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Abstract—With the beginning of the 21st century emerging
peer-to-peer networks ushered in a new era of large scale media
exchange. Faced with ever increasing volumes of traffic, legal
threats by copyright holders, and QoS demands of customers,
network service providers are urged to apply traffic classifica-
tion and shaping techniques. These systems usually are highly
integrated to satisfy the harsh restrictions present in network
infrastructure. They require constant maintenance and updates.
Additionally, they have legal issues and violate both the net
neutrality and end-to-end principles.

On the other hand, clients see their freedom and privacy
attacked. As a result, users, application programmers, and even
commercial service providers laboriously strive to hide their
interests and circumvent classification techniques. In this user
vs. ISP war, the user side has a clear edge. While changing the
network infrastructure is by nature very complex, and only slowly
reacts to new conditions, updating and distributing software
between users is easy and practically instantaneous.

In this paper we discuss how state-of-the-art traffic classifica-
tion systems can be circumvented with little effort. We present a
new obfuscation extension to the BitTorrent protocol that allows
signature free handshaking. The extension requires no changes
to the infrastructure and is fully backwards compatible. With
only little change to client software, contemporary classification
techniques are rendered ineffective. We argue, that future traffic
classification must not rely on restricted local syntax information
but instead must exploit global communication patterns and
protocol semantics in order to be able to keep pace with rapid
application and protocol changes.

I. INTRODUCTION

The appearance of peer-to-peer networks started the age
of large scale multimedia and binary distribution over the
networks. BitTorrent has become one of the most prominent
application protocols in use and is responsible for large
volumes of traffic. Copyright holders, however, try to impose
responsibility about transmitted content to network providers.
Large traffic volume, especially when crossing network bound-
aries, means higher cost. Since P2P applications demand vast
amount of resources and threaten the quality of other services
(QoS) Network providers feel urged to see their use as a form
of denial of service (DoS). To satisfy demands for availability,
security and QoS, and to ease the displeasure of copyright
holders, the network providers apply traffic classification and
traffic shaping techniques. Users on the other hand have
legitimate interest in hiding their intentions. As a result, users
and application programmers go to great lengths to obfuscate
their traffic and data. Randomizing ports and data encryption
are common methods. In addition, multiple services – both

free as well as commercial – have surfaced that aim to improve
privacy and anonymity. In this paper we show how only a few
changes to the client’s source code allows effective hiding of
BitTorrent traffic.

Contemporary traffic classification systems usually consist
of a combination of Deep Packet Inspection (DPI) and some
sort of statistical or behavior analysis. DPI is a very expensive
task both in space and time that only works on well-known
signatures. It is prone to obfuscation and encryption but works
reliably on plain text packets. Statistical/behavior analysis uses
statistical information to evaluate the behavior of interesting
flows or hosts and give estimates about possible application
layer protocols. Methods range from simple port matching
to bayesian analysis and other machine learning techniques.
Though accurate results cannot be guaranteed, it is possible
to identify obfuscated and encrypted protocols. The more
accurate the results have to be, the more expensive and
sophisticated behavior analysis gets.

Updating signatures and fingerprints for identification is
retroactive and requires continuous monitoring and analysis
of communication protocols. While this poses no significant
problem for low-speed software-based classification systems,
it is extremely difficult and resource intensive for high-speed
classification hardware. Since traffic identification has to be
done on wire-speed these systems are highly integrated into
the network infrastructure and cannot be changed easily. A
change of rules usually results in a change of hardware that
needs to be verified and distributed. While changing network
infrastructure hardware is difficult the distribution of updated
P2P client software is trivial.

We propose a new obfuscation extension that aims to
hide the infamous BitTorrent handshake. Our approach makes
use of a globally shared secret to encrypt the payload and
applies flow obfuscation techniques to obfuscate flow features.
Thus it targets both signature-based DPI as well as statistical
classification systems. It is easy to implement, backwards
compatible and does not require any changes to the BitTor-
rent infrastructure. It circumvents contemporary identification
mechanisms, both signature-based as well as statistics-based,
while still maintaining compatibility to unmodified clients.
The goal is not to provide a high degree of privacy, rather
to demonstrate that minimal effort in protocol design requires
significant changes in traffic classification systems.



II. RELATED WORK

Traffic classification is a vast and heterogenous field with
many different methodologies, applications and granularities.
A study by Caida [32] reviews numerous papers that span over
a decade of research. In general, the goal is to either specifi-
cally identify the layer 7 protocol, or to perform a coarse-grain
classification according to some pre-defined categories, e.g.
peer-to-peer, VoIP, streaming or standard. Methods are packet-
based and flow-based, and concentrate on port matching, DPI,
and analysis of flow characteristics (see Figure 1). Many of the
proposed methods target specific applications or application
domains and are neither designed to nor capable of identifying
all protocols. As a result, contemporary classification systems
utilize multiple stages and a combination of available methods.
Extensive overviews of state-of-the-art traffic classification can
also be found in [20], [28], [17], [24].
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Fig. 1. Taxonomy of internet traffic classification as analyzed and proposed
by Zhang et al. [32]

Encryption is an effective way of protecting the traffic
from unauthorized observation. It usually requires the par-
ties to exchange some key information and negotiate an
encrypted connection. In case of BitTorrent, Message Stream
Encryption/Protocol Encryption (MSE/PE), provides a means
to encrypt traffic between supporting peers. MSE utilizes a
Diffie-Hellman-Merkle (D-H) key exchange [30] to negotiate
and establish an encrypted connection. Supporting peers first
try to establish an encrypted connection by initiating the key
exchange. If it fails, they revert back to unencrypted handshake
and send plain data. Otherwise the peers negotiate encryption
and afterwards perform the (encrypted) BitTorrent handshake
to identify the protocol. This is required since the D-H key
exchange is generally independent of the application protocol.
Both peers can append random padding to the initial key
exchange messages, which provides more variance in packet
sizes.

