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Abstract. Cloud Storages combine high availability with the unences-
sity to maintain any own infrastructure and all-time availability. A wide
field of different providers offer a flexible portfolio for any technical need
and financial possibility. Yet, the possibilities of different cloud storage
providers have all one issue in common: Basic storage is cheap whereas
the costs increase with the storage consumed adhering the pay-as-you-
go paradigm. Photo sharing websites such as Facebook, Picasa-Web, and
Flickr leverage from own cloud infrastructure and offer unlimited storage
for less or no charge. Obviously pictures can be used to store informa-
tion in, which has been used for steganography and watermarking at low
data rates. We propose a general framework for storing large amounts
of data, its data density and error-correcting mechanisms tunable to
the properties of the photo sharing website of your choice. Our cost-
performance-analysis shows that photo sharing websites compare favor-
ably to professional cloud storage services such as Amazon S3. Thanks to
the integration of our software as a backend to the widely-used jClouds
framework, everyone can now use photo sharing websites as one compo-
nent for low-cost purposes, including archival.
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Introduction 1

1 Introduction

Cloud storage has been the favorite storage for all kinds of users, ranging from
end-user centric file storage like Dropbox, Skydrive, or Google drive to large-scale
block and NoSQL storage for the professionals by the likes of Amazon and Google
through dedicated HTTP-based APIs such as SOAP or REST. Cloud service
providers typically mention reliability, availability, functionality, cost efficiency,
and ease of use as the main selling points for their offers.

When the free service model is not enough, however, end users are presented
with a fragmented market, inflexible pricing, and compatibility issues. Projects
such as jClouds [1] are addressing compatibility issues by providing a uniform
interface. This also helps reducing friction in the market. However, the market
still remains small, with complex pricing models, where a small change in usage
pattern can make a big difference in price.

Our goal is to open up the market and let users chose from a wider range of
established providers, which is typically forgotten: Sharing sites. Photo sharing
websites such as Yahoo’s Flickr, Google’s Picasa-Web, or Facebook, the site with
the largest number of pictures[2], are typically forgotten. However, they provide
large storage space and high availability for free or cheap.

Comparing the costs for professional cloud storages like Amazon S3 (denoted
as AWS S3 in the rest of the paper), end-user storage systems and photo sharing
websites, the price scales in different ways: Fig. 1 compares the costs of common
cloud storages with the costs of photo sharing websites based on an exponentially
increasing amount of storage including transfer of the data.

Professional cloud storage systems like AWS S3 bill not only the consumed
space. All data to be transferred plus the related requests cost additionally to
the storage. The price for AWS S3 in Fig. 1 bases on the assumption that the
space consumed is also transferred once per month resulting in a linear scaling
related to the amount of data stored. User-centric cloud storages like Dropbox,
Microsoft Skydrive as well as Google Drive, are accessed by native clients by
default. Nevertheless, all of these storage systems offer additional REST-based
services.
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2 Introduction

The pricing normally includes low complimentary storage between 2GB (for
Dropbox) and 7GB (for Skydrive). All further storage must be purchased whereas
the billing is defined on thresholds in opposite to the exact billing within pro-
fessional cloud storages. In Fig. 1, Dropbox bills starting 3GB whereas Skydrive
offers 7GB complimentary storage. Google combines within its storage-plans its
products resulting in one curve for Google Drive as well as Picasa-Web. While
the costs for traditional cloud storages increase with the size of the data, photo
sharing websites store data either at no charge or based on flat-rates. Picasa,
Flickr and Facebook, as three examples, offer unlimited storage at no costs even
though restrictions related to the traffic and the resolution of the images may
apply. For example, the storage on Picasa-Web is complimentary as long as the
images do not exceed a maximal resolution of 8002 (respectively 20482 if the user
subscribes to Google+ as well). Flickr, as another example, limits the transfer of
any images to 300MB per month within its complimentary offer. The Flickr-Pro
account offers unlimited transfer and access to the original upload images.

All denoted photo sharing websites utilize similar infrastructures like cloud
storage providers and guarantee all necessary constraints of a professional storage
system as well: Availability, accessibility as well as consistence of the data while
performing heavy load operations. For example, Facebook in 2010 stored 260
billion photos representing 20 PB of data where 60 TB of new photos were
uploaded within one week [2].

