStorealong

with eachcell, aspartof thecell’s internalheader. AlthoughFigure6.11showsthreecopiesof the

cell beingmadein theCellStoremodule,in reality thesearelogical copiesonly. Eachincoming

cell occupiesonly onecell slot in theCellStore’s cell buffer, but a pointerto this cell slot canbe

storedin multiple busy queues(one busy queueper destinationoutput port). Whenever a cell

reachestheheadof a busyqueueandthecorrespondingoutputport becomesavailable,thecell is

outputto thatport,andthepointerentryis removedfrom theheadof thebusyqueue.However, the

 Figure 6.11: A Multipoint Receive Path

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

.

.

.

.

Cell

TxSync

Store

RxSync

DataPath

IntrNfyMgr
BusInterface

Output
Sync

Output
Port

Output
Port

RegMgr

VCXT

PCI-32/64 Bus intr

99

cell slot containingthecell cannotbe returnedto the freequeueuntil thecell hasbeendequeued

from all of thebusyqueuesonwhich it is enqueued.TheCellStorethereforemaintainsareference

countfor eachslot in thecell buffer; a (pointerto a) slot is not returnedto thefreequeueuntil the

reference count reaches zero.

Figure6.12illustratesamultipoint transmitpath. This is identicalto thetransmitpaththrough

thechip,exceptthatacopy of thecell is sentto bothoutputATM ports. Oneexampleof theuseof

this path would be to implement broadcast in a daisy chain LAN environment.

 Figure 6.12: A Multipoint Transmit Path

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

Cell
Store

DataPath

BusInterface

Output
Sync

Output
Port

Output
Port

intr

TxSync

VCXT

IntrNfyMgr

RegMgr

RxSync

100

☞ As in thecaseof themultipointreceivepath,theCellStoreneedsto enqueuecellsfollowing this

pathon thebusyqueuesfor bothATM ports,andto do this it looksin theinternalheaderof the

cell to discover thesetof outputportsfor thecell. For themultipoint receive path,theinternal

headeris taggedonto the cell in the VCXT, basedon informationderived from the VC table

lookup. For themultipoint transmitpathhowever, the internalheaderis alreadytaggedto the

cell beforeit evenreachestheVCXT — for AAL- 0 channelstheinternalheaderis readalong

with thecell datafrom externalmemory, while for AAL- 5 channelsit is attached(alongwith

the ATM cell header) to the cell payload by the DataPath module.

 Figure 6.13: Loopback Path

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

Cell
Store

DataPath

BusInterface

Output
Sync

Output
Port

Output
Port

intr

TxSync

VCXT

IntrNfyMgr

RegMgr

RxSync

101

In Figure6.13,we illustratethepathtakenby cellsthatareto beloopedbackto externalmem-

ory. SinceATM VCs areunidirectionalentities,the loopbackfeaturerequiressettingup both a

transmitandareceiveVC. A loopbackcell transitionsfrom thetransmitpathto thereceivepathin

theVCXT, asindicatedin thefigureby thedifferentcolorsusedfor thetwo segmentsof theloop-

backpath. Usually, cellsfrom transmitchannelsdonot requireatablelookupin theVCXT. How-

ever, if thesetof outputportsfor a transmitchannelincludeport 2, thenit is a loopbackchannel,

 Figure 6.14: A Multipoint Loopback Path

PCI-32/64 Bus

Port 2

Port 1

Port 0

Port 2

Port 1

Port 0

Requestor

Pacer

Input
Port

Input
Sync

Input
Port

Input
Sync

Output
Sync

Cell
Store

DataPath

BusInterface

Output
Sync

Output
Port

Output
Port

intr

TxSync

VCXT

IntrNfyMgr

RegMgr

RxSync

102

andcellsbelongingto suchchannelsundergoatablelookupin theVCXT. Fromthatpointon,these

cells are treated exactly as if they were cells that were received on one of the input ATM ports.

The lastpaththroughthechip thatwe describeis themultipoint loopbackpath,illustratedin

Figure6.14. This is identicalto the loopbackpath,exceptthat theVC tablelookupin theVCXT

yieldsmorethanonedestinationoutputport. It is very importantto notethatthesetof outputports

actuallytakenby cellsalongthispathis apropertyof thereceiveVC, andnotof thetransmitchan-

nel. Indeed,dependingonhow thereceiveVC isconfigured,atransmitcell originatingfromaloop-

backtransmitchannelmaynotevenbeloopedback— it could,for example,simplybesentto one

of theoutputATM ports(althoughtheredoesn’t seemto bemuchpoint to suchanexercise,since

the same effect could be achieved by just a transmit channel alone).

6.3. Pacer Design

While mostinternalblocksof theAPIC havestraightforwardimplementations,thePacerblock

deservesspecialmentionbecauseof theuniquehardwarearchitectureit usesto enablepacingof

traffic overmany simultaneouschannelswith differingpacingrates.As mentionedearlier, thenovel

d-heappacingalgorithmusedby thePacerallows theAPIC to provideQoSin averyflexible man-

ner to various types of applications.

Naive approachesto implementingpacing,suchasparallelsearchof departuretimesof cells

from variouschannelsdo not scale,andcanbe excessive in their spaceandpower requirements

whenthenumberof channelsto besupportedis large.Most commercialATM network interfaces

employ suchnaive schemes,which is why they cannotsupportmorethana very smallnumberof

pacedchannels.In order to scaleto large numbersof channels,a bruteforce approachdoesnot

work,andcleverertechniquesarecalledfor. Whensearchingfor anappropriatealgorithm,wehave

to keepin mindbothareaandpowerconstraints,aswell asbeingableto meetthetiming neededto

issuepacinggrantsonceevery cell time. It took several trials anditerationsuntil we hit uponthe

solutionwhich is describedbelow, andwhich is scalableto very largenumbersof connectionsat

modest cost.

Everypacedchannelin theAPIC hasanassociated“pacinginterval”, whichrepresentsthetime

interval betweensuccessivecell transmissions.Thepacingratefor thechannelis simplytheinverse

103

of this quantity. Eachchannelis alsoassociatedwith an “expiration time”, which is the time at

whichthenext cell is scheduledfor transmissiononthatchannel.All of thechannelsaremaintained

onaneventqueuewhich is keyedon theexpirationtime. Whenever thecurrenttime is equalto or

greaterthantheminimumexpirationtimeof any channel,acell is transmittedfrom thecorrespond-

ing channel,andthechannel’sexpirationtime is incrementedby thepacinginterval, andreinserted

into theeventqueue.This simplealgorithmcanimplementpacingover largenumbersof connec-

tions. Theonly problemis: how doweimplementaneventqueuein hardwarethatis keyedonexpi-

ration times of large numbers of connections?

Oursolutionto thisproblemis to usead-heapdatastructure,with a largevalueof d. Theway

we formulatethedatastructureis speciallygearedtowardshardwareimplementation.Figure6.15

showsad-heapfor 256channels(eachof whichis indexedwith its channelid, CID). Thelow heap

containstheexpirationtimesof all thechannels.Thelow heapis divided into 16 blocks,andthe

minimumexpirationtime from eachblock is storedin themid heap. Thus,themid heaphasonly

16 entries. Finally, the top heapcontainstheminimumexpiration time from all theentriesin the

mid heap;it is theminimumexpirationtime over all channels.Whenreadyto transmit,thePacer

modulein theAPIC issuesa requerstto transmita cell from thechannelcorrespondingto thetop

heapentry. It thenaddsthepacinginterval to thatchannel’s expiration time, andrecomputesthe

 Figure 6.15: d-Heap Based Pacing

.

.

.

.

.

.

.

.

.

.

.

.

0
1

15
16
17

31

240
241

255

.

.

.

min

min

min

min

CID
Expiration

Time

Minimum
Expiration

Time

LOW HEAP

MID HEAP

TOP HEAP

104

minimumfrom thecorrespondingblock in thebottomheapandthenrecomputestheminimumof

all the entries in the mid heap.