MSE/PE has been subject to heated debate [29], cannot be
considered standard and is fairly complex to implement. As
a result, not all clients support encrypted connections. To the
best of our knowledge there are no clients in the wild that
actually implement MSE correctly as defined by the proposed
standard.

A D-H key exchange is also used for eDonkey protocol
encryption [3], [4]. Skype uses RC4 to encrypt signaling traffic
while the actual VoIP packets between peers is encrypted using
AES [15], [19]. Furthermore, Skype can use both TCP and
UDP as well as a range of different codecs to transport and
encode the VoIP messages and dynamically adjust to different
network environments [16]. The authors of [31] give an
overview of VoIP identification and possible countermeasures.

Protocol encryption/obfuscation only provide privacy for the
specific protocol or application. Anonymity networks like TOR
[13] or I2P [5] offer anonymity and privacy on the network
layer. Practically any application can be routed through the
anonymity network. The data is usually routed through multi-
ple proxies and encrypted multiple times on its way through
the network. The demand for anonymity and privacy is high
enough to justify commercial services like ItsHidden [6] and
BTGuard [2] that offer anonymous network infrastructures
for paying customers. However, the downside of anonymity
networks is decreased network performance due to extensive
rerouting and encrypting. In addition, anonymity networks
might target or exclude specific applications like peer-to-peer
or prevent connections with peers that are not part of the
anonymity network.

With the exception of Skype, protocol obfuscation is usually
limited to packet content. Flow features are rarely or not
sufficiently disguised. In [11], [24] the authors show that
sophisticated statistical methods can identify obfuscated and
encrypted protocols with over 90% accuracy. Their SPID
algorithm (Statistical Protocol IDentification) computes ses-
sion fingerprints based on “meters” and compares them to
pre-learned protocol models. SPID provides a multitude of
different “meters” which can be trained, configured and in-
cluded independently. Some meters are designed for, and only
effective on specific protocols. This adds a lot of complexity
but also flexibility to the identification process. The authors
conclude that contemporary protocol obfuscation is not suf-
ficient to hide traffic from statistical classification due to
relatively strong flow characteristics. Based on their evaluation
the authors suggest three protocol design improvements to
bypass traffic classification and shaping (see Figure 2). In
addition to payload obfuscation they suggest concealing flow
features using 1) randomized flushing of data streams 2)
random padding and 3) random changes of flow directions. We
take this as a starting point to improve BitTorrent obfuscation.

III. OBFUSCATING BITTORRENT

Following [24], we discuss how their proposed design
suggestions can be applied to BitTorrent, and show how small
changes allow effective payload and flow obfuscation. We
propose an obfuscation extension, which consists of multiple,
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Fig. 2. Effective Traffic obfuscation as suggested by John et al.[24]

independent techniques that address both the payload as well
as flow features. It is easy to implement and introduces very
little overhead to cpu and bandwidth usage. First, we use a
Shared Random Secret (section III-A) and the target peer’s
Peer ID to obfuscate the handshake message payload. Thus,
the packet contents appear random to an observer, defeating
DPI systems. Second, we introduce a new message type, called
Padding Message (section III-C), which allows injection of a
random number of random bytes into BitTorrent flows. This
raises variance in packet lengths and payload values and thus
increases the difficulty of statistical fingerprinting. Third, we
introduce Random Flushes (section III-D) to further randomize
packet sizes and also packet frequency. We also discuss the
applicability of Random Packet Directions (section III-E) and
how it could be implemented in BitTorrent clients. To maintain
compatibility with other BitTorrent clients and reduce pressure
on the network we introduce a Magic Peer ID (section III-B)
that can signal obfuscation support prior to the exchange
of messages between peers. Finally, we address and discuss
limitations of our proposal (section III-F).

Notice that the proposed techniques do only address peer-
to-peer communication. The scheme does not obfuscate peer-
to-tracker traffic and thus does not prevent an observer from
extracting information using tracker traffic. As a result it
cannot protect against the so called Sandvine attack. Tracker-
to-peer traffic obfuscation that addresses the Sandvine attack
problem has been proposed in [23]. We also expect that a
generalization of our approach could be applied to tracker
traffic.

A. Obfuscated Handshaking

The BitTorrent protocol specification [18] defines the Peer
Wire Protocol, the actual protocol used to establish connec-
tions and to exchange messages. It requires the peers to do
an initial BitTorrent handshake directly following the TCP

handshake. This BitTorrent handshake uses a fixed string sig-
nature at a fixed position that is easily detectable using simple
exact string matching. It is depicted in Figure 3. Contemporary
DPI systems like openDPI [7] or l7-filter [1] simply compare
the first 20 bytes to the pattern “0x13BitTorrent protocol”. A
match clearly indicates a BitTorrent handshake and leads to
immediate service identification, which in turn allows guilt-
by-association attacks.

Name 
Length Protocol Name

0 1 20
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28

Info Hash Peer ID

48 68

Fig. 3. BitTorrent handshake message. Name Length is set to “0x13”,
Protocol Name equals “BitTorrent protocol”. The Reserved field is used to
transmit extension support. Info Hash is the globally known hash of the torrent
files info hash value. Peer ID is the clients random peer ID

Standard BitTorrent does not specify nor condone any
obfuscation methods. After much debate MSE is now the de-
facto standard for encrypted BitTorrent connections. However,
[24] has shown, that even MSE can be detected due to
characteristics of the key exchange and too little variance in
padding implementations. While the lack of padding can easily
be fixed, MSE suffers from high complexity and impact on cpu
usage as well as bandwidth.
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Fig. 4. Obfuscation of the handshake message. A random salt is concatenated
with the remote peer ID and hashed. The hash is used to obfuscate the hand-
shake by applying simple bit extraction and XOR operations. Concatenation
is denoted by (‖), (E) is a symmetric cryptographic function, in our case XOR

Since the BitTorrent handshake is the most discriminating
feature of the BitTorrent protocol, concealing the handshake
message itself will nullify the effect of most DPI systems. In
the obfuscated handshake message all fields are obfuscated
by using the sha1 hash value of the target peer’s “peer ID”
concatenated with a randomly generated “salt”. Figure 4 and
Listing 1 show the procedure and the resulting handshake
message.

