Versatile Key Management for Secure Cloud Storage

Sebastian Graf ~ Patrick Lang

Stefan A. Hohenadel

Marcel Waldvogel

Distributed Systems Group
University of Konstanz

(sebastian.graf|patrick.3.lang|stefan.hohenadel|marcel.waldvogel)@uni-konstanz.de

Abstract

Storing data on cloud-based infrastructures facilitates in-
finite scalability and all-time availability. Putting data in
the cloud additionally offers a convenient way to share
any information with user-defined third-parties. However,
storing data on the infrastructure of commercial third party
providers, demands trust and confidence. Often simple ap-
proaches, like merely encrypting the data by providing en-
cryption keys, which at most consist of a shared secret sup-
porting rudimentary data sharing, do not support evolving
sets of accessing clients to common data. Based on well-
established approaches regarding stream-encryption, we
propose an adaption for enabling scalable and flexible key
management within heterogeneous environments like cloud
scenarios. Representing access-rights as a graph, we dis-
tinguish between the keys used for encrypting hierarchical
data and the encrypted updates on the keys enabling flexible
join-/leave-operations of clients. This distinction allows us
to utilize the high availability of the cloud as updating mech-
anism without harming any confidentiality. Our graph-based
key management results in a constant adaption of nodes re-
lated to the changed key. The updates on the keys generate
a constant overhead related to the number of those updated
nodes. The proposed scalable approach utilizes cloud-based
infrastructures for confidential data and key sharing in col-
laborative workflows supporting variable client-sets.

Categories and Subject Descriptors K.6.5 [Security and
Protection]: Unauthorized access; C.2.4 [Distributed Sys-
tems]: Cloud Computing

General Terms VersaKey, Key Handling, Cloud, Directed
Acyclic Graph

Keywords Encryption, Confidentiality, Cloud Service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys '11 11.4.2012 - 13.4.2012, Bern

Copyright © 2011 ACM [to be supplied]. .. $10.00

1. Introduction

Storing data in the internet is more or less a synonym for
storing data in the cloud. Regardless the service itself being
a cloud-service or not, the probability that the underlaying
application runs on dedicated hardware decreased within the
last years. Cloud-based services provide customers as well
as providers with scalable ways to utilize any kind of service
without the need to care about the underlaying concrete in-
frastructure. Google, Amazon or Microsoft as Cloud-Service
Providers(CSPs) provide a specialized set of products sat-
isfying any needs of customers and providers. The CSPs
have as a result full access to any information stored on their
infrastructure demanding direct storage of any confidential
data.

Most applications simply solve this issue by encrypting
the data. This straight-forward approach satisfies common
understandings of security (e.g. the NIST-definition [8]) and
works well for a limited amount of accessing users. The
sharing of easy accessible data for disjunct users is inten-
sified due to the availability of modern mobile devices en-
abling users to access their cloud-based data from anywhere.
The flexibility ongoing with the mobility results in collab-
orative workflows where different users work on common
data. Shared secrets neither offer secure ways to support
such workflows nor utilize the availability and scalability
of cloud-based services since changes within the set of au-
thorized clients result in complex re-encryption operations
and the distribution of new shared secrets to all authorized
clients. Versioning of the data like provided by multiple
CSPs further complicates the key handling since the access
to specific versions relies on corresponding specific shared
secrets.

Our approach tackles the challenge of managing access
rights upon shared versioned data on cloud infrastructures
for a restricted, flexible group with the help of the following
techniques:

e Disjunct clients share common data based upon hi-
erarchical organized access rights. The hierarchy re-
lated to these access rights relies on a Directed Acyclic
Graph(DAG) where Encryption Keys(EKs) represent

group-keys and summarize disjunct clients represented
by Client Keys(CKs).

e Updates on the keys ongoing with changes on the set
of authorized clients occur encrypted and scalable based
upon well-established approaches from the area of stream-
encryption.

e Access rights are applied to any stored element within
past versions, the current version or future versions.

These three components, namely a global Key Graph
stored upon a trusted third party environment, encrypted up-
dates on the Key Graph stored on the infrastructure of any
CSP and versioned data, stored encrypted in the cloud, rely
mainly on existing graph-based key management approaches
namely VersaKey [10] extended as a DAG similar to [12].
These approaches bind key material to nodes related to each
other representing the DAG. While the source nodes (repre-
sented by the CKs with the Key Graph) constitute the client
rights, the terminal vertices represent the most common ac-
cess rights. Despite current approaches, the EKs are not only
used to offer scalability but also to provide group-based ac-
cess on the data.

A second adaption on VersaKey, besides the usage of a
DAG with semantic EKs instead of a tree, includes the persis-
tence of the updates applicable on the DAG. These updates,
denoted as Key Trails, are not only broadcasted to the clients
once but persisted on the cloud for on-demand updates of the
keys. Similar to VersaKey, the nodes are versioned whereas
each version of each node contains unique key material to
decrypt an element of the versioned data.

Any modification of the DAG results in an update of all
reachable group keys originating from the adjusted access
right namely one node within the DAG. This adaption in-
cludes the generation of new key material for all those nodes.
The resulting Key Trails, consisting out of the fresh key
material encrypted with the related valid nodes, scale with
this number of updated nodes since each Key Trail relies
on an edge incident to the updated nodes. Instead of updat-
ing all shared keys, we only adjust the summarizing groups.
By introducing Virtual Nodes for functional combination of
groups, the scaling regarding the evolving key management
is constant to the classic VersaKey-approach while the Key
Trails scale with the number of updated nodes instead of the
number of incident edges.

By applying stream-based key management to versioned
data, we extend well-established graph-based key manage-
ment schemas and utilize the generation of encrypted key
updates by storing these Key Trails on high available and
scalable but untrusted cloud-infrastructures parallel to the
encrypted data.

2. Related Work

Related approaches in this area cover the storage of en-

crypted data on untrusted components like cloud-infrastructures

as well as the scalable handling of keys with the help of Key
Graphs.

Cloud security became a major issue within the last years.