With this solution,notethatd is 16,andsoonly a single16 wide comparatortreeis neededto

do all the comparisons.The lower levels of the d-heapare larger, so an implementationcould

chooseto putthemin morecompactbut slowermemories(eg.,DRAM), while placinghigherlevels

of thed-heapin bigger(in termsof area)but fastermemories(SRAM or registers). In thecurrent

APIC prototype, the low and mid levels are in SRAM, while the top level is a register.

With this paceralgorithm,the lookup time is O(logdn), wheren is the numberof channels.

Clearly, by makingd large,thelookuptimecanbereducedto veryreasonablesmallconstants.The

costof increasingd is a largercomparatortree(in termsof area). With d = n, this schemereduces

to the brute force approach mentioned earlier.

Notethatthesizeof theheapdatastructureis O(n), which is optimal.Also notethatvery large

numbersof channelscanbesupportedby increasingthedepthof theheap,andincreasingd. For

example, 32K channels can be supported by using a four level heap withd = 32.

Thereis oneissuethatwewould like to pointoutherewith regardsto thepacingintervals:we

getfiner granularitiesof pacingbandwidthat lower bandwidths,which is quitea nicepropertyto

have,exceptthatthegranularityathighbandwidthsis toocoarseif thepacinginterval is aninteger.

For example,with integerpacingintervals,it is notpossibleto getany bandwidthbetween0.5and

1.0of themaximum(link) bandwidth.To overcomethis limitation, thepacinginterval needsto be

specifiedwith a fractionalpart,asa fixedpoint realnumber. In theAPIC context, we found that

usinga24bit valuefor thepacinginterval,with a16bit integerpartandan8 bit fractionalpartgave

ussufficientgranularityathighbandwidths,while allowing usto beableto specifyvery low band-

widths at the other end of the spectrum (in the range of a few Kb/s).

105

Chapter 7

APIC Software

In this chapter, we cover thesoftwareframework in which thechip is intendedto operate,and

describetheimplementationof theAPIC’skerneldriver, which is animportantpieceof thatframe-

work.

7.1. Overall Software Framework

Figure7.1showsaproposedsoftwareframework for theAPIC chip.In orderto limit thescope

of work, not all componentsin this softwareframework have beenimplemented.Thecomponents

with darker shading represent those that we have implemented in our NetBSD test platform.

☞ TheNetBSDoperatingsystemwasselectedbecauseit is opensource,featuresanindustrystan-

dard Internet protocol stack, and is in use in several other projects at our site.

TheTCP/IPstackandthesocket layerarecomponentsthatarestandardin NetBSD.Many of

the remainingcomponentsremainunimplementedat the time of this writing. It is expectedthat

futureusersof theAPIC chip from otherprojects,aswell asfrom theGigabit Kits initiative, will

invest the time to implement most of the other pieces of this framework.

Thebold linesin thefigurerepresentdifferentdatapathsthroughthesystem.Light linesrepre-

sent control paths.

TheAPIC kerneldriver implementsall of the in-kernelfunctionalityneededto supportcom-

municationusingtheAPIC. It makesuseof the facilitiesprovidedby anATM device-dependent

106

 F
ig

ur
e

7.
1:

 S
of

tw
ar

e
F

ra
m

ew
or

k
fo

r
th

e
A

P
IC

A
P

IC
 K

e
rn

e
l D

ri
ve

r
E

N
I

D
ri
ve

r

A
T

M
 D

e
vi

ce
-I

n
d

e
p

e
n

d
e

n
t

D
ri
ve

r

T
C

P
/I

P
R

a
w

A
T

M
(R

A
T

M
)S

o
ck

e
t

L
a

ye
r

T
C

P
/I

P
A

p
p

lic
a

tio
n

U
se

r
S

p
a

ce
A

P
IC

 D
ri
ve

r
A

p
p

l.
S

ig
n

a
lli

n
g

D
a

e
m

o
n

C
o

n
tr

o
lle

r

R
e

m
o

te
C

o
n

tr
o

l L
ib

.

a
tm

_
ifc

o
n

fig

S
ig

n
a

lli
n

g
S

o
ck

e
t

S
u

p
p

o
rt

S
V

C
A

p
p

l.

A
P

IC

107

driver thathasbeendesignedto abstractout functionalitycommonto all ATM network interfaces.

Thus,for example,theEfficient Networks(ENI) ATM driver couldsharethis sectionof thedriver

codewith theAPIC. Thedriver interfacesdirectly to thesystem’s TCP/IPstack,therebyallowing

legacy TCP/IP applications to use the APIC for communications over the Internet.

TheRaw ATM (RATM) layerprovidesAAL-0 andAAL-5 transmissionandreceptioncapabil-

ities directly to applicationsresidingin user-space.It usesthe operatingsystem’s socket layer to

export this service to these applications.

Beforeany communicationcanoccurovertheAPIC, theon-chipchannelsandconnectionsthat

will beusedneedto beconfigured.This canbedonein oneof two ways.Theatm_ifconfig

user-spaceutility canberuneithermanuallyor in abatchscript;it takesanumberof parametersas

argumentsandmakestheappropriateioctl systemcallsto thedriver to configuretheseparameters

into thechip. It canbeusedto setupor teardown connections,assignpacingratesto channels,etc.

This utility is typically usedto setuppermanentvirtual circuits(PVCs)thatoriginateor terminate

at the APIC.

ATM switchedvirtual circuits(SVCs)canbesetupusingasignallingdaemon,which is auser-

spaceprogramthat,in additionto implementingthesignallingprotocols,makesioctl systemcalls

to the APIC driver to configureconnectionsin a mannersimilar to atm_ifconfig . Different

SVCapplicationsmakerequeststo thesignallingdaemonto setupandteardown end-to-endvirtual

circuits; theseapplicationscanusespecialsignallingsocketsto communicatewith the signalling

daemon.Onceaconnectionhasbeensetup,theseapplicationscanmakesocket callsto theRATM

stack to send and receive ATM AAL-5 frames.

The remotecontrollerprocessshown in the figure canbe usedto control remoteAPICs that

resideon the local desk-areanetwork. The controller implementsa device driver for the remote

APIC in aspecialremotecontrollibrary. It mayalsoimplementadriverfor theremotedevice.Since

all communicationwith the remoteAPIC anddevice is throughcontrol, response,and interrupt

cells,thecontrollerneedstheability to beableto sendandreceiveraw AAL-0 cellsusingthelocal

APIC; it can use socket calls to the RATM protocol layer to achieve this.

Thefigurealsoshows anapplicationusingtheAPIC’s user-spacecontrolmodel.In this case,

thekerneldriverisusedonly for thecontrolpath,suchasfor settingupaProtectedDMA / Protected

108

I/O channel.Theuser-spacedriver, which is implementedasa library linkedwith theapplication,

is responsiblefor all datapath communicationusing ProtectedDMA and ProtectedI/O to talk

directly to theAPIC chip. In thiscontext, in additionto othercallsalreadysupportedby thekernel

driver for in-kernelprotocolimplementations,thefollowing additionalcallswould,ataminimum,

need to be supported:

• A systemcall for allocatinga protectedDMA channel.The kerneldriver would allocate

theprotectedDMA descriptorpool for thechannel,andmaptheuserdescriptorsportion

of it into theaddressspaceof thecalling process.A file descriptorwould beallocatedand

used as a handle for referencing the channel.

• A systemcall for binding a protectedDMA channelto an ATM VC. The corresponding

per-channelregisterswouldbesetupin theAPIC by thissystemcall, andtheAPIC’s inter-

rupt serviceroutinewould beconfiguredto wake up theuserprocessif it is sleeping(for

example,waiting on a select() call) awaiting aneventon thefile descriptorthatrefer-

encesthe protectedDMA channel.The call would additionally setupthe protectedI/O

accessmaskregister for the channel,andmapthe user-accessregion of the per-channel

registers into the caller’s address space and return a pointer to it.