We develop an adapter for utilizing the vast and cheap resources of these
photo sharing websites as storage backends for no-sql interfaces. Based on an
in-depth analysis of Flickr, Facebook and Picasa-Web, we present the features
of these platforms including billing models and image-/storage-constraints. The
different appliances of compressions, as well as the access to original data, result
in different transformations of any byte-content into images. The transforma-
tions represent different trade-offs between robustness, storage and bandwidth
consumption as well as image size. Additional error-correction codes applied to
the data stored in the images further allows us to increase the data rate per
image by adding only a constant overhead. The resulting adapter is included in
the jClouds-API [1]1 and offers convenient, cheap, and scalable access analogical
to AWS S3.

The benefit accessing unlimited storage comes at a price: Compared to com-
mon cloud storages like AWS S3, our approach generates a constant overhead,
heavily depending on the respective hoster, as well as on the encoder utilized
with respect to the amount of data. This upload consumes more time, based on
the processing of the image on the photo sharing website before acknowledging
the arrival of the data since the data is compressed and organized directly within
the storage-process. Our approach is therefore especially usable for use-cases de-
manding for high data capacity without the necessity to regular update already
existing data like e.g. archiving purposes.

Whereas most current approaches related to data encapsulation in images
either focus on data retrievable over cameras (like QR-Codes) or hide information
in existing photos (representing the field of steganography), we generate images
directly out of the data processing the images directly on the pixels themselves.
As a consequence, our images contain multiple times the information achievable
within QR-Codes or steganography, and leverage from the free hosting service

1 Freely available under https://github.com/disy/jclouds as provider “imagestore”
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of photo sharing websites. Based on the direct processing of the images, we are
able to generate images containing data-rates ranging from 8PixelByte to 1

3
Pixel
Byte .
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4 Related Work

2 Related Work

Utilizing images as containers for data represents one major field related to
encryption. Xu et al.[3] describes a method of image-steganography that is ex-
tremely robust to JPEG compression. With this method, it is possible to extract
the embedded information with zero bit-errors, even if the containing image was
processed with maximum JPEG-compression. This aim is similar to ours even
though we do not need to encapsulate the data in existing images. Instead, we
generate the picture out of the data, enabling us to generate much higher data
rates not achievable when utilizing existing images as the base for data encap-
sulation.

Besides steganography, the use-case of QR-Codes is quite similar to our ap-
proach. QR-Codes are not only widely distributed on any print-media, they still
represent an active area of research. Langlotz et al.[4] for example introduces
4D-barcodes. The main idea behind this approach is to improve the capacity
of regular cellphone-readable 2D-barcodes by adding the dimensions color and
time representing a GIF, which can be processed by normal mobile phones.
Even though the main purpose is similar to ours, we do not need the detour over
any camera. Leveraging from the different levels within the RGB color-space,
Dean and Dunn[5] propose a layered barcode where each layer contains an own
barcode. One of our encoders utilizes the same technique for increasing the data-
rate in images as described in Sec. 3. Kato[6] proposes a color selection schema
providing robustness against color compression. We apply his findings to our
encoding-schema as well.

Since we parse the image directly, the image does not need to be readable by
any optical device resulting in much higher data rates. Some similar approaches
for encapsulating data in images already exist mainly to leverage from the easy
combination of image-compression and transmission-rates: PNGStore[7] as one
example encapsulates CSS and JavaScript in PNGs to increase speed for web
sites for very slow connections. This approach is very similar to our encoding-
schemas even though we do not aim to leverage from any lossless compression
at the moment. Nevertheless, we utilize similar mechanisms to bring any data
to photo sharing websites.

4



Storing Bytes in Images 5

3 Storing Bytes in Images

Despite most current approaches which are encapsulating data in camera-readable
images or storing encrypted information in existing images, we generate images
directly out of the data. Our approach generating images is thereby based di-
rectly on the pixels used as atomic units to store a variable number of colors.
The number of colors per pixel is denoted as γ in the rest of the paper. The
appliance of different colors to one pixel takes place in two different ways:

1. We interpret all colors as one single data-range and map different areas of
this range on a variable numbers of bits. This approach is denoted as Single
Layered -approach (SL-approach) in the rest of the paper.