Sato [7] proposes a trust model for secure cloud usage.
The proposed model contains key management function-
ality although no concrete key management approach was
described. Damiani and Pagano [1] propose an hierarchi-
cal organization of the keys used for encrypting and storing
data on the cloud. The exclusion of existing users is per-
formed by propagating new keys after re-encryption of the
data. Xu [13] proposes the separation of content and format
as a base for storing data secure on the cloud. The data is
encrypted by public/private keys making collaborative key
handling obsolete.

Storage upon untrusted components always needs so-
phisticated approaches to grant disjunct, fixed defined users
access to common data without exposing any information
about the underlaying group management. Cryptree [3] rep-
resents an approach to store data in an hierarchical manner
with permission-rights on subtrees mapped on groups. The
underlaying recursive data-structure scales with the numbers
of keys since the keys are inherited top-down in the tree.
The focus of Cryptree is similar to ours since we rely on
hierarchical group permissions ongoing with an hierarchi-
cal data structure as well. Our approach furthermore focuses
on the versioning of the keys and the data and utilizes the
distributed environment.

Multiple approaches exist to map key management to
graphs. Waldvogel [10] proposes the arrangement of client-
bound keys to an overall encryption key within a tree-
structure called VersaKey. We base on this approach includ-
ing a model for updating the nodes within our approach.

These approaches are extended to offer an even more
efficient key handling by Wong [11] where the key graph
propagates any changes via UDP/IP multicast. Forward error
correction reduces the messages for efficient and reliable key
updates.

Hassen [4] proposes another extension by introducing
intra-level changes on the tree. This approach enables key
graphs to change the affiliation of a node to a group.

The EKs in these approaches ensure scalability within
join/leave-operations of clients and utilize their keys for di-
rect encryption within our approach. The resulting structure
is not a tree anymore but a DAG as proposed in [9, 12].

In our approach, we rely on this architectural style of
modeling hierarchical access rights into a DAG-structure.
Even though the scaling of the DAG degenerates within
consecutive changes on the keys, the combination of nodes
to reduce the DAG to a more efficient DAG-representation
as proposed in [14] stays out of focus since we use the
hierarchy within the DAG as semantic representation for
organizational issues.

Keys

7Y Client

9090900 =
QO @

& [§9903p00
RAED P

YR

y 5
Encryption 2 - ’

A
Keys EK1, . EK2, Keys

Encryption

Figure 1: Classic Key Graph

3. Graph-based Key Management for Cloud
Storage

Figure 1 shows a DAG constructed similar to classic stream-
bound approaches [9, 12, 14].

Any data is encrypted with the help of EKs. To ensure
scalability within updates, CKs are combined with the help
of the EKs. Each client contains a subgraph consisting out
of its own CK and the descendants whereas one global
DAG manages join-/leave-operations of nodes as well as
insert/remove-operations related to edges in a centralized
manner. If a client, represented by a node, joins or leaves
the set of authorized clients, only parts of the keys stored
within each client must be adapted. These parts include the
descendants of the nodes where the modification on the DAG
occurred.

Consider the graph in Fig. 1 that shows the insertion of
the client 7. As a consequence of the insertion, the nodes 67,
47, EK1 and FK?2 have to generate new key material to
ensure that the new client has the ability to access the data
encrypted by the descendants of its CK. Since each node
contains a version counter represented by the number in the
subscript of the actual node name, the version of the updated
nodes increases.

Based upon this graph-representation, VersaKey encrypts
the new key material of the updated descendants with the
keys stored in the adjacent nodes staying valid after the
modification. These encrypted updates, represented by the
edges within the DAG, are called Key Trails. The updates are
propagated in a secure manner based upon the encryption of
the Key Trails. For each dotted line in Fig. 1, one Key Trail is
computed as update e.g. Fg7, (471) where the new node 47
is encrypted with the new material of node 67.

3.1 Theoretical Foundations of the Key Graph

We define the underlying DAG as an ordered pair G =
(V, E) where V denotes the nodes in the graph while E
V' x V represents the set of edges. Additionally, we assign
a direction to each edge, i.e. each edge has a source node
and a target node. A directed edge leading from source v to
target w is therefore denoted as an ordered 2-sequence of a
source node and a target node as in (v,w). For a node v,
we define the indegree i(v) = ‘{(u, vy € E|ueV}
as the number of edges “incoming” at v and the outdegree
o(v) := |{(v,u) € E | u € V}| as the number of edges

N

“outgoing” from v. We denote by C := {v € V | i(v) = 0}
the set of CKs, which are the root nodes. The EKs are the
set N :={v eV |i(v) >0 A o(v) > 0} containing all
nodes that are not CKs. The “terminal vertices” are just the
set K := {v € N | o(v) = 0}. A (directed) path P C G isa
non-empty subgraph (V' E’) of the graph G such that V' C
V, E' C E that has the form V' = {vg,v1,...,v;} and
E' = {{vo,v1), (v1,v2), ..., (vk—1,vk) } where all v; with
0 < i < k are distinct. We will say that P C G to denote
that P is actually a subgraph of G. For the sake of simplicity,
we denote paths in a short form as an indexed sequence of
nodes like (vg, v1, ..., vx) and say that P “leads from v to
vy (for any k& > 1). In this case, we call vy, a descendant of
vo. We furthermore assert the following:

1. For each node v € N there must exist at least one CK
w € C such that a path leads from w to v:
VUEN:HwGCEP:<w,...,v>.

Informally, the assertion means that each “terminal ver-
tex” is the end point of at least one path starting at a CK
and there are EKs which could be left out without breaking
such a connection. Note that nonetheless, CKs are allowed to
be isolated and thus the resulting DAG is not guaranteed to
be connected. It is also possible that the DAG does actually
neither contain any EKs nor “terminal vertices”.

Two types of modification operations are supported by
our infrastructure:

1. Modifications of the node set to derive the updated set
Vi1 from the prior set V;:

(a) A new node Zp., ¢ Vi joins the DAG: Vi, =
Vi U{Znew }
(b) An existing node x4 € V; leaves the DAG: V11 :=
Vi\{zo1a }
2. Modifications of the set of edges to derive the updated set
E; ;1 from the prior set E;:

(a) A new edge (u,v) € E; between two existing nodes
{u,v} C V;isinserted: E;11 := E; U {{u,v)}

(b) An existing edge (u,v) € F; between two existing
nodes {u, v} C V; isremoved: F; 1 := El\{<u, v)}

Corresponding to the indices used with V and E, we
will denote by G; the prior DAG (V;, E;) and by G, the
posterior DAG (V; 11, E; 1) which is obtained as a result of
one or more modification operations.