 Figure 7.2: APIC Kernel Driver Structure

IP NATM

ATM Device-Independent Driver

Bus-Independent
APIC Driver

PCI Bus-dependent
APIC Driver

Other Bus-dependent
APIC Drivers

Other
ATM
Device
Drivers

109

In addition,for easyportability of the user-spacedriver betweendifferentoperatingsystems

andenvironments,thekerneldriverwouldneedto supportasystemcall to wire user-spacebuffers

into physical memory (most operating systems already contain such a system call).

7.2. Kernel Driver Structure

Thekerneldriver is responsiblefor all controlrelatedoperationsfor theAPIC chip,aswell as

for supportingdatamovementfor kernelresidentprotocols(e.g.,TCP/IP, RATM, etc.).Figure7.2

shows themodularstructureof this driver. ThePCI bus-dependentportionsof thecodehave been

abstractedout to enableeasyportingof thedriver to futurerevisionsof thechip thatarebuilt for a

differentI/O bus.Most of thedriver functionalitythatwasdeemedto becommonto all ATM net-

work interfaceswasalsoabstractedout into anATM device-independentdrivermodule.Theinten-

tion is to allow otherATM network adapterdriversto sharethis codewith theAPIC. Thebulk of

theAPIC-specificcodeis containedin thebus-independentportionof thedriver, which comprises

the remainder of the code.

TheATM device-independentdriverexportsacommonview of all ATM network interfacesto

the higher layer protocols.This includeswhat VCs aresupportedby the device, andothersuch

device capabilities.It alsomaintainsa list of all active VCs andthe device-independentstatefor

eachVC (for example,theAAL typeandtraffic parameters).Thisportionof thedriveralsohandles

AAL framingandLLC/SNAP encapsulationof packets,addressresolution(i.e., translationof an

IP addressto an outgoingATM VC), and addressbinding to allow routing table entriesto be

inserted for PVCs to different destinations.

Thebus-independentportionof thekerneldriver is responsiblefor recognizingthepresenceof

an APIC device at bootuptime, andfor registeringthe device with the kernel’s autoconfiguation

code.Following this, it mapstheglobalaccessandkernel-accessper-channelregistersof theAPIC

into thekernel’s virtual addressspace.This partof thedriver is alsoresponsiblefor registeringthe

interruptserviceroutinewith thekernel’s interruptfieldingcode,andfor settingup theendianness

registers in the APIC based upon the machine’s native endianness.

Thebus-independentportionof thedriver is responsiblefor almosteverythingelse;someof the

tasks it handles are:

110

• chip reset and initialization

• implementation of ioctls for setting upVCs and controlling other device parameters

• descriptor allocation and management

• transmit and receive processing

• interrupt handling

• page mapping for protected I/O

• setup of protected DMA channels

Thecurrentversionof thedriver usessimpleDMA for transmitchannels,andpool DMA for

receive channels, and supports both IP and RATM as higher layer protocols.

7.2.1. Interaction with IP

All IP communcationis assumedto take placeusingATM PVCswhich have beenpre-config-

uredin network switches.First,theAPIC needsto beassignedalocalIP addressusingtheifcon-

fig program; for example:

ifconfig apic0 128.252.169.100 netmask 0xffffffff up

Next, thePVC is setupusingtheatm_ifconfig utility, which talksdirectly with theATM

device-independentportion of the APIC’s driver. The usageof the atm_ifconfig programis

shown below:

atm_ifconfig apic0 [tx|rc] <vpivci> [aal0|aal5]

[llc | nollc <protocol>] [lowdelay | paced <rate> | besteffort]

Finally, a routeneedsto beaddedto thesystem’s routingtablein orderto allow thepacketsto

be routed over this PVC. This is done using the system’s route program; for example:

route add -iface 128.252.169.200 -link apic0:0x000010

111

This commandinsertsan entry into the system’s routing tablewhich tells the systemthat all

packetsdestinedfor host128.252.169.200areto besentto device apic0,andthat they shouldbe

sent out over the virtual circuit with VPI = 0x00 and VCI = 0x0010.

7.2.2. Interaction with RATM

The RATM (raw ATM) protocol implementationallows user-spaceapplicationsto use the

familiar socket API to transmitandreceive AAL-0 or AAL-5 frameswith theAPIC. Figure7.3 is

an examplecodesegmentthat bindsa RATM socket to an APIC virtual circuit, andsetsvarious

struct sockaddr_ratm sa;
struct vcparams vcparams;

/* Create socket */
sock = socket(AF_RATM, SOCK_DGRAM, 0);

/* Create and connect to a new VC */
sa.sratm_family = AF_RATM;
sprintf(sa.sratm_if, “apic0”);
sa.sratm_vpivci = 0x000010;
bind(sock, &sa, sizeof(sa));

/* Setup VC parameters */
vcparams.aal = AAL5;
vcparams.do_llc = 0;
vcparams.traftype = PACED;
vcparams.rate = 10*1024;
ioctl(sock, SIOCSETVCPARAMS, &vcparams);

/* Now can send packets on socket, will get
sent as AAL-5 frames at 10 Mbps */
write(sock, buf, sizeof(buf));

 Figure 7.3: Example Code to Illustrate RATM Access to the APIC

112

paramtersassociatedwith theVC beforeit startssendingdataon thesocket usingstandardsocket

system calls such assendto() or write() .

113

Chapter 8

Experimental Results

TheAPIC hasbeensuccessfullyfabricatedandtestedin its first spin,with theexceptionof a

coupleof smallbugs.Thechip is currentlyin usein severalprojects,someof which utilize novel

featuressuchastheremotecontrolcapability. This chapterdescribessomeof theexperimentswe

performed on the APIC using the NetBSD kernel driver, and the results of those experiments.

Figure8.1 shows the experimentalsetupusedin all our tests.It consistsof two machines,

nmvc1 andnmvc2, eachwith anAPIC in it. Thetwo APICsarelinkedusinganopticalfiberwith

1.2Gb/sG-link. In mostexperiments,avirtual circuit with VPI=0 andVCI=0x47is setupandused

for communicationin bothdirections.Both machinesare450MHz PentiumII PCswith 128MB

of memoryeach.BothmachinesrunNetBSDandusethelocally developedAPIC driver. Table8.1

lists someof theperformancemetricsof thesemachines,asmeasuredusingthe lmbench bench-

mark suite.

 Figure 8.1: Experimental Setup

nmvc1 nmvc2

vpi=0x00
vci=0x0047
AAL-5 w/ LLC

1.2 Gb/s G-Link
optical fiber

192.168.10.3 192.168.10.4

114

8.1. Best-effort TCP Thr oughput

Out first testwasto measurethe TCP throughputfor best-effort traffic. In this test,specially

written client andserver programswereusedto transfera 16MB buffer 25 timesover a TCP/IP

socket connection.The socket buffer sizewassetto 64 KB. The observed throughputwasabout

300Mb/s. While this may soundlow, it is very competitive with someof the highestnumbers

reportedin the literaturefor communicationin this classof machine.It is importantto notethat

becausethestandardTCP/IPstackis beingused,thenumberof datatouchesfrom this stackis 5.

In addition,becauseof a seriousAPIC bug, thedriver is forcedto re-orderthewordsin a received

packet; thisresultsin anadditionaltwo datatouches,bringthetotalnumberof datatouchesto 7.So

a performance number of 300Mb/s despite this high number of touches is encouraging.

8.2. Pacing Test for UDP Traffic

Thenext testweranwasintendedto testtheAPIC’spacinglogic.TheVC usedin thetestswas

setupasapacedchannelwith avariablepacingrate,and25datagramsof 9 KB eacharetransmitted

over this VC. Thesocket buffer sizewassetto 240KB, themaximumpossiblevaluein NetBSD.