2. We interpret each component of the RGB color-space as one single value
range and map the resulting three values to each other. This approach is
denoted as Multi Layered -approach (ML-approach) in the rest of the paper.

Examples for γ = 2 for both approaches, also denoted as encoders within the
rest of the paper, are shown in Fig. 2 and described in the following section in
more detail.
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(a) SL with γ = 2
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(b) ML with γ = 2

Fig. 2. Examples of generated Images

3.1 Single-Layered Encoders

Within the SL-approach, we interpret all colors as one single value-range. In
the simplest case, this results in images consisting of black and white pixels
only, as represented by Fig. 2a. In this case, we need eight pixels to store one
byte denoted by the red area in Fig. 2a. The interpretation of the binary values
represented by the pixels results in bits which are combined to one byte. Based
on the following formula where γ is the number of values applied to one pixel,
we are able to compute the number of pixels necessary to store one byte within
the SL-approach:

dlogγ(256)e = p (1)

Taking this equation into account, we define different values for γ and com-
pute the resulting number of pixels needed for an increasing number of γ. The

5



6 Storing Bytes in Images

result is rounded up to the next natural number since one pixel is the finest-
granular unit for painting. Fig. 3a shows the resulting encodings.
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Fig. 3. Encodings for Putting Bytes in Images

The chosen values for γ result in the best usage of the value-range for a given
number of pixels. Any other choice of γ would result in the same number of
necessary pixels with more information per single pixel. Since this information
can not be utilized when storing bytes in the images, the additional value-range
could not be used but would result in an higher fragility of the encoders since
more colors are applied. As a result, the proposed 6 different values for γ are
optimal with respect to the mapping of bytes to pixels. A switch of the value-
range from bytes to any other base, mapped to the applicable pixels, would have
the possibility to make use of these unused bits. Such an adaption is straight-
forward and out of focus in this paper, since we rely only on the storage of
bytes.

For γ = 2, the SL-encoder works with only black and white as possible
values per pixel resulting in an high robustness against JPEG-transformations.
For γ = 3, the encoder contains one and for γ = 4, the encoder contains two
further grey values.

Starting values of γ = 7, we apply colors to the pixels, derived from Kato et
al.[6] as shown in Fig. 3a. Kato describes a robust choice of colors by ensuring
maximal distances of the colors in the RGB color-space as well as in the YCbCr
color-space. We take 7 out of the 10 defined colors for γ = 7 and utilize the
approach to generate another 9 colors for γ = 16 and another 246 values for
γ = 256.

By choosing γ = 7 as well as γ = 3, we are not able to make entire use from
the value-range stored in the pixels but getting the highest distances between γ
values per pixel. Within an increasing γ, the robustness of the images decreases
as we describe in Sec. 4. As a consequence, γ = 2 represents, based on the
largest distance between the applicable values per pixel, the most robust encoder
whereas γ = 256 is vulnerable against all kinds of lossy compressions.

The price for this robustness is the size of the generated images: The number
of bytes to be stored must be multiplied with p to get the number of necessary
pixels which influence not only the generation of the image, but also the per-
formance related to uploading and download any data including the processing
from the photo sharing website before acknowledging the arrival of the picture.

6



Storing Bytes in Images 7

3.2 Multi-Layered Encoders

To reduce p as far as possible, we extended our SL-approach by exposing the
colors stored in the picture. By making use of the RGB color-space as three
independent dimensions, we store up to 3 times more data per pixel than within
the SL-approach. One example utilizing only two values per component is shown
in Fig. 2b where each pixel is seen as composite holding up to 23 different values.
The following equation applies to all values of γ within the ML-approach:

dlogγ(256)e
3

= p (2)

Since each component represent the same value range from [0 . . . 255], the
same findings for the SL-approach apply for each component with respect to
γ: As a result, only values for γ proposed in Fig. 3b generate images with the
lowest applicable values per component per pixel.

Since we utilize all components independently from each other, the appli-
ance of a robust color choice like the approach from Kato et al.[6] is obsolete.
The ML-encoder is as a consequence vulnerable against any kind of lossy color
compressions. On the other hand, the data-rate of the generated images is three
times higher compared to the SL-encoder. The higher data-rate results in less
pixels consumed. This lower number of pixels utilized, result in a lower creation
time of the image, a faster up- and download of the data to the photo sharing
website and a faster processing of the image before the data is acknowledged
within the upload.