Consider the typical case when a node X, € V; joins
the graph G;. If x ., is supposed to get any access rights,
new edges have to be inserted into G;. Be edge epey =
(Tnew,y) € Vi with y € V; the edge whose insertion is trig-
gered by the join of x,,,. This means, e represents the initial
access rights of ¢, in G;41. After the node has joined the
graph and edge e was inserted, all descendants desc(xpew)
of Zpeq in G441 must increase their version index and up-
date their key material. We call these two consecutive op-

erations an update. The set of nodes which are required to
be updated after a modification has been performed is de-
noted by V', ;. Actually, V;* ; is the set desc(Tpew) in Gig1.
(Since we inserted only edge e, this set is in fact narrowed
down to the descendants of y in G;11.)

Now consider the case of a leave: when a node x4
leaves the DAG, the update has performed on set of those
nodes in G;41 which are descendants of x,4 in G, i.e.
Vi, = desci(wo1a) N Vig1.

Note that regardless if a node x joins or leaves, the set
Vii1\{z} of updated nodes in the result graph G;q is
identical for both operation types.

If an edge (v, w) is inserted connecting two nodes already
present in G, all descendants desc(w) of the target node
w in G,;4+1 have to be updated and exactly the same nodes
have also to be updated after the removal of an edge. If an
edge (v, w) is removed from G;, all nodes in G;11 which
are descendants of w in G; have to be updated.

Each type of modification causes the generation of Key
Trails for all edges in £ | = (Viy1 x V% 1) N E;;1 whereas
one Key Trail represents one edge. Note that it is sufficient
to consider only the edges for which the target is in V;,
since there is by definition no edge that leads from a source
in V% | toatargetin Vi 1\V}% ;.

It is important to note that the number of Key Trails is
identical to the number of not-updated edges in G;11 as
well.

Therefore, the computation and storage of the Key Trails
generates an overhead in the size of the number of edges
incident to the nodes which are updated in G, 1 in the course
of any modification.

To scale the number of Key Trails, we furthermore in-
troduce Virtual Nodes within our approach described in
Sec. 3.2.1.

3.2 Key Graphs and Data Storage

VersaKey is originally applied to stream-based architectures
whereas access to former encrypted data is not necessary.
Regarding the usage of evolving Key Graphs for encrypting
data within storage, four adaptions must be made to apply
VersaKey on data storage:

e The stored data to be encrypted must be hierarchical
organized. Due to the inheritance of access rights within
the DAG, any data-structure adoring this inheritance (e.g.
a file system or XML) provides the ability to encrypt
different levels within the data with related access rights
derived from the DAG. The EKs in the DAG offer not only
scalable updates but also group-based access rights.

e The data to be encrypted is versioned. Stream-based en-
cryption abdicates the availability of former keys and for-
mer data. The keys as well as the encrypted data are
only valid within a given point of time. Regarding data
storage, the sustainability of the data to be encrypted
must adore the changes within the key management on-

A A
ora | (@, f 0] 0]

Eualgli) Euo(g12) Eui(921)
TI?:i)lrg Eq1, (p1) Bu(g12) Euz(g21)

) Eya, () 2 s, (p3)
Eqg2, (p3)

Data

Figure 2: Evolving Data, Key Trails and DAG

going within single join/leave operations. This awareness
is achieved by versioning the data to be encrypted.

e The DAG is versioned equivalent to the versioning of
the data. Within the hierarchical structure of the stored
data, each modification of an element is encrypted within
a given node. Since the key material changes regarding
different versions of the same node, all former keys from
the DAG must be available to ensure access to all versions
of the data.

e The updates on the DAG occur over persisted Key Trails.
Since we rely on a versioning of the DAG, we use the
Key Trails not only for on-the-fly adapting of the DAG
but also as format for deltas between two versions on the
DAG. Furthermore, the encrypted nature of the Key Trails
is utilized to store updated key material in the cloud as
explained in Sec. 3.3.

The four points defined above result in a versioning of the
DAG independent from the versioning of the data. The data
is encrypted with the key material of the most recent version
of a suitable node. The decrypting of the data is provided by
the version of the corresponding node at the point of time
of modification. Old versions of the data are thereby only
decrypt-able with fitting versions of DAG-nodes while the
current version of the DAG-nodes encrypts ongoing modifi-
cations. The binding of node-versions to data-versions ob-
viates re-encrypting the data within key changes. Figure 2
shows an evolving DAG, the related Key Trails and an hier-
archical data-structure.

The versions of the DAG relate to the Key Trails computed
on updated nodes. The updated nodes base upon the points
of insertion / removal of edges / nodes within the DAG.
Regarding the example of Fig. 2, the leave of the CK u2
results in the adaption of the same nodes than the insertion
of the new CK u0 increasing the version of the nodes g1
and p twice. The join of the existing CK ul to the group
g2 however results only in the adaption of the nodes g2 and
p whereas g1 stays unmodified. Each node updated by the
modification gets new key material and an increased version
even though the old versions of the nodes stay accessible

containing their original key material and the corresponding
pointers to their environment. Fig. 3 shows the layout of a
node within the DAG persisted for the entire lifetime of the
client. The unique identification of a node is handled over the
field Fixed ID. The Version-field is incremented each time
a node updates its key material and possibly the pointer to
its parents and children if the adjustment of the access-right
influences this node directly namely within a removal or
insertion of an edge. All pointers to the environment, namely
the edges to all incident nodes, are represented by two lists
(Parent IDs and Children IDs). All of this data represents
the information necessary to identify the position and the
relation to other nodes and are denoted as Key Selector while
the Key Data contains the key material used for encryption
/ decryption operations on the data. The Secret Material is
changed within every modification of the node ongoing with
an increment on the Version-field.