Notethatall of thetransmitteddatacanfit within thesocketbuffer; this is importantbecauseUDP

hasnobuiltin feedback,andsincesoftwareis ableto generatedatafasterthancanbeconsumedby

theAPIC, sendingmoredatathanthesocketbuffer in asinglesendcall wouldresultin packet loss.

Thereceiver recordsthetimeatwhich thefirst datagramis received,andalsothetimeatwhich the

lastdatagramis received.Thedifferenceis usedto computetherateatwhichdatawasreceivedover

theconnection.In Figure8.2,thethroughputrateis plottedasafunctionof therateparameterspec-

ified to theto theatm_ifconfig program.Thelatteris usedin aspecialformulato computethe

pacingparameteractuallyprogrammedinto a registeron theAPIC chip,andit is intendedthatthe

 Table 8.1: Performance metrics for NetBSD on PCs used in experiments

CPU Memory read bandwidth 2.2Gb/s

CPU Memory write bandwidth 1.4Gb/s

CPU Memory copy bandwidth 1 Gb/s

Null system call latency 2 µs

Context switch latency 11 µs

115

specifiedrateshouldcloselymatchtherateatwhich theAPIC actuallysendsoutdataon theinter-

face.Eachtestwasrepeatedanumberof times,andtheminimumandmaximumobservedthrough-

putsfrom differenttestrunsareplottedseparatelyin thefigure.As canbeseenfrom theplot, the

specifiedthroughputdoesmatchthe observed throughput,up until about330Mb/s, at which the

observedthroughput,which lies betweentheminimumandmaximumcurves,begins to level off.

This is alsothepointatwhichtheminimumandmaximumratesdiverge.Thereasonis thatbeyond

theselevelsthemachine’s limitationsin termsof CPUandbusutilizationbegin to affect theactual

throughputthat the APIC canachieve in readingandtransmittingdataover the connection.The

uncertaintyintroducedby this interferencealsoresultsin widely varyingresultson differentruns

of theexperiment;thesuper-linearbehavior of thecurvesbetween450Mb/s and500Mb/s canbe

attributedto this noisinessin thedatacollected.It is interestingto note,however, thatthroughputs

ashighas550Mb/shavebeenachieved,which is remarkablegiventhetheoriticalmaximumis the

PCIbusrateof 1 Gb/s,andgiventhenumberof datatouchesfor eachUDPpacket is 7 (becauseof

theAPIC bugmentionedearlier).If thespecifiedrateis increasedbeyondabout550Mb/s,webegin

to seepacket loss(this is notshown in thefigure),which is to beexpectedgiventhatthetransmitter

is capable of sending at a higher rate than the receiving APIC can sink.

 Figure 8.2: Throughput vs. Specified Pacing Rate for UDP Traffic

116

ThistestdemonstratedthattheAPIC’spacingschemeworkscorrectlyandreliablyfor specified

rates that lie within the realm of the capabilities of the machine and device.

8.3. Pacing Test for TCP Traffic

A pacingtestwasalsoappliedto TCPtraffic to ensurethatthereliability andwindowing func-

tionsof TCPdonothampertheability to specifyapacingratefor aconnection.A 16MB buffer is

transmitted25 timesover a TCP/IPsocket connectionwith a 64KB socket buffer. As before,the

transmitchannel’spacingrateis varied,andtheobservedthroughputis plottedasa functionof the

specifiedrate.Theresultis shown in Figure8.3.Noticethatthethroughputcloselytracksthespec-

ified rateuntil about330Mb/s, afterwhich it falls a little beforestabilizingat 300Mb/s for very

highspecifiedrates.This is consistentwith theratethatwasobservedfor best-effort TCPthrough-

put.Thedip in throughputcanbeexplainedby packet losscausingTCPto adjustits sendingratein

orderto matchthenetwork capacityavailableto it; thefactthatthedip is sosmall is anindication

of just how well the TCP flow control adjusts to network conditions.

 Figure 8.3: Throughput vs. Specified Pacing Rate for TCP Traffic

117

8.4. End-to-end Delay and Driver Performance

In orderto measuretheend-to-enddelayin awaythatdoesnotincludeoperatingsystemor pro-

tocolspecificdelays,weformulatedanexperimentthatmeasuresthetotal round-triptimefor asin-

glecell pingpacketandsubtractsthecomponentsof thedelaythatarespentin theoperatingsystem

andprotocolson both sideshosts.The experimentalsetupis illustratedin Figure8.4. Probesare

strategically placedatpointsin theprotocolstacksof bothmachines,whichusethePentium’scycle

counter to record the time for events corresponding to the packet reaching those points.

☞ Pentiumprocessorshavea registercalledthecyclecounterwhich incrementsonceeveryclock

cycle, and can be read by a special instruction to obtain precise measurements of elapsed time.

Theentryandexit pointsmarkedin thefigurerepresenttheprobes,andcorrespondto theloca-

tions in the protocol stack listed in Table8.2.

Thequantities(exit 1 - entry 1) and(exit 3 - entry 3) representtheamountof time

spent in the transmit portion of the APIC driver, and was measured to be an average of 2.7µsec.

Thequantities(exit 2 - entry 2) and(exit 4 - entry 4) representtheamountof time

spent in the receive portion of the APIC driver, and was measured to be an average of 4.8µsec.

Thequantity((entry 4 - exit 1) - (exit 3 - entry 2)) representstheround-trip

time betweentheAPICs,exclusive of driver or protocolprocessingtime; it canbeassumedto be

twicethedelayfrom whenthepacketis committedto thesendingAPIC, to whenthereceiving CPU

is interruptedto inform it of thepacket’s arrival. This round-triptime wasmeasuredat anaverage

of about30 µsec,or about15 µsecof one-waydelay. Thisone-waydelaynumberincludesthefol-

lowing hardwarecomponents:two uncachedregisterwrites(onefor signallingchannelattentionon

transmit,theotherfor acknowledgingthereceiveinterrupt),busdelaysoneitherend,APIC on-chip

delays,and propagation delay over about3 metersof fiber. It also includesthe software delay

involvedwith fielding theinterruptwhena packet is received.Thelattercanbea significantcom-

ponentof theone-way delay;independentthird-partyexperimentshave shown thatfielding a null

interrupt in NetBSD can take upto 10µs on a Pentium class machine.

The round-trip time including driver processingdelayscan be computedas approximately

2*2.7 + 2*4.8 + 30= 45µsec,andis representativeof thetotal round-triptimesthatwouldbeseen

118

by an applicationif it wereusingthe user-spacecontrol model to exchangedata.Of course,the

interveningswitchesin thenetwork canaddtheir own componentsto theend-to-enddelay, which

 Figure 8.4: Measuring APIC delay and round-trip time perf ormance

 Table 8.2: Probe points in the protocol stack

Probe name Description Function entry point

entry 1

entry 3

Time at which the packet enters the transmit
side of the kernel driver

apic_devoutput()

exit 1

exit 3

Time at which the packet is committed to the
APIC by writing to the channel attention reg-
ister

-

entry 2

entry 4

Time at which the driver’s interrupt service
routine is called upon packet arrival

apic_intr

exit 2

exit 4

Time at which the packet is delivered to
higher layers by the driver

atmc_input

kernel/user-space boundary

ping client

socket layer
and protocol
processing

driver
processing

APIC

socket layer
and protocol
processing

driver
processing

APIC

entry 1

exit 1 entry 2

exit 2
entry 3

exit 3entry 4

exit 4

Host nmvc1 Host nmvc2

119

shouldbe taken into account,but the numberillustratesthe fact that the APIC is capableof effi-

ciently supporting applications requiring end-to-end delays of as low as 22.5µsec

8.5. Protected DMA Throughput and Delay Performance

Two experimentsweredesignedto testtheperformanceof user-modeaccessto theAPIC using

ProtectedDMA. In thefirst experiment,a packet is ping-pongedbetweena pair of user-spacepro-

cessesrunningonthetwo hostsin ourexperimentalsetup.With 100,000back-to-backping-pongs,

therate(numberof ping-pongspersecond)givesusameasureof theround-tripdelayfor user-space

applications.Theresultsof this testarerepresentative of theoverheadassociatedwith a RPCcall

(a null RPC)implementedbetweenthe two user-spaceprocesses.This testwasrepeatedin three

different scenarios:

1. UsingprotectedDMA. Thepacket is never copied(zero-copy), andthereis nokernelinvolve-

ment in the data path.