As a summary, the choice of the suitable encoder and the corresponding
values of γ bases on the following aspects:

– The higher the supported resolution of the gallery provider is, the more
data fits in the picture. We thereby aim to store images with the highest
resolution possible not generating any size-based compression on the image.
Resizing-operations applied by the photo sharing website harms our pixel-
based encoding whereas the awareness of the highest retrievable resolution
is mandatory for our approach.

– The ML-encoder is preferred against the SL-encoder since an higher data-
rate results in smaller images and therefore in less consumption of upload-
and downloading-resources. The appliance of the ML-encoder relies on the
color-compression performed on the photo sharing website and can be hard-
ened with the help of error-correction codes like proposed in Sec. 5.

– γ should be chosen as high as possible. Based on the compression applied
by the photo sharing website, γ directly influences the size of the generated
image represented by the Byte

Pixel -column in Fig. 3a and Fig. 3b. For perfor-
mance reasons, the data-rate should be as high as possible, resulting in less
resources consumed while uploading and downloading any data.

7



8 Hosting of data on Photo Sharing Websites

4 Hosting of data on Photo Sharing Websites

Yahoo (representing Flickr), Google (representing Picasa-Web) and Facebook
are global players of photo sharing websites. All three provide free-of-charge and
convenient ways to share photos. Within our approach, we extend the jClouds-
API[1] to encapsulate bytes in images based on the encoders described in Sec.
3. The underlaying blob-model of jClouds is thereby mapped to images whereas
containers are represented by albums or galleries. The convenient access to these
photo sharing websites is provided by a REST-based API and described in more
detail in Sec. 5.1.

Since the encoders represent a trade-off between robustness and size, the
choice of the suitable encoder for each photo sharing website must be based on
the attributes of the photo sharing website:

1. If the resolution of the hosting image provider does not match the image-
resolution, the image is resized. The maximal resolution supported by the
photo sharing website is mandatory. We define a fixed width based on the
supported resolution und encode any upcoming bytes from top to bottom in
the image. If the number of bytes to be encoded exceeds the resolution with
respect to the height of the image, the bytes are split into multiple chunks
resulting in multiple images to satisfy the maximal resolution of the photo
sharing website.

2. The colors are transformed into the YCbCr color-space and transformed back
to the RGB color-space cutting of some colors on fixed defined thresholds.
Since the parameters of this transformation are applied by the providers
individually, the choice of the applicable encoder depends directly on the
hosting provider.

In the following section, we analyze Picasa, Flickr and Facebook based on
these two attributes as well on their billing models to identify which approach
is applicable as well as to define matching values for γ.

4.1 Picasa-Web

Hosting a photo on Googles infrastructure takes place over Picasa-Web. Tightly
integrated into Google+ as social sharing mechanism and accessible with the
help of provided APIs, Picasa-Web offers as only tested provider free and full
access to original uploaded data. Based on our goal to utilize the encoder with
the highest data-rate possible for performance reasons, the access to original data
enables us to store our data with the ML-encoder and γ = 256 on Picasa-Web.

The storage is free for images with a maximal resolution of 20482 pixel per
image if the user signed up for Google+ and 8002 pixel otherwise. Since we aim
to expose the storage as free storage, we assume a Google+ user and generate
images with a maximal size of 20482.

In the case of larger images necessary, the limit for free storage is 1GB
whereas additional storage is purchasable. The price for additional storage is
0.10$ per GB up to 25GB and 0.05$ per GB starting 100GB. Transfer and re-
quests through the API are included in all cases. For comparison reasons, the
traditional Google Cloud Storage costs 0.12$ per GB up to 1TB and includes
neither requests nor traffic.2

2 All prices apply to the 26th of November 2012.
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Hosting of data on Photo Sharing Websites 9

4.2 Flickr

Originating from the purpose of a professional photo sharing website, Flickr
offers hosting for images as free and as paid service. The free service includes
300MB of traffic and the access to the images as JPEGs within the resolution
of 20482 pixels. The paid service includes unlimited traffic, images within all
resolutions restricted only by 50MB of file size and the ability to access the
original uploaded data. The costs for the paid service vary between 1.87$ and
2.31$ per month.