All modifications on the DAG result in the generation of
the Key Trails based upon the edges incident to the updated
nodes as shown in Fig. 2. Based upon their purpose as re-
trievable deltas to replay any changes upon the DAG, the Key
Trails are versioned as well. Independent from the modifica-
tions within the DAG, the data undergoes modifications as
well resulting on own versions. The related data encrypted
with those nodes must be aware of the current version of the
DAG within each modification. For example, if the change
on DAG where the CK u2 is excluded from the group gl
occurs before the modification of the file “Filel”, the en-
cryption key used for encrypting the new version of “Filel”
is based upon the new version of the node gl. CK u0 has
access to the most recent EK p by decrypting the Key Trail
E.0(g12) and, with the resulting access on the most recent
node version of the node g1, the Key Trail Ey1,(ps). Fig. 4
represents a Key Trail. Each Key Trail consists out of a plain
readable part and an encrypted part. The plain readable part
hosts the relevant ids for the nodes: The BaselD and the Base
Version identify the node and its version with which the Key
Trail was encrypted. The KeyID and the Key Version repre-
sent the updated node. In other words, the BaselD represents
the source node of the directed edge while the KeyID repre-
sents the sink node of the same edge. Regarding our example
of Fig. 4, within E1,(p3), g1 is the BaselD in the version
2 while p represents the KeyID in the version 3. Besides the
plain part needed for the identification of the Key Trail, the
second part is encrypted and stores the secret material for
the updated node.

| Fixed IDJ Versian Parent IDs J Children IDs J | Secret MaterialJ

— — o /

Key Selector Key Data

Figure 3: Layout of a node within the Key Graph

| BaselD IBase Version | KeyID I Key Version | | new key
N— — N —
Y
plain encrypted

Figure 4: Layout of Key Trail

All nodes except the Virfual Nodes can therefore host
encryption keys for the data. The keys on higher-levels in
the DAG preferable encrypt higher-level elements within the
hierarchical data to gain benefits from inherited access rights
similar to Cryptree [3].

In our example shown in Fig. 2, the data “File1” is modi-
fied within several versions. For encryption, the current ver-
sion of the associated key g1 is used. As a consequence, the
new CK 10 has no access on former versions of “File1” than
the one encrypted with version 2 of the node g1. The chal-
lenge to access former versions within new access rights is
described in detail within Sec. 4.

3.2.1 Virtual Nodes

Since the Key Trails rely on the number of all incident nodes,
nodes with a multiple parents produce multiple Key Trails.
Since the number of associated modifications scale with
the size of the group, the number of necessary Key Trails
scales only with the number of incident nodes. To reduce
the number of necessary Key Trails, we introduce Virtual
Nodes. Wong [12] already showed how the outdegree of
nodes within a Key Graph influences the performance of
rekeying operations.

Based upon the usage of EKs to summarize a set of CKs,
the scaling related to updates bases upon the number of
parents of single EKs. Therefore, we introduce a threshold
t > i(v) = [{{w,v) € E | u e N} Ifi(v) >t
Virtual Nodes are inserted. Virtual Nodes are defined as
follows: T := {s € N}. Even though similar to EKs,
the purpose of Virtual Nodes is not to encrypt any data.
Instead, Virtual Nodes are utilized to act as proxy between
the related nodes u € NN E,v € N ifi(v) > t: E;y; =
El\{<u7 U>}7 Eito:=E;i11U {<uv S>, <S’ U>}

Consider the situation when a node « joins the graph and
would now become a parent of node v but this would make
i(v) to exceed the threshold. A Virtual Node s is inserted
as a parent of v and makes u and s adjacent to each other.
Now, any path leading from u over v to some EK starts with
the sequence u, s, v. Since the Key Trails rely on all adjacent
edges to all updated nodes and the capping of the indegree of
all nodes, the number of Key Trails scales by the introduction
of the Virtual Nodes with the number of updated nodes and
not with the number of adjacent edges to those nodes.

Fig. 5 represents the usage of Virtual Nodes where a new
node 7 is introduced in the DAG with ¢ = 4. The current
nodes associated to the group key g2 are after the modifica-
tion referring to the Virtual Node v2. Regarding our example
shown in Fig. 5, the generated number of Key Trails ongo-

ing within the insertion of node 8 decreases from 8 (with-
out Virtual Nodes) to 6. With the help of the Virtual Nodes,
the number of generated Key Trails scales with the number
of the updated nodes and not with the number of incident
edges. Even though Virtual Nodes have the same layout than
other nodes within the DAG, their key material is due to
their fanout-reducing purpose only used for encrypting re-
lated Key Trails.

3.3 Synergies between the Cloud and the Key
Management

The aim of the appliance of our approach to cloud-based
collaborative workflows is to utilize the high available but
untrusted [5, 6] components within the cloud.

We therefore discuss the DAG, the data and the Key Trails
over different components:

® The key management is divided into two disjunct types
of DAGs:

= A centralized instance upon a trusted component rep-
resents the overall Key Graph. This DAG consists out
of all keys in all versions and triggers all changes upon
the authorized client-set.

= Besides the centralized instance containing all valid
keys, each client holds its CK including all descen-
dants in all accessible versions.

® The Key Trails are stored on the cloud. Due to the high
availability and the scalability of the cloud-based ser-
vices, the Key Trails stay accessible for any accessing
client even if the centralized Key Manager is not avail-
able. Since the key material within the Key Trails is en-
crypted, the CSP has no ability to access any encrypted
data in the cloud. The cloud is only utilized for storing the
updates and offer easy propagation of the Key Trails to
the clients. The clients are able to decrypt the Key Trails
if still authorized to access the related node.

Figure 6 shows the appliance of our approach within
a cloud-based infrastructure. A centralized Key Manager
maintains the complete DAG representing all access rights
for all data stored in the cloud. Any changes regarding the
client set such as joins, leaves of clients and group adap-
tions occur within the Key Manager. Since the Key Man-
ager adapts the changes within the client-set on-demand, the
availability of the Key Manager can be adapted. After each
update of the containing DAG, the Key Manager pushes the
resulting Key Trails in the cloud.