2. UsingsimpleDMA. In this test,we usesimpleDMA from a privilegeduser-spaceprocessin

exactly thesameway thatwe would useprotectedDMA, again with no datacopying. This is

an “artificial” test,sincesimpleDMA could not normally be usedin this capacityunlessthe

applicationprocesswereprivileged.However, this testwould yield the highestpossibleper-

formancefor datatransferbetweentwo user-spaceprocesses,and thereforewill serve as a

baseline reference for comparison with the other cases.

3. UsingUDPsocket I/O. Therearesystemcallsinvolvedonbothreceiveandtransmit,andthere

is one copy each on transmit and receive (to and from kernel space).

All threescenarioswererun with two differentpacket sizes:a singlecell packet,anda packet

which resultsin an AAL-5 frame containingone full physical pageworth of data(4 KB). The

resultsareshown in Table8.3.The round-triptime (RTT) for a singleping-pongis shown in the

third columnof this table,anddemonstratesthat protectedDMA affords us an improvementof

570%over legacy UDP socket-basedI/O for smallpackets,andabout360%for largepackets.In

otherwords,the performanceof a latency-sensitive distributedapplicationcanbe improved by a

factorof 3 to 5 by usingprotectedDMA to dodirecttransfersbetweenuser-spaceandthenetwork

adapter. Thedifferencein performancebetweensimpleDMA andprotectedDMA givesusamea-

sureof thecostincurredby theadditionalmechanismsrequiredin theprotectedDMA schemeto

120

allow for protectedaccessto the network cardby multiple processes.The tableshows that this

“delay cost” is very small: under 24% for small packets, and only 3.3% for large packets.

The second experiment was aimed at discovering the throughput performanceusing

protectedDMA. Throughputwas measuredby sending2048 packets back-to-backat full rate

betweenthetwo machines.Theexperimentwascarriedout with directaccessto theadapterfrom

user-spaceprocessesrunningonthetwo machines,usingbothsimpleDMA (unprotected)andpro-

tectedDMA. In bothcases,therewasnokernelinvolvementandthetransferswerezero-copy from

theuser-spacebuffers.Theexperimentwasrepeatedwith bothsmall(singlecell) andlarge(4 KB)

packets.Theresultsareshown in Table8.4.Noticethatwith largepackets,it is possibleto achieve

dataratesof well over 600Mb/s usingprotectedDMA; this is closeto thetheoriticalpeakrateof

1 Gb/ssupportedby thePCI bus.It is importantto notethatthelatteris a theoriticalnumberonly,

andcanneverbeachievedin practicebecauseof busoverhead(addressandturnaroundcycles),and

otheroverheadsfromsoftware,DMA, andSAR.Thedifferencein performancebetweensimpleand

protectedDMA is a measureof thecostof addingprotectionsupportto theDMA mechanismsof

 Table 8.3: Results of Ping-Pong Test

Packet size Transfer Type RTT

40 bytes (single cell) Simple DMA from kernel 21.7µsec

40 bytes (single cell) Protected DMA 27 µsec

1 byte (single cell) UDP socket 123.5µsec

4072 bytes (one page) Simple DMA from kernel 109.4µsec

4072 bytes (one page) Protected DMA 113µsec

4000 bytes (one page) UDP socket 393µsec

 Table 8.4: Results of User-Space Throughput Test

Packet size Transfer type Data Throughput

40 bytes (one cell) Simple DMA 125 Mb/s

40 bytes (one cell) Protected DMA 89.7 Mb/s

4 KB (one page) Simple DMA 644 Mb/s

4 KB (one page) Protected DMA 630 Mb/s

121

theAPIC; in theseexperiments,thiscostwas28%for smallpacketsandonly 2.2%for largepack-

ets.This demonstratesthatwith very little additionaloverhead,protectedDMA cansupportvery

efficient user-space access to the network adapter.

122

Chapter 9

Conclusions

In this thesisweaddressedtheissuesinvolvedwith architectinganetwork interfacedevice for

ahigh-speedATM network. In thiscontext, we identifiedanumberof problemswith conventional

approaches to network interface design, and have proposed effective solutions to these problems.

9.1. Contributions

Thespecificcontributionsmadein conjunctionwith theresearcheffort describedin this thesis

include:

• A novel daisy-chaineddesk-areanetwork architecturethatcanremovemostconstraintson

thenumberof high-bandwidthmultimediadevicesthatcanbeusedwithin a host.This is

achievedby usingmorememoriesanda cell-switchedinterconnectto getaroundmemory

bandwidthandI/O buslimitations.Theinterconnectfeaturesextremelylow stage-to-stage

latenciesof under10 µsec.Theintroductionof theconceptof remotecontrol for our net-

work interfacewasanenablingtechnologyfor this architecture,which hasbeenvalidated

through the use of the APIC chip in several projects utilizing this feature.

☞ In particular, theSmartPortCard(SPC)projectatWashingtonUniversityhasusedtheAPIC’s

remotecontrol facility to performinline downloadandbootupof theSPCfrom a remotenet-

work node.

• Developmentof animplementationstrategy for user-spacecontrolof a network interface.

This strategy introducedthe novel conceptsof ProtectedI/O andProtectedDMA, which

123

whentakentogetherenableuser-spacecontrolof a device without theneedfor a system-

provided or on-boardI/O MMU. The ProtectedI/O schemeenablesprotectedaccessto

individual registersonachipby user-level processes;thiswasachievedby overloadingthe

functionalityalreadysupportedby a host’s virtual memoryprotectionhardware.ThePro-

tectedDMA mechanismallows buffers to be enqueuedfor transmissionor reception

directly by a userprocesswithout kernel intervention,therebyproviding for a very low

delaycommunicationmechanismfor applications.Experimentshave indicatedthat end-

to-enddelaysaslow as22.5µsecareachievableby suchapplications.Theuser-spacecon-

trol modelalsoallows for a zero-copy architecture,which canimprove throughputperfor-

mance by decreasing the number of data touches.

• Introductionof the conceptof interruptdemultiplexing. This schemeis simpleto imple-

ment,andallows bandwidth-intensive andlatency-sensitive applicationsto co-exist with-

out oneadverselyaffecting the other. Whencoupledwith the user-spacecontrol model,

interruptdemultiplexing providesa completesolutionto theproblemof receive livelock.

Significantly, this hasbeenachieved without requiringany complex softwareinteraction

between the network adapter and the operating system.

• An innovative Pacerdesignthatallows thenetwork interfaceto efficiently quality of ser-

vice. This is thefirst hardware-baseddesignwe know of thatcanscaleto supportpacing

of largenumbersof connectionswith differentpacingratesfor eachconnection.Thefeasi-

bility of an ASIC implementationof the d-heapalgorithmusedby our designhasbeen

confirmed, and experimental results have validated this approach.

• A completeandsuccessfulimplementationof our proposedarchitecturein the form of a

sophisticatedASIC developedusing0.35microntechnology, andcomprisingseveralhun-

dredthousandgates(seeFigure9.1).TheASIC developmentwasdoneusingtheVHDL

hardwaredescriptionlanguage,andin additionour designprocessincludeddevelopment

of adetailedbehavioral simulationof thechip in C++,whichwasusedfor bothfunctional

correctness testing as well as for verification of the VHDL design.