Based on our motivation to utilize free storages only, we rely on images with
a maximal resolution of 20482 and JPEG as retrievable format.

Fig. 4a shows the failure rates for those of our encoders generating errors by
retrieving the information from the images hosted in Flickr.

The input for the images is an exponential increasing amount of random
generated data with the size of 2x | x ∈ N, 10 ≤ x ≤ 20. The resulting dataset
is the base for all benchmarks within this paper and containing random bytes
where the size of the dataset ranges from 1KiB to 1MiB in steps of powers of 2:
[1024 . . . 1048576] bytes.

The data was encoded by our encoders with the defined values for γ from
Fig. 3, uploaded, downloaded and compared.

The SL-encoder fails for γ = 256 and the ML-encoder fails for γ = 7, γ = 16
and γ = 256 as represented by Fig. 4a. The relative failure rate for γ = 256 ap-
plied to the SL-encoder and the ML-encoder (73.14% receptively 86.81%) make
both encoders with such a γ unusable in combination with Flickr as free hosting
instance. The ML-encoder with γ = 7 and γ = 16 generate only small failures
respectively 9.537 ∗ 10−5% and 3.14%. These small errors can be compensated
by the appliance of error-correction codes. We equip our approach with a basic
Reed-Solomon-Code[8] to compensate such small errors. The appliance of the
error-correction code to our approach is discussed in Sec. 5.
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10 Hosting of data on Photo Sharing Websites

Table 1. Applicable Painters on Photo Sharing Sites

Encoder Facebook Picasa-Web Flickr

SL γ = 2 � � �
γ = 3 � � �
γ = 4 � � �
γ = 7 4 � �
γ = 16 4 � �
γ = 256 4 � 4

ML γ = 2 4 � �
γ = 3 4 � �
γ = 4 4 � �
γ = 7 4 � (�)
γ = 16 4 � (�)
γ = 256 4 � 4

4.3 Facebook

Facebook is nowadays the largest photo sharing website in the world[2]. Entirely
free, Facebook offers unlimited storage for photos for all registered users includ-
ing commenting and sharing functionalities. The aim of Facebook thereby is not
the hosting of original images but the social interaction on base of the hosted
images.

Facebook supports a resolution of 20482 pixels at most with unlimited storage
and traffic whereas images must have a minimal height of 5 pixels.

Unfortunately, the color compression makes it impossible to utilize Facebook
as storage backend with colored images as represented by the failure rate shown
in Fig. 4b. The lowest failure rate generated, is produced by the ML-encoder with
γ = 2 (66%) making any choice of γ resulting in colored images inapplicable on
Facebook even if the data would be guarded by our error-correction extension.
The SL-encoder combined with γ = 2, γ = 3 and γ = 4 generates no errors since
it relies on shades on grey only, making it applicable on Facebook.

Tab.1 shows a summary of the appliance of our proposed encoders to the
evaluated photo sharing websites. The check-marks denote the applicability of
an encoder with a defined γ.

Facebook offers least possibilities for applicable values for γ based on their
restrictive color model. Only the SL-encoder with γ = 2, γ = 3 and γ = 4 are
applicable on Facebook.

Picasa-Web enables users to access even original uploaded data making the
ML-encoder with γ = 256 applicable.

Even though Flickr hosts the images in their original format as well, the access
to this data is restricted as paid-service only. Since we rely on free services only,
we are able to encode data without any error-correction extension only on the
base of the SL-encoder and γ = 16. If we utilize error-correction-mechanisms like
proposed by Sec. 5, we are able to use the ML-encoder up to γ = 16 on Flickr.

10



Robustness Measures 11

5 Robustness Measures

The interfaces of photo sharing websites are not designed to handle requests
as flexible as interfaces from cloud storages: First, the upload and download
performance always includes some processing time on the photo sharing web-
site. Second, put and removal operations on albums occur not as frequently as
container-modifying operations on cloud storage providers. As a consequence,
the client must guarantee the stability of the data transfer. We therefore imple-
mented a multi-try approach falling back on the last request in the case of an
unsuccessful upload or download of the data. This approach further harms the
performance as we will see in Sec. 6 but is necessary to ensure consistency of the
hosted data.