The 8 byte salt is generated randomly for each distinct
handshake and written to the message. It is only used once
together with the target peer ID as key for the cryptographic
function. It can thus be also thought of as a publicly shared
nonce.The target peer ID is used to prevent an observer from
extracting all decoding information from the actual message.



Listing 1. Obfuscating the handshake
o b f u s c a t e ( handshake hs , p e e r i d remote )
{

b y t e s a l t [ 8 ] = randombytes ( 8 ) ;
b y t e key [ 2 8 ] = c o n c a t ( remote ,

s a l t ) ;
sha1 hash d i g e s t = hash ( key ) ;
b y t e r s v d [ 8 ] = E ( hs . r svd , d i g e s t

( 1 2 , 2 0 ) ) ;
b y t e i h [ 2 0 ] = E ( hs . ih , d i g e s t ) ;
b y t e p i d [ 2 0 ] = E ( hs . pid , d i g e s t ) ;
hs = c o n c a t ( d i g e s t , s a l t , r svd , ih ,

p i d ) ;
}

An observer would need to extract IPs, ports, and associated
peer IDs from tracker responses to lookup the input for the
hash function. The sha1 hash value of {remote peer ID, salt}
is then used as key to disguise all message fields. We use sha1
since it is already a standard hash function in BitTorrent. The
first 12 bytes of the hash value are written to the beginning
of the handshake followed by the one-time salt itself. Next,
a symmetric encryption algorithm is used to obfuscate the
fields Reserved, Info Hash, and Peer ID. In all cases
hash(remote peer ID, salt) serves as the input key
to encrypt the fields’ contents. In our scheme we use XOR for
encryption. It is cheap, fast, and provides enough scrambling
to effectively hide the information from an observer. However,
XOR does not exhibit strong encryption and an attacker could
use sequences of handshake messages to extract information
through correlation. If a stronger encryption is required XOR
can be replaced by any symmetric encryption algorithm, e.g.
AES.

Though the handshake itself appears to be random, it
still shows unique flow features that can be exploited for
identification. Handshake messages are always 68 bytes long
and are the first packets that are sent in alternating directions.
If an outgoing packet with 68 bytes and random content is
followed by an incoming packet with equal features one can
assume to observe an obfuscated BitTorrent handshake.

To maintain compatibility with other clients, peers support-
ing the obfuscated handshake extension first try to connect
using an obfuscated handshake and fall back to standard hand-
shake if it fails. The proposed order of peer wire connection
is thus encrypt followed by obfuscate followed by plaintext.

B. Magic Peer ID

One downside of the obfuscated handshake extension is,
that it will fail if one side does not support obfuscation.
In that case the target peer will sever the connection and
reestablishment is required. The probability of that happening
can be vastly reduced by encoding obfuscation support in
the chosen peer ID. Since the peer IDs are announced by
the tracker, peers in the swarm can easily determine, which

peers support obfuscation. The peer ID is chosen such that its
sha1 hash value shows a specific 2-byte value at a predefined
position. This 2-byte value indicates support for the proposed
extension. Following we will refer to a peer ID with the said
characteristic as “magic” and to a peer that has a magic peer ID
as “magic peer”. Listing 2 shows the magic peer ID generation.

Listing 2. Magic peer ID generation
p e e r i d g e n e r a t e m a g i c p e e r i d ( ) {

p e e r i d p i d ;
whi le ( ! i s m a g i c ( p i d ) ) {

r andom pee r id ( p i d ) ;
}
re turn p i d ;

}

boo l i s m a g i c ( p e e r i d p i d ) {
sha1 hash d i g e s t = hash ( p i d ) ;
re turn ! ( d i g e s t & 0xFFFF ) ;

}

Thus, a peer ID is considered magic, iff the last 2 bytes of
its sha1 hash value are zero. Of course, any other predefined
value at predefined positions would do. However, value and
position do neither influence performance nor applicability, so
we use the last two bytes for the sake of simplicity.

Finding a suitable magic peer ID requires continuous ran-
dom generating and testing during startup and reduces the
possible ID address space. However, computation is cheap and
should on average not take more than 216 tries. Reduction in
address space is also negligible and will not effectively limit
the number of unique peers in a swarm. In fact, it provides
more randomness than the currently used peer ID conventions
which use much higher numbers of fixed bytes to encode client
software and version [21].

Since the peer ID is transmitted with the metainfo file
by the tracker, each peer can easily determine which one
supports handshake obfuscation w.h.p.. A peer receiving the
peer list from the tracker will then test each peer ID of target
peers for being magic. If the peer ID is magic, the according
peer supports the extension w.h.p.. For any peer that does
not support the extension the ordinary BitTorrent handshake
is used to establish a connection. Peers that do support the
extension will be connected using an obfuscated handshake. If
this fails, the client falls back to ordinary handshake. Naturally
there is a margin of error if a peer chooses a magic peer
ID by accident without supporting the obfuscation extension.
However, in that case obfuscation will fail and the connecting
peer will reconnect using the ordinary handshake.