.,,,////

T/. "o

Figure 5: Inserting Virtual Nodes

Due to the availability and the scalability, the cloud in-
frastructure has the ability to store all Key Trails including
all versions. Since the Key Trails are encrypted, the cloud
service provider has no ability to decrypt them neither to ac-
cess any data with the help of the Key Trails. Each client
accessing a fixed version of the data retrieves the suitable
version number and identifier for the corresponding node.
If the client has access to this node but not the fitting ver-
sion, the related Key Trail is transferred to the requesting
client. The Key Trails are not versioned on the client since
they only represent an encrypted, high available delta on the
DAG persisted in the cloud for replaying any changes on the
subgraphs within the clients. For checking the currentness of
the keys, the last Key Trails to each node are persisted. The
concrete workflow between server and client, for checking
and updating the keys and transferring data, is described in
Sec. 3.4.

The clients have the ability to encrypt any data with any
node within their own subgraph. The data itself is stored on
the cloud encrypted denoted as the locker in Fig. 6. Since the
encryption takes place before transfer, the confidentiality of
the data is provided while the data is in transfer or in storage.
If a modification occurs on the data, the version number of
the corresponding node is checked to be up-to-date. If the
node is outdated, the related Key Trails are transferred to the
client and decrypted if the client was not excluded within
the overall Key Graph. Since each modification on the data
results in one version, the version is mappable to exact one
version of one node within the DAG. The versioning of the
data furthermore results in an append-only storage on the
cloud easily manageable within its scalability.

Even though the server deployed in the cloud contains no
knowledge about the inlying data, it must be aware about
the version stored or retrieved as pointed out in Sec. 4.
Nevertheless the versioning itself is performed by the clients
containing all permitted versions of the permitted data. Any
data retrieved from the cloud is cached in the client to reduce
network overhead. Within Fig. 6, the black arrows denote the
transfer of any data in the cloud. As clearly visible, Client 0
has only access to one version while the other clients cache
multiple versions since the related CK “0” was introduced
later in the global Key Graph.

Besides the different versions of the data, each client
stores all related, accessible keys as well. A corresponding
subgraph of the overall Key Graph stored on the Key Man-
ager constitutes out of these specific keys. Updates on this
set occur over the Key Trails transferred from the cloud if
a client tries to access a node with an unknown key. In this
case, the related Key Trails are transferred and, if the client
has the corresponding current keys, encrypted as represented
by the gray arrows in Fig. 6. Within this mechanism, new
group keys denoted by EKs are transferred to the clients as
well.

[I—Public/ |
I-- Groups/
"-- Users/

5
2

&l “
"

|-- Public/

Key Manager
E,,Ll(gll)]];Z(Tgriizl; B Q& ’,‘
Eg1,(p1) ul(g(ll)z; u2(9(§1;®
-‘712 2)| £g12 (D3 N

|-- Groups/
'-- Users/

Figure 6: Overview of proposed architecture

3.4 Updating the Keys

The communication between clients and the server deployed
in the cloud is represented by Fig. 7. Preceding any data ac-
cess, the currentness of the corresponding node is checked
related to the requested data. The consecutive requests
of synchronizing the key material ongoing within read- /
write-requests enforce a session-based protocol whereas we
choose SOAP within our approach. The client starts a session
with a server instance deployed on a PaaS-infrastructure. A
challenge is provided to the requesting client by the server.
The challenge is concatenated on the client with the hash of
the last Key Trail for the node to be checked and returned to
the server. The server performs the same operation to check
if the last Key Trail of the client is the most recent one.

If the check fails, the server pushes the most actual Key
Trails to the client. The client decrypts the Key Trails with
the former keys and updates its local Key Graph. Afterwards,
the request on the data is performed with the valid keys
including encrypting the data, sending the data to the PaaS-
instance and checking the integrity of the access with the
help of a hash computed on the data transferred. If the
request fails, this request is repeated. After a successful
request, the session for this client is closed.

The usage of a challenge provides secure transmission
despite additional security layers like e.g. SSL. Regarding
new groups including new clients, the persistence and the
versioning of the data mapped to the DAG and the Key Trails
enables the insertion of new access rules based upon existing
nodes. Only an initial graph consisting out of a single CK
must be provided to the client. Further adaptions take place
in an encrypted manner over the Key Trails provided by the
cloud service.

The availability and scalability of the cloud is utilized
without harming the confidentiality of the keys and, as a con-
sequence, the data. The versioning of the data and the DAG
makes re-encryption operations obsolete since each version
of the data points to exact one version of a node. Even though
existing CKs can be disabled within the DAG, new inserted
CKs must gain access to data encrypted with former versions

Session

Cloud Storage

begin
Keycheck

\/

A

Challenge
Keycheck

Recompu

Keys

H]
A

H(H(Key Trail) ® Challenge)
Key Sync

[Keys differ]
Send Key Trails
Data

A

Send read/write request
Data

4

[Hashs differ]
Request resend
Session

\ 4

Validate
Hash

Validate
Request

! close

Figure 7: Sequence of write including checking of Key Trails

of reachable group-keys. This access, including the restric-
tion to the current status of the data only, is described in
Sec. 4.

4. Versioned-based Access

Even though the modifications on the DAG are independent
from the modifications on the data, one node of the Key
Graph in one version must map to one data element in one
version. Depending on the granted access rights, a client
might have the non-exclusive access on former versions of
the data, on the current version of the data or on future
versions of the data. Access to former versions of the data are
provided by sharing the related node including the relevant
Key Trails. Since one encryption key within one version has
the ability to map on multiple modifications on the data,
consecutive modifications are guarded by only one key. The
granularity for version-based access is thereby defined by the
versioning of the related EKs within the Key Graph. Access
to upcoming modifications are equivalent to VersaKey: A
suitable CK is inserted and linked to the EKs representing
the related rights. All modifications encrypted with any node
reachable from the CK are afterwards accessible for this
client. Although the access to preceding and succeeding
versions are given, an adaption related to our approach must
be made to provide access only to the current version of

I- Groups I- Groups I- Groups I- Groups
- 02 - 02 - 02 - 02
2 2
S|) File2,0 A IS File2,l |51 Fie22 |57 -Fie23

Figure 8: Encrypting different versions of the same data

the data. Since one version of an encryption key has the
ability to secure multiple versions of the data, an additional
restriction of the encryption keys must be provided. If a
client should gain access only to the current status without
the ability to read former versions, simple sharing the related
node violated this restriction.