To guard the integrity of the data on the photo sharing website against any
upcoming JPEG-compressions, we apply optionally the Reed-Solomon-algorithm[8]
on the data before uploaded. Related to the failure rates on Flickr and Facebook
shown in Fig. 4a and Fig. 4b, we choose to add 10% more data for compensating
at most 5% failures. The appliance of this error-correction code makes the usage
of the ML-encoder with γ = 7 and γ = 16 usable on Flickr whereas the other
failure rates of over 50% on Flickr and Facebook can not be compensated with
the help of Reed-Solomon codes.

Besides this optional appliance of error-correction codes to the data, we store
the meta-data of the encapsulated bytes with the help of the SL-encoding and
γ = 2 only. The successful retrieval of this meta-data is mandatory to handle the
downloaded in an appropriate way. Fig. 5 shows a schema of an image generated
by the ML-encoder with γ = 2. The meta-data is encoded in the first 42 pixels
of the image. The size of the image is stored in the first 32 pixels resulting in
4 bytes. Since the image is constructed from top to bottom based on a defined
width of the image, the length of the encapsulated data can not be defined when
an image is retrieved due to the fact that only entire lines of pixels are generated.
The next 8 pixel determine the value for γ utilized to encode the image whereas
the concrete encoder is stored in the next pixel. The last pixel of the meta-data
stores the flag if the error-correction was applied while generating the image.

Size
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Size

Data

ECC
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Unused

Fig. 5. Areas of Image
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12 Robustness Measures

The blue dotted area represents the actual data. The error-correction code
is represented by the appended 8 pixels surrounded by the green dotted area.
Since we always paint the images from top to bottom based on a fixed length,
we often have an unused area at the lower, right corner of the image in this case
denoted by the yellow dotted area. The first 42 pixels within our encoded images
are always reserved in the described way whereas the number of the pixels used
for the data and for the error-correction-appendix may vary.

5.1 Composition of Modules

The proposed robustness measures play together in different components as pre-
sented in Fig. 6.
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Fig. 6. Upload and Download Workflows

Within the upload of any data, represented by Fig. 6a, the data origins
from any front-end utilizing the jClouds-API denoted by the blue area. The
described error-correction approach is optionally applied on the received blob
namely the inlying bytes. We split the resulting bytes into multiple junks if
the generated image would not adhere to the maximum resolution of the photo
sharing website. The chunks are afterwards encoded into images utilizing an
encoder and a suitable value for γ whereas the value of γ, the size of the image,
the flag if error-correction is applied and the flag, what encoder was utilized, is
encoded at the beginning of the generated image. All of these components are
represented by the green area within Fig. 6. The resulting images are afterwards
transferred to the photo sharing website- denoted by the yellow area - with the
help of specific APIs translating the REST-dialect of the different photo sharing
websites into Java-Method calls. These APIs are represented as the red areas
in Fig. 6a and Fig. 6b. Our module is extensible enough to utilize any photo
sharing website as long as the upload and download can occur automatically
over any kind of open API.

The workflow of the download basically works the other way around: The file
is downloaded including possible retries by specific APIs again denoted as red
areas within Fig. 6b. After awareness of the encoder utilized and the value of γ,
all retrieved from the beginning of the retrieved image, the image is decoded. The
resulting byte chunks are combined and, if applicable, decoded by our optional
error-correction approach represented by the green area in Fig. 6b. The result
is afterwards returned as blob to the front-end of our jClouds-utilizing program
denoted again by the blue area.

12



Results 13

6 Results

The encoding of the bytes in pixels is straight-forward and scales linear to the
input data. Important for the performance is the size of the resulting image
as well as the complexity related to any processing step on the photo sharing
website.

Fig. 7 shows the file sizes for the defined test-data mapped on the SL- and
ML-encoder as well as on different values of γ.