Using the peer ID to transport information allows to reduce
connection establishment overhead significantly. In case of
MSE/PE a peer always tries encryption first and falls back
to ordinary handshaking. Thus, if the target peer does not
support encryption the connection will be ceased and a new
connection is necessary. When propagating support of our



obfuscation extension with the magic peer ID reestablishment
is only required with a very low probability in case the peer ID
appears magic by accident. However, usage of the magic peer
ID is not a requirement for obfuscation to work. It is simply a
means to announce obfuscation support prior to the exchange
of actual peer messages and thus reducing the probability of
unwanted reconnects.

The BitTorrent specification [18] suggests that peers should
not make any assumption using the peer ID since it is supposed
to be completely random. However, in practice, clients use the
peer ID to transmit information about the client implementa-
tion and version. [21] describes a number of peer ID styles,
the most prominent being “Azureus” and “Shad0w” style.
These styles also use the peer ID to transmit information and
reduce the randomness even more than the suggested magic
peer ID scheme. It is worth mentioning that some clients –
like Transmission – dedicate quite some computational effort
to identify the peer’s client software. This is because some
clients implement their own, incompatible extension protocols.
In order to always support the correct extension protocol
version, client software and version information is needed.
The magic peer ID style proposed here does not transport
this information. If really needed, it is possible to generate
magic peer IDs based on “Azureus” and “Shad0w” styles.
This, however, limits the randomness and reintroduces patterns
that can be exploited by DPI systems, which is not advised.

C. Random Padding

Random padding can be used to effectively conceal flow
features. In case of MSE padding is also used during key
exchange, although the implemented padding length is insuf-
ficient to provide enough variance [24], and as a result can be
detected.

BitTorrent’s specification [18] also specifies messages
according to the type-length-value (TLV) standard.
More specifically, BitTorrent messages are encoded as
<length><type><payload>. The first integer denotes
the length of the message (counting the type field) followed
by one byte which denotes the type of the message followed
by the message payload itself. Nine messages are specified,
some clients also implement a tenth message. Keep-alive
messages are the sole exception to this encoding standard,
since they can be empty.

Length = 1 + X Type = 0xa Value = X random bytes

0 4 5 X+5

Fig. 5. Padding message. A random number of random bytes. Introduces
randomness in both packet length as well as content value which makes
statistical fingerprinting difficult

We suggest a new message type, called “padding” with a
randomly chosen length and random payload, which can be
appended to conversations at all time. However, since data
transfer usually appears already pretty random and consumes

much bandwidth, it is better suited for small messages. Its
main purpose is to add variance and randomness to handshake
and signaling messages, which makes an early identification
using statistical fingerprinting extremely difficult. The message
is depicted in Figure 5. Listing 3 shows an example implemen-
tation.

Listing 3. Padding message
b y t e [ ] padd ing ( ) {

i n t l e n = rand ( 1 , 1 4 0 0 ) ;
b y t e t y p e = 0 xa ;
b y t e v a l u e [ l e n ] = randombytes ( l e n

) ;
b y t e msg [ l e n +4] = c o n c a t ( l en , type

, v a l u e )
re turn msg ;

}

Whenever the peer decides to use padding, the message
is randomly generated and can be appended to any data due
to be sent. We suggest using up to 1,400 bytes to provide
randomness close to the MTU. One downside of the message
scheme is that the first two bytes in the “length” field will
always be zero, while type will always equal 0xa. This
will lead to recognizable patterns in handshake messages
whenever padding is appended. To counter this effect we
suggest scrambling the padding message header fields during
the handshake. For this we use a similar approach as with the
Reserved field. We extract 5 bytes from the random hash
and XOR them with the padding message header. Again, any
other symmetric cryptographic function can be used instead.

Naturally, the cost of adding random garbage is bandwidth.
So it is best suited for small-sized messages including the
handshakes and any signal traffic.

D. Random Flush

While random flushing of TCP streams is generally possible,
it requires disabling Nagle’s algorithm [26] and probably
changing socket buffer sizes, which impacts overall TCP
performance and usually is not advised. Since the operating
system is in control of transport layer services, random flushes
might not be an option on all systems, although, all major
operating systems provide functions to change TCP related
parameters.

In case of P2P networks, the majority of packets are used for
file exchange. A strong flow feature of P2P flows is therefore
high rates of large packets in short intervals over a long
period of time. This is, however, true for any file exchange
protocol, including FTP, HTTP or even SSH in case of file
transfers. Nevertheless, packet sizes and frequency can be
a strong indicator for file sharing. Random flushes provide
more variance in packet sizes, but they neglect transmission
frequency. Since packets are flushed prematurely, the overall
number of packets, number of bytes – due to header overhead



– and conversation time will increase. The overall cost in terms
of bandwidth over time will rise significantly.

This additional cost is neither in the interest of the consumer
nor the provider. All parties have to pay the price for ignoring
net neutrality. It would be best to refrain from using packet
sizes and rates for identification and abstain from random
flushes whenever possible. However, if needed, we suggest to
also apply randomized transmission frequency to further add
variance to packet rates.

E. Random Packet Directions

The BitTorrent specification states that “peer connections
are symmetrical [...] and data can flow in either direction.”
[18]. Both the seeders and leechers can and do initiate com-
munication. In practice, however, peers that open a connection
always initiate the key exchange and handshake. This obser-
vation can be exploited to infer BitTorrent key exchanges and
handshakes by just looking at the directions of the first few
packets.

There is a simple reason for this behavior. The connecting
peer wants to share a specific file identified by the info hash.
Since peers can share many files and be part in many swarms,
the target peer has no possibility to know for sure, for which
info hash the connection has been established. It has to wait
for the info hash, provided by the handshake to identify the
shared file. The only exception is, if the listening as well as
connecting peer only share one common file with the same
info hash, in which case the listening host could look up the
needed information in the tracker response dictionary and craft
the handshake himself.