Figure 8 describes this problem: Consecutive modifica-
tions on the “File2” are encrypted with one version of group
key “g2”. Based upon the usage of one encryption key to
protect multiple versions, the sharing of this key results in
the access of all guarded versions. Giving access to a client
joining group “02” therefore automatically provides the abil-
ity to access former versions of the data as well. An access
to only version 2 of the data is not supported by the classic
VersaKey mapping. The access to current versions without
exposing past versions encrypted with the same node there-
fore represents a challenge.

Due to the independence of the Key Graph-versioning
and the versioning of the data, simple sharing an older ver-
sion of the fitting encryption key without additional restric-
tion not only eventually violates the access. Furthermore, it
is not guaranteed to access the data in such way since the
last modification on the requested data maybe encrypted by
any former version of the Key Graph. We therefore propose
two solutions to solve this problem: The first solution con-
sists of redundant data and additional keys resulting of a
shadow structure of the data and the keys as described in
Sec. 4.1. The second approach utilizes the distributed archi-
tecture within our approach as described in Sec. 4.2.

4.1 Shadow Structure

The first proposed extension to our approach restricting ac-
cess to only the recent version represents the insertion of
shadow structures related to the Key Graph and the data.
While the shadow structure of the Key Graph needs to be
versioned similar to the Key Graph itself, the shadow struc-
ture of the data is not versioned. All modifying requests on
the data thereby are first encrypted by the suitable node in
the most recent version of the Key Graph and applied to the
versioned data storage. Additionally, the modification is also
encrypted by the same node of a shadow-Key Graph called
Shadow Key and applied to an unversioned shadow structure
called Shadow Data. The Shadow Key is provided as addi-
tional key material stored within each node of the DAG to ac-
cess only the Shadow Data. The Shadow Data consists only
out of the most recent version of the data. As a consequence,
each modification results in a new version on the data en-

|- Groups |- Groups |- Groups |- Groups
|-- 02 ’ I-- 02 |-- 02 |- 02
g g g
Data P File2,0 | 1 -File2,1 SR File22 | -File2.3
--02 '--02 --02 '-- 02

- sk K, s -
- File2,0 o " File2,1 o - File2,2 ! " File2 3

22,

sko

Figure 9: Shadow structure to provide access to current ver-
sion

crypted with the normal key material of the linked node and
the adaption of the Shadow Data encrypted with the key ma-
terial of the Shadow Key. Since the Shadow Data contains no
inlying versioning, each new client joining the DAG access
the newest version of the Key Graph and the first version of
the related Shadow Key. With the help of the applicable Key
Trails on the Shadow Key, the new client has the ability to
decrypt all data within the Shadow Data. Since the Shadow
Data consists only out of the current version of the data, no
access to former data versions is granted. If a client is ex-
cluded, the Shadow Keys are adapted similar to the normal
Key Graph prohibiting any access to newly modified content
within the Shadow Data.

Figure 9 represents an example of the shadow structures.
While the data is encrypted and versioned with the help of
the nodes within the Key Graph, the most recents modifi-
cations are also applied to a copy encrypted by the Shadow
Key. Therefore, the access to “File2” is provided not only via
the group key “g2” but also over the Shadow Key. Even if
“g2” within its version 0 guards several versions of the data,
the related Shadow Key guards only the most recent version
stored in the Shadow Data. If a client should only access the
latest version, the Shadow Key is published in version 0 and
the suitable Key Trails are provided to reconstruct its ver-
sion 1. Besides, “g2” is only provided within its most recent
version. The client, accessing the Shadow Key within all of
its versions, has the ability to access the Shadow Data. The
provided group key “g2” with its latest version offers no ac-
cess to former versions of the normal data. Therefore, the
client has only access to the most recent version of “File2”:
The access to the versioned storage is only provided by non-
accessible versions of “g2” while the Shadow Data is en-
crypted with the accessible versions of the related Shadow
Key.

The Shadow Data consumes a constant factor of addi-
tional resources since the latest version of the data must be
mirrored while the Shadow Key results in an additional field
stored related to each node. By sharing the Shadow Key to
accessing clients in a secure way (e.g. by encrypting the
Shadow Key with the related CK as Key Trail), the client
gains access to the most recent version without any possibil-
ity to read preceding versions of the data.

4.2 Token-based Extension

Another mechanism for restricting the access to defined for-
mer versions on the client is the deployment of an authoriza-

tion layer within the distributed environment. The Key Man-
ager contains a list of resources applied to the nodes. This
mapping between the nodes and the data is enriched by the
versions which are valid for the different clients. For each
client, the resources in the data encrypted with a node are
bound to versions. The additional authorization structure is
deployed besides the global Key Graph within the Key Man-
ager. The binding between the versioning of the DAG and
the data is represented over this structure.

Figure 10 shows an example: “Client 0” has access to
version 3 of the data stored under “ol” whereas “Client
17 has the ability to access all versions stored under the
same resource. Since the mapping between DAG and data
takes place over a dedicated structure, each client contains
all nodes within all versions accessible within the own CK.
Related to the example of Fig. 10, “Client 0” contains all ver-
sion of the accessible group key “g0” since the authorization
for different versions takes not place over the DAG.

This approach scales with the number of rules bound
to each version. For one ¢ =CK, Y{u,z} € V,p =
(¢, u0) (w0, o) (Um—1, Tm—1)(Tm—1, k) whereas m € Ny A
i1 = w;, Vi € {1,...,m — 1}, there can be a rule for
all u, v mapped to one client. More concise, for each node
key reachable within the path from the related CK within
a client, there exists one rule mapping the versions of the
data to the versions of the DAG. The rules are thereby not
bound to the different versions of one node but to the node
itself. Regarding the example of Fig. 10, “Client 0” contains
three nodes accessible from the own CK based upon the
path-definition from above. Therefore, at most three rules
represent the version-mapping between “Client 0” and the
DAG.