210 211 212 213 214 215 216 217 218 219 220

Data Input [byte]

O
ve

rh
ea

d 
of

 U
pl

oa
de

d 
Im

ag
e 

to
 In

pu
t S

iz
e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Single: γ = 2
Single: γ = 3
Single: γ = 4
Single: γ = 7
Single: γ = 16
Single: γ = 256

Multi: γ = 2
Multi: γ = 3
Multi: γ = 4
Multi: γ = 7
Multi: γ = 16
Multi: γ = 256

Fig. 7. Size of Image Files

The y-axis denotes the relative overhead of the file size of the generated
images related to the input size represented by the x-axis. The file sizes of the
images generated by our encoders scale with the input size of the data. The
ML-approach with all values of γ scales better than the SL-approach except for
γ = 256. Writing 1024 and 2048 bytes, γ = 256 performs within the SL-approach
better than within the ML-approach. The overhead of γ = 3 and γ = 7 against
γ = 2, γ = 4, γ = 16 and γ = 256 is originated from the overhead of the applied
value range based on the choice of γ: Based on the base 3 and 7, more values
are applied per pixel than actually needed, resulting in this overhead against the
encoders to the bases of 2. All encoders stabilize their relative overhead against
the input data with an increasing amount of data.

The benchmarks for the photo sharing websites focus on two aspects:

1. The performance of uploading and downloading data to/from each photo
sharing website is evaluated:

– The test-data is generated randomly and consists of 210 . . . 220 bytes.
– The plotted curves base on the mean of 50 download-/ and upload re-

quests.
2. The size of the consumed storage on the photo sharing website bases on the

data downloaded including all applied JPEG-transformations.

6.1 Picasa

Picasa offers as only evaluated photo sharing website direct access to the original
uploaded PNG enabling the ML-encoder even with γ = 256 as described in Sec.

13



14 Results

4.1. The access to the original files makes the appliance of error-correction codes
unnecessary.

Fig. 8b shows the performance of the SL-encoder on Picasa. Besides minor
disturbances related to the processing of the images on Picasa while requesting,
the performance depends on γ: The file size of the image has direct impact to
the processing of the image and therefore to the performance. This applies to
download-requests as well as to upload-requests. As a consequence, the ML-
approach scales better due to the lower file size as shown in Fig. 8a whereas
γ = 256 performs best.

The file size of the stored data is the same as the one of the uploaded data
referenced in Fig. 7 based on the access to the original uploaded PNGs.
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Fig. 8. Picasa Performance

6.2 Flickr

Flickr offers free storage of all original data even though the access to this data
is available as paid-service only. Since we rely on Flickr as free service only,
only access to JPEG-transformed images is provided. As a consequence, images
generated by the SL-encoder are storable on Flickr for all values for γ except
γ = 256 based on our findings in Sec. 4.2. Fig. 9a shows the performance of
uploading and downloading the test-data on Flickr for the SL-encoder. Again, the
size of the generated images directly influence the performance of downloading
and uploading any data especially related to the upload. This assumption is
seconded by investigating the performance of the ML-encoder represented by
Fig. 9b.

Since Flickr generates errors on images encoded with the ML-encoder com-
bined with γ = 7 and γ = 16, this combination is only usable when combined
with error-correction-measures like described in Sec. 5. The overhead for com-
puting the additional data based on the Reed-Solomon Code is negligible related
to the upload/download performance: The time consumed for uploading the test-
data with the help of the ML-encoder and γ = 4 scales similar, independent if

14



Results 15

2e
+

03
5e

+
03

2e
+

04
5e

+
04

Data Input [byte]

T
im

e 
[m

s]

Upload: γ = 2
Upload: γ = 3
Upload: γ = 4
Upload: γ = 7
Upload: γ = 16

Download: γ = 2
Download: γ = 3
Download: γ = 4
Download: γ = 7
Download: γ = 16

210 211 212 213 214 215 216 217 218 219 220

(a) Flickr Performance, SL-approach

20
00

50
00

10
00

0
50

00
0

Data Input [byte]

T
im

e 
[m

s]

Upload: γ = 2
Upload: γ = 3
Upload: γ = 4
ECC−Upload: γ = 4
ECC−Upload: γ = 7
ECC−Upload: γ = 16

Download: γ = 2
Download: γ = 3
Download: γ = 4
ECC−Download: γ = 4
ECC−Download: γ = 7
ECC−Download: γ = 16

210 211 212 213 214 215 216 217 218 219 220

(b) Flickr Performance, ML-approach

Fig. 9. Facebook Performance

the error-correction is applied or not. As a consequence, Flickr is able to han-
dle any data encoded with the ML-encoder and γ = 16 if equipped with the
described error-correction-measures.