Theoretically, either peer could initiate the handshake and
key exchange. This would, however, require a change in Bit-
Torrent’s file sharing incentive. Usually, connecting peers an-
nounce the info hash of the shared file during handshaking and
than actively request file chunks using interested mes-
sages. When the direction of handshakes randomly changes,
the peer that establishes the connection would wait a random
amount of time and listen for incoming handshakes. In this
case the interested peer might initiate the handshake after a
timeout or receive a handshake request before the timeout.
Since the shared file is announced in the handshake the
interested peer looses control about which files are downloaded
over the connection.

Although random changes of packet directions is possible it
requires significant changes in sharing behavior and a means
of globally guaranteeing that all files are equally well shared,
which is out of scope of this paper.

F. Limitations

The proposed payload obfuscation scheme requires the
knowledge of the target peer’s peer ID prior to initiate the
handshake. This prevents a client from supporting the compact
peer list extension [22], which allows trackers to return a more
compact peer list that excludes the peer ID and only sends
binary encoded {IP, Port} pairs. As a result pressure on the
trackers rises. Although most trackers do support the compact

peer list extension it is generally not a requirement and trackers
do return the full peer list if requested. Still, it poses additional
costs for obfuscation.

Since peer-to-tracker traffic is usually not obfuscated, an
observer could capture this traffic and use the information
to decode and identify obfuscated handshakes. However, this
would require the observer to keep vast amounts of state
including IPs, Ports and associated peer IDs. In addition
he needs to observe all connections between collected hosts
and actively try to decode the whole messages. While this
is theoretically possible it is practically not applicable. The
amount of space and time needed to perform this kind of
attack is not available for many years to come on high-
speed network infrastructure. Even if the exchange channel
is insecure the obfuscation is practically still robust against
exploitation. Furthermore, if an attacker can intercept tracker
traffic he could simply disrupt all BitTorrent traffic using
the Sandvine attack. There would actually be no point in
trying to break obfuscation. As stated in section I the goal of
our obfuscation extension is not to provide cryptographically
secure privacy, but to prevent early identification as simple as
possible.

Another limitation of using the target peer ID for obfusca-
tion is the usage of PEX and DHT to exchange peers without
a tracker. Both extensions allow peers to directly exchange
compact peer lists. Since these lists do not include the peer
IDs communication with exchanged peers cannot be directly
obfuscated. Peers still announce to the trackers so it would
be possible to learn the peer IDs over the tracker channel.
Another possible solution is to take a globally known value
as substitute in cases where the target peer ID is unknown.
We are also evaluating ways to use other sources like torrent
file content and magnet links for sources of a globally known
shared value.

A potential risk of being exposed as a BitTorrent peer is
the fallback to plaintext handshaking. This is done to maintain
compatibility with older clients and standard even with MSE/
PE. However, if really required the client could be configured
to only allow connections using MSE/PE and obfuscation as
fallback. However, this does not prevent other peers to try to
connect using plaintext handshakes which can then be easily
detected.

IV. EVALUATION

We implemented the proposed method in ttorrent 1.0.4 [27],
a java BitTorrent library which is very lightweight and easily
extensible. Ttorrent is an all-in-one solution, providing an API
for clients, trackers and torrent files alike. This allowed us to
use one library to rebuild the whole BitTorrent infrastructure in
a controllable and, more importantly, easily evaluable fashion.
We also implemented a reference application in c as baseline
and for testing purposes. It only provides the absolutely
necessary functions and has about 100 lines of code. The basic
implementation into ttorrent required changes to less than 200
lines of code.



We used Planet-Lab [9] as a testbed and deployed our
modified ttorrent client on 70 nodes which all initially acted
as leechers. The tracker and initial seeder ran on dedicated
virtualized servers and tracked/seeded slitaz [10], an open
source Linux distribution. We captured all traffic on the initial
seeder’s interface using tcpdump [12], which mimics the
capability and view of the network access provider. In addition,
we also tested interaction with a variety of popular BitTorrent
client software and opentracker [8], which is the mostly used
tracker software world wide.

We then analyzed the captured traffic using OpenDPI [7],
[25], SPID [11], [24], and picDFI [14]. OpenDPI is Ipoque’s
open source version of its commercial PACE engine and a
state-of-the-art DPI representative, while SPID is a statistical
protocol identification algorithm that uses trainable protocol
models which can dynamically be applied to identify l7 proto-
cols. In both cases we did not apply any optimizations but used
the provided demo applications with default settings. Only in
case of OpenDPI did we implement per flow output, to verify
and compare the results with SPID’s, which outputs per flow
results by default. PicDFI is an experimental identification
algorithm targeted at resource restricted environments that uses
very basic behavior analysis heuristics.

A. Client Compatibility

To test communication of magic peers with ordinary peers,
we introduced popular clients to the swarm. We tested the
following client software.

• Vuze 4.7.0.0
• uTorrent 1.0.3 and 1.5.11
• Transmission 2.41 and 2.42
• rtorrent 0.7.9 and 0.8.9 (libtorrent-rakshasa)
• libtorrent-rasterbar 0.15.7
This client set covers the vast majority of BitTorrent clients

in the wild today and is a decent representation of actual
swarms. All clients could successfully participate in the obfus-
cated swarm. We also forced some magic clients to initiate an
obfuscated conversation regardless of the target peer’s peer ID
to test the effect of fast reconnects. As expected, the obfuscated
handshake was rejected but the subsequent plain handshake
was accepted at all times. We did observe random attempts to
perform an obfuscated handshake with Transmission clients.
We assume, that Transmission’s peer ID generation algorithm
exhibits a higher probability of producing peer IDs that appear
magic, we did not verify that assumption, though.

We also tested the behavior of a magic peer participating in
an ordinary swarm. Again, the magic peer behaved as expected
and could communicate, download and seed in the ordinary
swarm. We encountered no connection problems or noticeable
delays.