• A completekerneldriver implementationfor theAPIC in theNetBSDoperatingsystem,

including support for both TCP/IP and raw ATM protocols.

124

The APIC has achieved throughputs in excess of 300 Mb/s, despite a serious bug in the chip

which necessitates two additional data touches for all received packets. This by itself is a significant

illustration of the validity of our techniques; to put this in perspective, here is an excerpt from an

article drawn from a very recent press article titled “Gigabit Ethernet hits second gear” (dated

March 20, 2000):

 Figure 9.1: APIC Internal Layout

marcel
Stempel

125

In our previous round of testing, the best Gigabit Ethernet performance we saw
was 29 Mbps measured in a file transfer between a Windows NT 4.0 server and
Windows 95 client. This amounted to a meager 3% bandwidth utilization over Giga-
bit Ethernet.

Using second-generation Gigabit Ethernet products and Windows 2000, the best
real-world throughput was 158 Mbps, which sets bandwidth utilization at 16 per-
cent. On average, we measured performance ranging from 137 to 145 Mbps. (See
Table 1). These results bode well for connecting server and high performance
workstations directly to Gigabit Ethernet - something we couldn’t recommend pre-
viously.

By mostmetricstheAPIC effort hasbeensuccessful.It is currentlyin usein several research

projectsboth at WashingtonUniversity and elsewhere.It hasseenwidespreaddistribution as a

researchvehicleundertheNSF-sponsoredGigabit Kits initiative.Becauseof its openarchitecture

andopensourcedrivers,thechiphasattracteddeveloperswhoareusingit to furthertheirown agen-

das;for example,we know of at leasttwo independentefforts to port theAPIC driver to theLinux

operatingsystem.Althoughtime limitationsdid notpermitusto fully exploreall of thefeaturesof

theAPIC, it is expectedthatmany of thesefeatureswill beexercisedandseveralof our innovations

will see validation and proof of concept through the continuing work of other developers.

9.2. Future Work

Thereareseveralareas,especiallyrelatedto softwaresupportfor theAPIC chip,wheresignif-

icant contributions could be made:

 Figure 9.2: The APIC Network Interface Card

126

• A full implementationof a user-spacedriver in library form would helpvalidatetheuser-

spacecontrolmodel,andallow for betterevaluationof thegainsto beachievedby using

this model.

• A new API that is differentfrom the socket API is neededin orderto efficiently support

zero-copy semantics.Thedesignof suchanAPI, that canwork bothwith theuser-space

control model as well as with kernel-basedzero-copy schemes,would make for a very

interesting project for future research.

• A comprehensive remotecontrol library that could be usedto develop generalizeduser-

spacedevice-drivers for devices in a deskor systemareanetwork canbe a very useful

future contribution that could pave the way for greater use of such networks.

• On the hardwareside,quality of servicesupportin network interfacesfor packet-based

networks could be a usefulareaof future work. The pacingalgorithmsdescribedin this

thesisdo not cover variable length packets, and efficient hardware implementationof

schemessuchasweightedfair queuing(WFQ) for network adaptersis an openareafor

research.

• Many of the schemesdescribedin this thesishave madeuseof the fact that ATM data

receivedby theadaptercanbeeasilydemultiplexedbasedon theVC. Similar techniques

cannotbe directly appliedto packet basedadaptersunlessan efficient hardware packet

classificationengineis developedwhichcanclassifypacketsinto end-to-endflows(which

canthenbetreatedin amannersimilar to ATM VCs).Thedesignof suchpacketclassifiers

is currentlya hotly researchedtopic, but mostof theseefforts are targetedat classifiers

used in routers, rather than network interfaces.

9.3. Closing Remarks

With theASP(applicationserviceprovider) modelbecomingubiquitousin theInternet,more

andmoreapplicationsaremigratingfrom thedesktopto largeservers.Theseserverswill needto

connectto theInternetoververyhighbandwidthlinks, andbeableto efficiently servecontentand

applicationsto thousands,andeven millions of endpoints.With multimediaservicesgaining in

127

popularity, theserversservingup suchcontentwill have to scalablyprovide quality of servicefor

all the streamsthey handle.In this environment,thereis ampleopportunityto designnew and

improvednetwork interfacesthatcanhandlenotonly veryhighdatatransferrates,but alsobeable

to performmorecomplicatedQoSfunctionssuchaspacingor WFQ over very large numbersof

connections.TheAPIC effort representsonly afirst stepin thatdirection,andthefuturewill likely

see many more challenges and advances in this very exciting field.

128

References

[1] Arnould, Emmanuelet al; “The Designof Nectar:A NetworkBackplanefor Heterogeneous

Multicomputers,”ASPLOS-III (ACM SIGOPSOperating SystemsReview),Vol. 23, New

York, April 1989, pp. 205-216.

[2] Banks,D., andPrudence,M., “A High PerformanceNetwork Architecturefor a PA-RISC

Workstation,”IEEE JSAC, Vol.11 No.2, Feb.1993.

[3] Buddhikot, M.M., Parulkar,G.M., and Cox, J.R., “Design of a Large ScaleMultimedia

Server,”Journal of Computer Networks and ISDN Systems, Dec.1994.

[4] Cheriton,DavidR.; “VMTP: A TransportProtocolfor theNextGenerationof ComputerSys-

tems,”Proc. ACM SIGCOMM ‘86, Vol. 16, No. 3, 1986, pp. 406-415.

[5] Clark, D.D., Jacobsen,V., Romkey,J., Salwen,H., “An Analysisof TCP ProcessingOver-

head,”IEEE Communications Magazine, Vol. 27, No.6, 1989.

[6] Clark,D.D., andTennenhouse,D.L., “ArchitecturalConsiderationsfor a New Generationof

Protocols,”Proc. ACM SIGCOMM 90, Aug.1990.

[7] Clark,D.D., “The Structuringof SystemsUsingUpcalls,”Proc.6thSymposiumonOperating

System Principles (SOSP), 1985.

[8] Cranor,C.D., andParulkar,G.M., “Design of UniversalContinuousMedia I/O,” Proc. 5th

Intl. Workshopon Network and Operating SystemSupport for Digital Audio and Video,

Apr. 1995.

[9] Dalton, C.; Watson,G.; Banks,D.; Calamvokis,C.; Edwards,A.; and Lumley, J.; “After-

burner,”IEEE Network, Vol. 7 No. 4, July 1993, pp. 36-43.

[10] Davie,B.S., “The ArchitectureandImplementationof a High-SpeedHost Interface,”IEEE

JSAC, Vol. 11, No.2, Feb.1993.

129

[11] Demers,A.; Keshav,S.;andShenker,S.; “Analysis andSimulationof a Fair QueueingAgo-

rithm,” Proc. ACM SIGCOMM 87, Austin, Texas, Sep. 1987.

[12] Dittia, Z.D., Cox,J.R.,andParulkar,G.M., “Designof theAPIC: A High PerformanceATM

Host-Network Interface Chip,”Proc. IEEE INFOCOM 95, April 1995.

[13] Druschel,P.;andBanga,G.; “Lazy ReceiverProcessing(LRP): A networksubsystemarchi-

tecturefor serversystems,”Proc. SecondUSENIXSymp.on OperatingSystemsDesignand

Implementation, pp. 261-276, October 1996.

[14] Druschel,P.,Peterson,L., andDavie,B.S. “Experienceswith a High-SpeedNetworkAdap-

tor: A Software Perspective,”Proc. ACM SIGCOMM 94, Sep.1994.

[15] Druschel,P.,andPeterson,L., “Fbufs: A High-BandwidthCross-DomainTransferFacility,”

Proc. 14th Symposium on Operating System Principles (SOSP), Dec.1993.

[16] Druschel,P.,“OperatingSystemSupportfor High-SpeedNetworking,”Universityof Arizona

Ph.D. Dissertation CS-94-24, Aug.1994.