The size of the resulting images on Flickr is important since Flickr restricts
the traffic to 300MB per month. The size of the test-data encoded by our appli-
cable encoders is represented by Fig. 10. While the SL-encoder performs worst
with γ = 4, the corresponding ML-approach with γ = 4 encodes the data in the
lowest file size. The sizes of the images corresponds with the performance of the
download of the images in Fig. 9b where all painters perform similar.
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Related to the traffic restriction, the ML-encoder with γ = 4 seems to be the
encoder of choice based on the best overhead of the image stored on Flickr, even
if the upload-performance is not scaling as good as with γ = 7 and γ = 16.
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16 Results

6.3 Facebook

Facebook compresses the picture, like denoted in Sec. 4.3, resulting in the ap-
plicability of only color-less encoders namely the SL-encoder with γ = 2, γ = 3
and γ = 4.

Fig. 11b shows the performance of uploading and downloading our test-data
with the help of the SL-encoder. Besides minor disturbances, resulting from the
handling of the requests on Facebook, all approaches scale with the size of the
data as expected. The size of the resulting images seems to appeal the perfor-
mance since the SL with γ = 4 performs best related to upload and download.
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Fig. 11. Facebook Performance

Fig. 11a represents the overhead of the stored image against the encapsulated
data. The ratio scales with an increasing amount of data and depends on the
encoding as well: The applied compression within Facebook increases the file
size of the downloaded image resulting in an increased download overhead.

Table 2. Applicable Painters on Photo Sharing Sites

Hoster Encoder γ

Picasa ML 256

Flickr ML 4

ML 16 + ECC

Facebook SL 4
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6.4 Comparison of the Performance of the Photo Sharing Websites

We compare the performance of the analyzed photo sharing websites with our
SL-approach and ML-approach where we rely on the values for γ defined in Tab.
2 based on our performance findings: The defined encoders including the values
for γ are compared against AWS S3 as typical opponent to our approach.

Fig. 12a shows the absolute comparison related to the performance of the
upload and download where the y-axis scales logarithmically. The overhead of
uploading any data to photo sharing websites in our approach is generated by
the hosters based on the immediate processing of any incoming data.

The download-performance scales similar and is more based on the access of
the original data on the one hand and on the size of the data to be transferred
on the other hand. As a consequence, the ML-encoder with γ = 256, applicable
on Picasa-Web, is only twice as slow as AWS S3 including the extraction of the
data out of the image.

The connection between the performance and the data size is represented by
the comparison of the file sizes in Fig. 12b. The size of the generated images
scales with size of the underlaying data whereas the uploading and downloading
performance relies on this size.
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Fig. 12. Upload and Download Workflows

The images stored on Facebook scale at an overhead of 3.85 for larger data
resulting in a worse download performance than the ML-encoder with γ = 256
applicable on Picasa-Web. This size of the generated images of this encoder
scales with no overhead for larger data sizes resulting in download-performances
comparable to normal cloud storage systems.
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7 Conclusion

Photo sharing websites represent a cheap alternative for common cloud storages
commonly accessible over similar APIs. Even if the accessibility and availability
is comparable to normal blob-storages, the utilization of photo sharing websites
as storage backends comes at a price: The processing of the images especially
related to the upload to the hoster generates a constant overhead compared to
dedicated blob-storages. Since the pricing of these blob-storages relies on the
resources utilized including not only the consumed space but also the transfer of
the data, photo sharing websites are an affordable alternative when it comes to
large datasets which are irregular updated like existing in archiving purposes. To
satisfy this use-case, the different values for γ allows an adaptive utilization of
our SL-approach and ML-approach with different photo sharing websites adher-
ing to the underlaying processing of the images with respect to robustness and
performance. The measures to ensure robust handling of the images including
separate encoded meta-data and optional applicable error-correction codes make
our approach usable for all different kinds of photo sharing websites. The data
rates of the generated images exceeds common approaches based on QR-codes
and steganography and represent a new field of data encapsulation in images for
direct processing. Our extension included in the jClouds-API[1] allows anyone
utilize the described photo sharing websites out of the box while the design of
our framework allows any utilization of other photo sharing websites as long as
a related API is provided.
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