The proposed access-structure acts as a base for a token-
based approach between the three disjunct components of
our architecture namely the cloud, the disjunct clients and
the centralized Key Manager. The workflow is denoted by
Fig. 10 as well:

1. The client requests a version. The requested access is ver-
ified against the proposed authorization structure within
the Key Manager.

2. Based upon the versions allowed for this client and the
requested resource, a token is negotiated between the Key
Manager and the cloud-instance. The token is encrypted
and only readable for the cloud and the Key Manager.
Each token represents a single rule for a dedicated client.

3. After negotiation, the resulting token is sent to the client.
The client has no ability to decrypt the content neither to
modify the content without violating it.

4. With every request, bound to the fixed resource within
one of the desired versions, the token must be delivered
to the cloud-instance from the client. The cloud has the
ability to decrypt the token and to verify the access on the
requested version of the data.

4. Token-based
Data Transfer

Version 3

< - Public/ |
< I-- Groups/
'-- Users/

Key Manager
Client Data Version
Client 0 | Public || 0,1,2,3,... S
ol ENN
ul ENN
1. Requesting Client 1 | Public || 0.1,23.. .. @
Versions ol 0,1,2,3,...

02 1,2.3,...

ul [[0123... @
g1)<
Client 2 e

03uaI)

3. Transferring
Token

@ 2. Token
Negotiation

Figure 10: Token-based extension

As already pointed out in Sec. 3.3, the storage must be
aware of the versioning of the data although the different
versions are encrypted. Due to the encryption of the modifi-
cations with the help of different keys, the awareness of the
data by the CSP is constricted only to the versioning and not
to the data itself. As a result, the CSP can identify different
versions within the keys and the data but has neither the abil-
ity to gain access to the inlying data nor to get access to any
keys.

The client has the ability to encrypt all data stored on the
cloud with the help of the decrypted Key Trails resulting in
a subgraph of the global DAG. Based upon the authoriza-
tion structure mapping the versions of the DAG to the ver-
sions of the data, the access on the encrypted data in the
cloud is guarded additionally to the encryption by the DAG.
Since each request from the client must contain a valid to-
ken, negotiated between Key Manager and cloud-instance,
the client has only limited access to the hierarchical data al-
though it would be possible to utilize all nodes accessible
within the CK within all versions if the client would have
unauthorized access to all versions.

5. Implementation, Evaluation and Scaling

The proposed approach was implemented within the native
XML database called Treetank [2] as data backend and a
random generated DAG stored similar to the proposed archi-
tecture denoted in Fig. 3 and Fig. 4. The DAG, representing
our Key Graph, is generated randomly with 250, 500 and
1000 nodes and consists of 10 levels. While the nodes are
distributed equally on maximal 10 levels, 8 terminal vertices
are included in this set of EKs. The outdegree of each node,
except the terminal vertices, is at most 3, meaning that each
node has at most 3 children. This restriction regarding the
number of children does not restrict the indegree of a node.
While one DAG is created with the usage of Virtual Nodes,
the other DAG abdicates the insertion of Virtual Nodes. If an

edge between two Virtual Nodes is inserted, the Virtual Node
representing the sink is replaced by another node.

Incrementally, 6400 different CKs are deployed to the
resulting DAG. Each CK is linked to between 1 and 3 random
selected EKs. After each CK-insertion, a new version of
all descendants of the inserted CK is created. After a fixed
number of insertions (50, 100, 200, 400, 800, 1600, 3200
and 6400), the generated Key Trails and the updated nodes
are traced.

The number of edges is based upon the number of nodes
inserted. As a consequence the number of nodes affected
within single update operations increases with the number
of nodes inserted in the DAG.

Figure 11 represents the results of this benchmark whereas
the y-axis denotes the number of EKs updated and the x-axis
represents the CKs joining to the DAG mapped on single
versions. Within the insertion of single CKs, only a constant
number of related EKs is updated if no Virtual Nodes are
inserted as shown in Fig. 11a. Since the edges between the
EKs are already existing before the insertion of the CKs, the
number of the nodes related to the insertion is independent
from the number of previous inserted CKs. Nevertheless,
depending on the numbers EKs in the Key Graph, different
EKs are updated.

The same benchmark is performed including the genera-
tion of Virtual Nodes represented by Fig. 11b. Since the Vir-
tual Nodes are inserted in the DAG while creation of the Key
Graph, the DAG with the Virtual Nodes has a different lay-
out than the DAG created without Virtual Nodes. This differ-
ent architecture explains the lower number of nodes updated
especially at the beginning. Even though the number of up-
dated nodes is lower at the beginning, the scaling shows the
price to be paid for the usage of the Virtual Nodes: Indepen-
dent from the size of the Key Graph, the scaling is not linear
any more due to the continuos insertion of Virtual Nodes. As
a result, regarding huger graphs, the scaling results in lesser
nodes updated since the usage of Virtfual Nodes loosens the
DAG whereas each CK has less descendants. The number of
updated nodes within the usage of Virtual Nodes is therefore
decreasing with the size of the Key Graph.

Figure 12 shows the scaling of updated nodes cumulated
within all versions. The number of nodes without the usage
of Virtual Nodes as shown in Fig. 12a scales linear with the
number of CKs inserted as expected. This scaling substanti-
ates our assumption that only a constant number of nodes is
updated within each CK-insertion.

By inserting Virtual Nodes, the scaling of updated nodes
represented by Fig. 12b is not linear any more. Due to the
increasing number of Virtual Nodes within each update, the
number of nodes increases even by insertion of CKs only.
The scaling improves, the more nodes the DAG contains
since a loosely coupled structure enforces less updates on-
going within less insertions of Virtual Nodes.

The main argument for introducing Virtual Nodes is the
generation of Key Trails. Figure 13 shows the number of
Key Trails cumulated over all versions. Logically, the more
CKs are introduced in the DAG, the more Key Trails are
generated. Since the Key Trails are computed based upon the
incident edges on the modified nodes, the scaling is linear.
Based upon the fixed architecture of the generated DAG
without Virtual Nodes as shown in Fig. 13a, the more nodes
are present in the DAG, the more Key Trails are generated.