[17] Edwards,A., Watson,G., Lumley, J., Banks,D., Calamvokis,C., and Dalton, C., “User-

SpaceProtocolsDeliverHigh Performanceto ApplicationsonaLow-CostGb/sLAN,” Proc.

ACM SIGCOMM94, Sep.1994.

[18] Edwards,A., andMuir, S., “ExperiencesImplementinga High PerformanceTCP in User-

Space,”Proc. ACM SIGCOMM 95, Aug.1995.

[19] Eicken,T. von,Basu,A., Buch,V., Vogels,W., “U-Net: A User-LevelNetworkInterfacefor

ParallelandDistributedComputing,”Proc.15thACM SymposiumonOperatingSystemPrin-

ciples, Dec.1995.

[20] Eicken, T. von, Culler, D.E., Goldstein,S.C., and Schauser,K.E., “Active Messages:A

Mechanism for Integrated Communication and Computation,”Proc. 19th ISCA, May1992.

[21] Engler,D.R., Kaashoek,M.F., andO’Toole, J., “Exokernel:An OperatingSystemArchitec-

ture for Application-LevelResourceManagement,”Proc. 15thACM Symposiumon Operat-

ing System Principles, Dec.1995.

[22] Forin, A., Golub,D., andBershad,B., “An I/O Systemfor Mach3.0,” Proc. USENIXMach

Symposium, Nov.1991.

[23] Gopalakrishnan,R., andParulkar,G.M., “Bringing Real-timeSchedulingTheoryandPrac-

tice Closer for Multimedia Computing,”Proc.ACM SIGMETRICS 96.

130

[24] Gopalakrishnan,R., and Parulkar,G.M., “Application Level Protocol Implementationsto

provide QoS Guaranteesat Endsystems,”Proc. 9th Annual IEEE Workshopon Computer

Communications, Oct.1994.

[25] Greaves,David J.; McAuley, Derek;andFrench,LeslieJ.; “ProtocolandInterfacefor ATM

LANs,” Proc. 5th IEEE Workshopon Metropolitan Area Networks, Taormina,Italy, May

1992.

[26] Hayter,M.D., andMcAuley, D.R., “The DeskArea Network,” Operating SystemsReview,

Vol. 25, No.4, Oct.1991.

[27] Houh, H.H., Adam, J.F., Ismert,M., Lindblad, C.J., and Tennenhouse,D.L., “The VuNet

Desk Area Network: Architecture,Implementation,and Experience,”IEEE JSAC Vol. 13,

No. 4, May 1995.

[28] Hutchinson,N.C., andPeterson,L.L., “The x-Kernel:An architecturefor implementingnet-

work protocols,”IEEE Trans. Software Engineering, Vol. 17, No.1, Jan.1991.

[29] IEEE Journal on Selected Areas in Communications, Vol. 11 No. 2,” February 1993.

[30] Indiresan,Arti;, Mehra,Ashish;andShin,KangG.; “ReceiveLivelock Eliminationvia Intel-

ligent Interface Backoff,” http://rtcl.eecs.umich.edu/outgoing/ashish/end-

rll.ps

[31] Jacobson,Van; “Efficient Protocol Implementation,”ACM SIGCOMM 90 tutorial, Sep.

1990.

[32] Kanakia,H., andCheriton,D.R., “The VMP Network AdapterBoard(NAB): High Perfor-

mance Network Communication for Multiprocessors,” Proc. ACM SIGCOMM 88,

Aug. 1988.

[33] Maeda,C., and Bershad,B. “Protocol ServiceDecompositionfor High-PerformanceNet-

working,” Proc. 14th ACM Symposium on Operating System Principles, Dec.1993.

[34] Mogul, J.,andRamakrishnan,K.K., “Eliminating receivelivelock in aninterrupt-drivenker-

nel,” ACM Trans. Computer Systems, vol.15, No.3, Aug.1997.

[35] Neufeld,GeraldW.; RobertIto, Mabo; Goldberg,Murray; McCutcheon,Mark J.; Ritchie,

Stuart; “Parallel Host Interface for an ATM Network,” IEEE Network, July 1993.

[36] Partridge, C., “Gigabit Networking,”Addison Wesley, 1994.

[37] Pasquale,J.,Anderson,E.,andMuller, P.K.,“ContainerShipping:OperatingSystemSupport

for I/O-Intensive Applications,”IEEE Computer, Vol. 27, No.3, Mar.1994.

131

[38] Ramakrishnan,K.K. “PerformanceConsiderationsin DesigningNetwork Interfaces,”IEEE

JSAC Vol. 11, No.2, Feb.1993.

[39] Sterbenz,J., and Parulkar,G.M., “Axon: Host-NetworkInterfaceArchitecturefor Gigabit

Communication,”Protocols for High Speed Networking, Elsevier (North Holland), 1991.

[40] Thekkath,C., Nguyen,T., Moy, E., andLazowska,E. “ImplementingNetworkProtocolsat

User Level,”Proc. ACM SIGCOMM ‘93, Sep.1993.

[41] Traw, C.B.S.,and Smith, J.M., “Hardware/SoftwareOrganizationof a High Performance

ATM Host Interface,”IEEE JSAC Vol. 11, No.2, Feb.1993.

[42] Turner,JonathanS.; “Efficient Cell Pacingin ATM NICs,” presentationmadein theDepart-

ment of Computer Science at Washington University, July 14, 1997.

[43] “Virtual Interface Architecture Specification,” (Compaq, Intel, Microsoft): http://

www.viarch.com.

[44] Zhang,Lixia; “Virtual Clock: A New Traffic Control Algorithm for PacketSwitchedNet-

works,” ACM Trans. on Computer Systems, Vol. 9, No. 2, May 1991, pp. 101-124.

132

Vita

Zubin D. Dittia February 4, 2001

zubin@dittia.com

WORK EXPERIENCE

2000-2001: Jibe Networks, Inc.

Co-Founder and Chief Scientist

2000: Cisco Systems, Inc.(through acquisition of Growth Networks, Inc.)

Hardware Engineer, HFR Business Unit

Important architecturalcontributions to Cisco’s next generationmulti-terabit

routerfabric. Developedfrom scratchtheperformancesimulationenvironment(in

C++) for the HFR system,which is currentlybeingextendedandusedby 5-10

engineers in Cisco.

1998-2000: Growth Networks, Inc.

Founding Engineer

Key architect of Growth Networks’ ten-terabit switching fabric chips. Also

designedandimplementeda clock-tick accurateperformancesimulatorfor these

chips,andworkedwith customersto addressrequirementsandtunesystemperfor-

mance to their needs.

133

EDUCATION

1993-2001: D.Sc. in Computer Science

Applied Research Laboratory, Washington University, St. Louis.

Architecture,design,andimplementationof a1.2Gb/snetwork interfacechipand

supportingoperatingsystemsoftware. Chip is currentlyin useat 30+universities

and labs for high performance networking research.

1990-1992: M.S. in Electrical Engineering

Washington University, St. Louis.

Implementationandevaluationin the SunOSUnix kernelof TCP extensionsfor

high bandwidth-delay product networks (RFC 1323).

1986-1990: B.Tech. in Electrical Engineering

Indian Institute of Technology, Bombay, India.

OTHER PROJECTS

Tree Bitmap

An algorithmfor high-speedIP addresslookupsandpacket classification. Cur-

rently beingimplementedby CiscoSystems,Inc. in a line cardchip for their next

generation multi-terabit router (HFR).

Router Plugins

A kernel-basedsoftwarearchitecturefor accessrouters. Implementedin theNet-

BSD kernel. Jointprojectwith ETH Zurich. Technologylicensedby AscomAG

andInalp AG.

REFERENCE CONTACTS

Upon request

134

PATENTS

Decasper, Dan S.; and Dittia, Zubin D.; “Intelligent ContentPrecaching,” App. No. 09/566,068,filed

05/05/00 (Jibe Networks, Inc.).