B. Magic Peer ID generation

We generated 100k magic peer IDs to analyze the number
of random tries and time needed to find a magic peer ID. The
generated peer IDs are also analyzed regarding their byte value
distribution.

Fig. 6. Byte values of 50 random magic peer IDs. Each row represents a
peer ID, the columns encode the byte value, darker means lower

Figure 6 shows the byte values of a selection of 50 of the
100k randomly generated magic peer IDs. As can be seen they
appear completely random and look like noise. This is true for
the whole set of magic peer IDs. Figure 7 shows the standard
deviation and mean of the ids’ byte values. Both are pretty
linear with only small fluctuation in value. In addition, the
standard deviation is also pretty high and the measured means
are close to the theoretical means.
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Fig. 7. Standard deviation and mean of magic Peer ID bytes

Figure 8 shows the number of tries needed to generate
the magic Peer IDs. Although, the number of tries increased
notably with the maximum value encountered being 766, 152,
it still took only roughly one second to find. In the worst
case, the startup delay introduced by searching for a magic
peer ID might be enough to be recognizable by and annoying
to the user. However, the Peer ID is generated only during
startup and then remains constant for the remainder of the
session. In extreme cases, searching a magic peer ID could
be canceled in favor of decreasing startup time, sacrificing
the ability for obfuscation. In addition, the client could cache
previously found magic peer IDs, or search for them during
idle times and save /reuse them for subsequent sessions.

As expected, on average the client needed roughly 216 tries
and about 100 ms to find a suitable magic peer ID.

C. Handshake message

We extracted all handshake messages from the recorded
traffic to analyze them for randomness and traits that could be
exploited for identification. Since the BitTorrent handshake has
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Fig. 8. Byte values of 100k magic peer IDs

to be sent immediately after the TCP handshake it can easily
be observed by looking for packets with a relative sequence
number of 1 in any tcp stream (assuming all packets have been
captured).

Figure 9 shows the first 300 bytes of 300 of the recorded
handshake messages. These packets have been recorded early
at the start of the simulation. Each row denotes a handshake
message with earlier messages appearing higher. The columns
represent the byte offset. Byte values are encoded in color,
black represents 0 while white equals 255. Since nearly all
messages have individual lengths, missing byte values have
been replaced with zero. Note, that handshake requests and
responses are not required to appear adjacent to each other. In
fact, most of the request/response pairs are delayed.

The image appears mostly random. The only recognizable
pattern is the random length of the message, which is a
result of adding random padding. Handshake messages are
thus always between 68 and 1500 bytes long. Although, not
a strong feature in itself, it might still be exploitable when
combined with other flow features.

Figure 10 shows the standard deviation and mean of the
handshake messages’ byte values up to offset 100. It can
clearly be seen that the standard deviation is high and stable
throughout the whole message.

D. Random Flush

To evaluate the effect of random flushes, we deployed one
peer seeding an image of Ubuntu 11.10 and one leeching peer.
For comparison, the file is exchanged twice. First, the seeder
does not use random flushing. For the second exchange, the
seeder sets the TcpNoDelay property and continually retrieves
x bytes from the message queue, where x is random and 1 ≤
x ≤ 1401, and writes them to the socket’s output stream. The
traffic is captured on the leeching peer’s interface. We then
analyze the traffic regarding number of packets and bytes sent
during the conversations. The results are shown in table I.

Fig. 9. 300 recorded Handshake messages. Each row corresponds to a
message, the columns represent byte values. For each message 300 bytes are
shown. A recognizable pattern is the variable length of the padding messages
(horizontal black bars)
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Fig. 10. Standard deviation and mean of handshake message bytes

bytes
Flush #pkts #secs sum min max avg stdev
no 821k 139 785.3m 66 1,434 956.35 650.14
yes 2,8m 893.6 917.5m 66 1,434 326.76 411.16

TABLE I
PACKET SIZE COMPARISON IN THE PRESENCE AND ABSENCE OF RANDOM

FLUSHING

When using flushing the number of packets sent is 3.41
times higher than using standard transmission policy. The
overhead in terms of total number of bytes is about 16%.
Regarding conversation time, random flushing needed nearly
6.5 times longer to exchange the file. Interestingly, although
the average packet size is much smaller in presence of flushing,
variance and standard deviation do not increase but instead
actually decrease compared to no flushing. The reason can be
seen by examining the actual frequencies shown in fig. 11.

In case of no flushing packet sizes show frequency peaks
at both the small and big extremes. Most packets are bigger
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Fig. 11. Frequency of packet sizes in presence and absence of random
flushing. Note that the figure only shows flushing, padding of small packets
is not applied and discussed independently in section IV-C. That explains why
the curve is not flat

than 1,200 bytes. There are no packets with sizes between 300
and 800 bytes. This is because the messages sent are either
file transfers, resulting in big packets, or signaling, like keep-
alives, and file chunk requests. Signaling packets are small and
they appear quite often. For the same reason, frequency also
peaks for small packets in case of flushing. However, instead
of clusters of big packets, the sizes are equally distributed
between 200 and 1,400. Naturally, this leads to lower variance.
To also eliminate the peak of small packets, random padding
can be applied to signaling messages, increasing their size,
and, thus, flattening the frequency distribution.

As shown, random flushing proves to be quite expensive in
consumed bandwidth over time. This adds significant pressure
on the network, which should be avoided whenever possible.
When random flushing is applied, smaller packets should
be expanded with random padding to produce a more equal
distribution.

However, it is questionable if the additional costs are
justified. Short term, statistical identification tools that use
packet sizes and rates can be fooled. But on the long term,
high frequencies of random sized packets is a strong flow
feature in itself. Therefore, when disguising flow features
through random padding and flushing, these techniques should
be rarely applied and probably limited to handshake and signal
messages, and not actual file transfer.