Since less nodes are updated within the introduction of
Virtual Nodes, the number of Key Trails generated within
each joining-operation of a CK is smaller represented by
Fig. 13b. This sustains our results regarding the number of
updated descendants of the CK's within Fig. 11 and Fig. 12.

The number of Key Trails is smaller by the usage of Vir-
tual Nodes. Less nodes are affected if the Key Graph is al-
ready existing within insertions of single CKs and Virtual
Nodes. Both aspects motivate the usage of Virtual Nodes
based upon suitable selected thresholds even though the
number of nodes in the DAG increases.

The evaluation of the Virtual Nodes-usage, our approach
behaves like expected: Within any modification on the DAG,
only a constant number of nodes are updated, namely the
descendants of the modified node. Furthermore, the number
of Key Trails playing a mandatory role within our approach,
scales with the number of nodes and can be further improved
within the usage of Virtual Nodes.

6. Conclusion and Future Work

Within our approach, we successfully bring stream-based
Key Graph-approaches to the area of data storage. Our pro-
posed distributed architecture utilizing versioning not only
related to data storage but also related to the Key Graph en-
ables changes within accessing clients without the need of
re-encrypting any data. Modifications on the Key Graph up-
date the descendants of the modified node. Virtual Nodes fur-
thermore enable us to ensure scalability regarding the nodes
adjacent to the updated descendants. The updates themselves
are introduced as Key Trails representing the edges within
the Key Graph. Since the Key Trails are encrypted and per-
sisted, we use the high availability of untrusted cloud-based
services propagating any changes within the clients. The
access to former versions is provided either by a separate
shadow-structure of the data and the Key Graph or by utiliz-
ing the distributed architecture of our approach. Even though
this enables access to former versions within new clients,
we believe that in this area more sophisticated ideas can be
developed by utilizing the distributed architecture. Further
improvements of our approach include the distribution of
the key management to make the centralized DAG obsolete
similar to the original VersaKey-approach. Since we update
the Key Graph manually, we further evaluate function-based
adaptions of updated notes making the manual key genera-
tion within each node obsolete and utilizing the difference

70
65
60
55
50

45 ¢
40
35

| L i i L i L
30
-=250 Groups
25 =500 Groups
2 1000 Groups
50 100 200 400 800 1600 3200 6400

(a) Nodes updated in one version without Virtual Nodes

600

500

400

300

80

70

60

50

40

30

20

10

0

50 100 200 400

800

-=250 Groups
~-500 Groups
1000 Groups

1600 3200

6400

(b) Nodes updated in one version with Virtual Nodes

Figure 11: Nodes updated within modifications

-# 250 Groups
-+-500 Groups.
1000 Groups

200

100 200

400 800 1600

3200

6400

-#250 Groups
--500 Groups
1000 Groups

50 100

200 400 800

1600

3200

6400

(a) Nodes updated in all versions without Virtual Nodes (b) Nodes updated in all versions with Virtual Nodes

1262 m 250 Groups
m-500 Groups
1000 Groups
317

80 I
20 ‘
50 100

Figure 12: Nodes updated within modifications

200 400 800 1600

159
80
40
20

3200

6400

(a) Number of Key Trails per user without Virtual Nodes

W 250 Groups
m 500 Groups
1000 Groups

50 100 200 400

800 1600

3200

6400

(b) Number of Key Trails per user with Virtual Nodes

Figure 13: Number of Key Trails per user

between join- and leave-operations of CKs similar to Ver-
saKey. Utilizing the keys within a versioned storage offers
us furthermore an inclusion of higher level security goals
like non-repudiation [8] when equipping the key-DAG with a
node-unique signature signing all version on the data. Based
upon our focus for a secure cloud storage, such functionality
benefits from the presented approach.

Acknowledgments

‘We would like to thank Anna Dowden-Williams for her more

than valuable input.

References

[1] E. Damiani and F. Pagano.

the untrusted cloud: An agent-based approach.

Computing ’10, 2010.

Handling confidential data on

In Cloud

[2] S. Graf, M. Kramis, and M. Waldvogel. Treetank: Designing
a versioned XML storage. In XMLPrague’ll, 2011.

[3] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer.
Cryptree: A Folder Tree Structure for Cryptographic File Sys-
tems. In 25th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS), Leeds, United Kingdom.

[4] H. R. Hassen, A. Bouabdallah, and H. Bettahar. A new and
efficient key management scheme for content access control
within tree hierarchies. In Advanced Information Networking
and Applications Workshops, 2007.

[5] A.Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s
inside the cloud? an architectural map of the cloud landscape.
In Proceedings of the 2009 ICSE Workshop on Software En-
gineering Challenges of Cloud Computing, CLOUD ’°09.

[6] P. Mell and T. Grance. The nist definition of cloud computing.
National Institute of Standards and Technology, 53(6), 2009.

[7] H. Sato, A. Kanai, and S. Tanimoto. A cloud trust model in
a security aware cloud. In Applications and the Internet ’10,
2010.

[8] G. Stoneburner. Underlaying technical models for informa-
tion technology security. National Institute of Standards and
Technology, 2001.

[9] Y. Sun and K. R. Liu. Scalable hierarchical access control
in secure group communications. In Proceedings of the 2004
IEEE Infocom, 2004.

[10] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner.
The VersaKey framework: Versatile group key management.
IEEE Journal on Selected Areas in Communications, 17(9):
1614-1631, Sept. 1999.

[11] C. K. Wong and S. S. Lam. Keystone, a group key manage-
ment service. In International Conference on Telecommuni-
cations, 2000.

[12] C. K. Wong, M. Gouda, and S. S. Lam. Secure group com-
munication using key graphs. IEEE/ACM Transaction on Net-
working, 8(1), 2000.

[13] J.-S. Xu, R.-C. Huang, W.-M. Huang, and G. Yang. Secure

document service for cloud computing. In ClouCom 09,
2009.

[14] Q. Zhang, Y. Wang, and J. P. Jue. A key management scheme
for hierarchical access control in group communication. In-
ternational Journal of Network Security, 7(3):323-334, 2008.