Decasper, Dan S.; andDittia, Zubin D.; “PersonalizedContentDelivery Using Peer-to-PeerPrecaching,”

App. No. 09/660,991, filed 09/13/00 (Jibe Networks, Inc.).

Decasper, Dan S.; and Dittia, Zubin D.; “Infrastructurefor On-SiteServiceProviders (OSP),” App. No.

60/203,375, filed 05/09/00 (Jibe Networks, Inc.).

Dittia, ZubinD.; andTurner, JonathanS.;“MethodandApparatusfor AccumulatingandDistributingTraffic

and Flow Control Information in a Packet Switching System”, (Cisco Systems, Inc.).

Turner, JonathanS.;andDittia, ZubinD.; “MethodandApparatusfor ControllingInputRatesWithin aPacket

Switching System,” (Cisco Systems, Inc.).

Dittia, Zubin D.; Fingerhut,Andrew J.; andLenoski,Daniel E.; “Method andApparatusfor Distributing

Packets AcrossMultiple PathsLeading to a Destination,” App. No. 09/519,715,filed 3/7/00

(Growth Networks, Inc.).

Dittia, Zubin D., Eatherton,William N.; Fingerhut,Andrew J.;Galles,MichaelB.; andTurner, JonathanS.;

“AccumulatingandDistributingFlow ControlInformationviaUpdateMessagesandPiggybacked

Flow Control Information in Other MessagesIn a Packet Switching System,” App. No.

09/521,278, filed 3/7/00 (Growth Networks, Inc.).

Turner, JonathanS.;andDittia, ZubinD.; “MethodandApparatusfor SchedulingPacketsBeingSentfrom a

Componentof aPacketSwitchingSystem,” App.No.09/519,721,filed 3/7/00(Growth Networks)

Peris,Vinod GerardJohn;Turner, JonathanS.; andDittia, Zubin D; “Method andApparatusfor Delaying

PacketsBeingSentfrom aComponentof aPacketSwitchingSystem,” App.No.09/520,685,filed

3/7/00 (Growth Networks, Inc).

Lenoski,DanielE.; Dittia, Zubin D.; Fingerhut,Andrew J.;andEatherton,William E.; “Method andAppa-

ratusfor ReducingtheRequiredSizeof SequenceNumbersUsedin ResequencingPackets,” App.

No. 09/519,716, filed 3/7/00 (Growth Networks, Inc.).

Turner, JonathanS.;Dittia, Zubin;andFingerhut,Andrew J.;“TelecommunicationsInterconnectionNetwork

With Distributed Resequencing,” App. No. 09/520,684, filed 3/7/00 (Washington University).

Eatherton,William E.;andDittia, ZubinD.; “DataStructureUsingaTreeBitmapandMethodfor RapidClas-

sificationof Datain aPacketSwitchor Router,” App. No. 09/371,907,filed 8/10/99(Washington

University).

135

PUBLICATIONS

Dittia, Zubin D.; Parulkar, GuruM.; andCox, JeromeR.; “The APIC Approachto High PerformanceNet-

work InterfaceDesign:ProtectedDMA andOtherTechniques,” Proc. IEEE Infocom97, Kobe,

Japan 1997.

Decasper, DanS.;Dittia, Zubin D.; Parulkar, GuruM.; andPlattner, Bernhard;“RouterPlugins:A Software

Architecturefor Next GenerationRouters,” IEEE/ACM Trans.on Networking, February2000.

Also appeared inProc. of ACM SIGCOMM ‘98, Vancouver, Canada, September 1998.

Eatherton,William E.; Dittia, Zubin D.; andVarghese,George;“TreeBitmap:Hardware/SoftwareIP Look-

ups with Incremental Updates,” April 1999.

Decasper, Dan S.; Waldvogel,Marcel; Plattner, Bernhard;Adiseshu,Hari; Dittia, Zubin D.; andParulkar,

GuruM; “A Toolkit for IntegratedServicesoverCell-SwitchedIPv6,” IEEEATM 97, Lisboa,Por-

tugal.

Dittia, Zubin D.; Cox,JeromeR.; andParulkar, GuruM.; "DesignandImplementationof a VersatileMulti-

mediaNetwork InterfaceandI/O Chip," Proc.6th Intl. WorkshoponNetworkandOperatingSys-

tem Support for Digital Audio and Video (NOSSDAV), April 1996.

Dittia, Zubin D.; Cox, JeromeR.; andParulkar, GuruM.; "Designof theAPIC: A High PerformanceATM

Host-Network Interface Chip,"Proc. IEEE INFOCOM 95, Boston, 1995, pp. 179-187.

Krchnavek,RobertR.; Chamberlain,RogerD.; Barry, T.; Malhotra,V.; andDittia, Zubin D.; "Optical Inter-

connectDesignfor a ManufacturableMulticomputer," 2nd International Conferenceon Mas-

sively Parallel Processing using Optical Interconnections, October 1995.

Dittia, ZubinD.; Cox,JeromeR.; andParulkar, GuruM.; "WashingtonUniversity’sGigabitATM DeskArea

Network," Proc. of 9th Annual IEEE Workshop on Computer Communications, October 1994.

Dittia, ZubinD.; Cox,JeromeR.;andParulkar, GuruM.; "UsinganATM InterconnectasaHighPerformance

I/O Backplane,"Proc. of HOT INTERCONNECTS 94, August 1994.

Turner, JonathanS.;ARL staff; andANG staff; "A GigabitLocalATM Testbedfor MultimediaApplications:

SystemArchitectureDocumentfor GigabitATM SwitchingTechnology," Documentpreparedby:

Dittia, Zubin D.; and Fingerhut, Andy; December 1994.

Dittia, ZubinD.; Cox,JeromeR.;andParulkar, GuruM.; "CatchingUp With theNetworks:HostI/O atGiga-

bit Rates,"Washington University Technical Report WUCS-94-11, March 1994.

136

Parulkar, GuruM.; Buddhikot, Milind M.; Cranor, CharlesD.; Dittia, ZubinD.; andPapadopoulos,Christos;

"The3M Project:Multipoint MultimediaApplicationsonMultiprocessorWorkstationsandServ-

ers," Proc. of IEEE Workshop on High Performance Communication Systems, September 1993.

Anderson,JimM.; Parulkar, GuruM.; andDittia, ZubinD.; "PersistentConnectionsin HighSpeedInternets,"

Proc. GLOBECOMM, December 1991.

Gong,Fengmin;Dittia, Zubin D.; andParulkar, GuruM.; "A RecurrenceModel for AsynchronousPipeline

Analysis,"Washington University Technical Report WUCS-91-14, 1991.

Dittia, Zubin D.; Kumar, P.S.; Mundkur, P.Y.; and Desai,Uday B.; "A Parallel Schemefor Adaptive 2D

ParameterEstimation,"Proc.WorkshoponParallel Processing, BhabhaAtomic ResearchCenter,

Bombay, February 1990.

Mundkur, PrashanthY.; Dittia, Zubin D.; andDesai,Uday B.; "A SystolicArchitecturefor Adaptive 2D

ParameterEstimation,"Proc.WorkshoponSignalProcessing, CommunicationsandNetworking,

Indian Institute of Science, Bangalore, July 1990. Communication Systems, September 1993.

PROFESSIONAL ACTIVITIES

Publicity co-chairfor ACM Multimedia94. Reviewer for paperssubmittedto theIEEE/ACM Transactions

onNetworking,theJournalof ComputerCommunications,ACM TransactionsonInternetTechnology, ACM

SIGCOMM, ACM ASPLOS,IEEE INFOCOM, IEEE Network magazine,IEEE Multimedia, NOSSDAV,

ACM PODC, and IEEE ICNP.

Short Title: Design of a Network Interface Dittia, D.Sc. 2001