E. Identification

To test the effect of handshake obfuscation and random
padding on contemporary identification mechanisms, we an-
alyzed the recorded traffic using state-of-the-art DPI and
statistical traffic identification systems. Note, that for iden-
tification analysis we only applied payload obfuscation and
random padding since we concentrate on handshake obfusca-
tion. Flushing is only required and useful for large packets
that are exchanged later in the flow.

As DPI system we used Ipoque’s OpenDPI [25]. For sta-
tistical analysis we used SPID [24] a system that computes
fingerprints and compares these to pre-learned protocol models
to perform identification. A multitude of different meters can

Algorithm total flows Identified
protocol number flows

OpenDPI 403 unknown 374
BitTorrent 29

SPID 389 unknown 360
HTTP 29

picDFI 793 unknown 431
P2P 361

TABLE II
IDENTIFICATION RESULTS

be used to describe a known protocol which allows different
levels of detail but also introduces a high complexity. In
addition, we used picDFI [33], an efficient flow inspection
and classification algorithm, which specifically targets P2P
applications is based on the assumption, that P2P uses both
TCP and UDP on the same port within a short period of time. It
is targeted for resource restrictive environments with the intent
not to give highly accurate results but to provide preliminary
analysis and hints about interesting flows.

The results are shown in table II. As can be seen, both,
DPI as well as SPID, were not able to detect and identify the
obfuscated BitTorrent traffic. OpenDPI only identifies 29 flows
as BitTorrent. These are all seeder to tracker announces that
OpenDPI recognizes by searching for the string “GET ” and
then parsing the whole tracker get request looking for the client
software and info hash values. These flows are equivalent to
the 29 HTTP flows detected by SPID. Tracker requests look
pretty much like HTTP requests and SPID was not able to
distinguish between those two. Since OpenDPI aims at early
detection by looking for the string “0x13BitTorrent protocol”
it was unable to recognize the obfuscated handshakes and
thus failed to identify the BitTorrent flows. One reason why
SPID fails to detect BitTorrent correctly, is probably the use
of payload based fingerprints to describe flow features. Since
our obfuscation scheme scrambles the bytes and the length of
the handshake, variance in byte values and packet length is
high and will match to protocol models with similar behavior.
In fact, in most cases SPID reported higher similarities of
the flows to eDonkey and ISAKMP than to BitTorrent. Inter-
estingly, picDFI manages to classify about 45% of the flows
correctly as P2P. However, picDFI is only able to distinguish
between P2P and non-P2P traffic and is not a substitute for
full-fledged classification systems. The reason why picDFI
could identify those flows is because it was able to correlate
UDP signal traffic and TCP file exchange traffic on some time
frames. The difference in number of total flows is a result of
different flow descriptors and flow timeouts.

This shows, that techniques using payload information and
even flow features can easily be fooled by disguising the
traffic with properties similar to other well-known protocols
like HTTP or ISAKMP. It is worth mentioning that in our
simulations a very simple behavior based algorithm performs
much better than sophisticated DPI and SPI systems.



V. CONCLUSION AND FUTURE WORK

The intention of this paper is not to present an optimal
privacy solution for BitTorrent networks, rather to show
that contemporary traffic identification systems can easily be
fooled.

We presented a novel BitTorrent obfuscation scheme that is
easy to implement, backwards compatible and fairly efficient.
It circumvents all contemporary identification tools and thus
effectively hides BitTorrent traffic. Only small changes in
applications require significant effort to update the network
infrastructure in order to maintain identification, including
keeping large amounts of state data. Even state-of-the-art
statistical identification tools can easily be fooled and circum-
vented by applying basic payload and flow feature obfuscation.

Established identification paradigms seem to come to the
end of applicability. With an increasing effort of programmers,
users, and even commercial service providers, packet and
traffic features become more and more disguised.

We argue that future traffic identification must not rely
on payload and flow based data but instead concentrate on
global application domain specific features which are unlikely
to change. The old meme of the need to identify the exact
application layer protocol is outdated and violates network
neutrality and the end-to-end principle. Knowledge about the
usage of layer 7 protocols does not generally allow statements
about the actual application domain. In the end, the most
important information for the network provider should be how
his resources are used and how usage can be optimized. Not
what his customers are talking about. The ongoing ISP-vs-
Customer war achieves very little at the expense of much
resources.

Future work will explore possibilities to introduce more
randomness into the obfuscation process and apply more
sophisticated flow feature obfuscation. A promising approach
seems to disguise traffic to appear to originate from other
applications and protocols. This “Any Signature Protocol”
should be able to transport information using the syntax
of other well-known protocols, like HTTP, SMTP, or DNS
without exposing application specific signatures. Regarding
identification and classification, a thorough examination of
internet application domains is due. The result would be a
taxonomy of internet traffic that would allow classification
of any traffic into application domains based on the actual
semantics and not syntax of conversations.
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SUMMARY REVIEW

The paper is very well written, and on a very interesting
topic. The problem of how to fool current traffic identification
systems is interesting and relevant. The paper describes the
design, implementation, and evaluation of a number of mecha-
nisms to obfuscate BitTorrent traffic. Three obfuscation mech-
anisms are treated with more or less depth: the obfuscation
of BitTorrent handshake messages, the injection of padding
messages, and random flushes to randomize packet sizes and
frequency. (Obfuscating tracker communications is considered
orthogonal and is not discussed in the paper.) One problem
tackled here is the one of having peers determine whether
they support the obfuscation protocol without revealing this
information to the censor (e.g., ISP). To do so, the authors
propose to encode obfuscation support in peer IDs that are then
published and distributed by trackers. Such a ”magic” peer is
a random number whose last two bytes are equal to zero.
Handshakes are then obfuscated so magic peer IDs are not
easily readable by the censor. A fair portion of the paper deals
with efficiently generating such IDs. The authors also discuss
how concealing BitTorrent flow features can be done with
random padding, random flush, and changing packet direction.
he system description was clear and crisp, as was the message
that simple obfuscation can defeat sophisticated classification
techniques. The challenges, the logic, and the techniques
applied are explained sufficiently. The paper presents a proper
evaluation of the techniques. The evaluation section of the
paper shows that two DPI and statistical traffic identification
systems out of three fail to recognize obfuscated BitTorrent
flows.

Strengths: Some of the strengths pointed out by the
reviewers include: the paper is well written, it presents a real
implementation, and it clearly demonstrates the ease in which
simple obfuscation techniques can defeat existing systems.

Weaknesses: The main issues raised by the reviewers
were:

1) It seems that the obfuscation is highly dependent on
the communicating parties being able to discover each
other’s peer-id through a secondary channel, namely, the
tracker. How hard would it be similarly obfuscate tracker
traffic? For modern BitTorrent systems that are tracker-
less and/or use PEX to discover new peers, how easy
would it be to implement these obfuscation techniques?
It seems that these techniques require some peer spe-
cific information to orchestrate the obfuscation, and the
communication required to exchange that information
cannot be obfuscated. Is it sufficient for the classification
systems to just focus on identifying the non-obfuscated

communication channels?
2) The paper states that it is easier for the client to

introduce new obfuscation techniques than it is for the
traffic classification systems to apply new identification
rules. However, although it takes time to create a new
classification rule to detect the signatures of a new
obfuscation technique, once the rule has been created, it
requires very little effort to disseminate it to all of the
professionally managed traffic classification systems. It
is indeed a cat-and-mouse game between the BitTorrent
users and the traffic classification systems, but it seems
that the game is currently not in the BitTorrent users
favor and it is not convincing that there is any imme-
diate need for classification systems to move towards
exploiting global communication patterns, as suggested
in the abstract and conclusion of this paper.

3) Exploring how current traffic identification techniques
can be fooled is interesting. However, showing that
a signature identification technique can be fooled by
changing the signature to be identified is absolutely
trivial and has no scientific merit.

4) The authors put much effort into scrambling the BitTor-
rent handshake message for a very poor result. Indeed,
first it is not shown that simply changing the ”BitTor-
rent protocol” string within the BitTorrent handshake is
not enough to fool current techniques. Second, as the
proposed system falls back to the regular handshake
in case a peer does not understand the obfuscation,
and as a peer has in the order of 50 neighbors, the
probability to have at least one neighbor that uses the
regular BitTorrent protocol is high. Because BitTorrent
multiplexes all traffic on a single port, it will be easy to
any traffic identification system to block all traffic for
this IP address and port, and therefore, it is very easy
to defeat the proposed obfuscation.

5) The authors spend quite a lot of time on the notion of
magic ID ending with 00, but it is completely unclear
what is the point of this magic ID. In BitTorrent, the
reserved bytes in the handshake can be used for a
specific flag for any purpose. Assuming that the authors
want to use a specific convention in the peer ID, why
don’t they just truncate the random generated string by
two bytes, and replace the last two bytes by zeros?

6) The evaluation section on identification lacks several
important details. For example, why is detection by
OpenDPI and SPID avoided but not by piCDFI? Further-
more, it would be better to provide information regard-
ing each mechanism instead of aggregate identification
results. An obvious question is whether obfuscating



the handshake is sufficient or whether the additional
proposed mechanisms are also required.

RESPONSE FROM THE AUTHORS

First we would like to thank the reviewers for their com-
ments and insights on the paper. We tried to address all of the
comments for the camera ready version.

1) We added a new Subsection III.F to discuss technical
limitations of our approach. Obfuscation of the tracker
traffic is actually discussed in related work [23]. It is true
that identification of tracker traffic allows identification
of BitTorrent hosts. However, to decode the obfuscated
traffic requires the observer to keep large amounts of
state and perform decoding at line speed, which is
impractical. PEX and DHT only support compact peer
lists, which exclude the peer ID. If the peer ID is
unknown another globally known value could be used as
substitute. This could come from torrent files or magnet
links.

2) We added more information to the Introduction. The
assumption might be true for software-based low-speed
classification systems. But we target high-speed network
provider equipment. The classification algorithms and
rules are usually implemented directly in hardware (FP-
GAs) since classification must be performed on wire-
speed. Therefore, changes are not easy and also quite
expensive.

3) This is discussed more deeply in the Introduction and
Section III. Our approach not only changes the hand-
shake signature but also eliminates statistical features
to appear random on the wire. This not only fools
signature-based but also statistical identification sys-
tems. And is difficult to adapt to.

4) This is discussed in the new Section III.F. Fallback to
plaintext indeed poses a risk of exposure. If one must
truly be obfuscated it is possible to only allow encrypted
and obfuscated traffic. Fallback allows to be backwards
compatible in case exposure can be risked.

5) There was quite some confusion regarding the magic
peer ID. It is now discussed more deeply in section III.B.
Not the magic peer ID ends with 00, but it’s SHA1 hash
value. Also, the magic peer ID is not a requirement for
obfuscation, but a simple means to signal obfuscation
support prior to actually exchanging messages. This
significantly reduces network overhead.

6) The Evaluation has been expanded to answer these
questions. Generally, each subsection in Evaluation deals
with each mechanism independently. The identification
results only aggregate payload obfuscation and random
padding. OpenDPI is signature-based and had to fail.
SPID also uses payload value ranges (among others) for
identification. PicDFI is specifically designed for P2P
and simply looks for TCP and UDP on the same port
within a short time frame.


