
NAT Hole Punching Revisited
Daniel Maier Oliver Haase Jürgen Wäsch

Konstanz University of Applied Sciences
Konstanz, Germany

[dmaier|haase|waesch]@htwg-konstanz.de

Marcel Waldvogel
University of Konstanz

Konstanz, Germany
marcel.waldvogel@uni-konstanz.de

Abstract—Setting up connections to hosts behind Network
Address Translation (NAT) equipment has last been the subject
of research debates half a decade ago when NAT technology was
still immature. This paper fills this gap and provides a solid
comparison of two essential TCP hole punching approaches:
sequential and parallel TCP hole punching. The comparison
features current conditions and thoroughly compares setup delay,
implementation complexity, resource usage, and effectuality of
the two approaches. The result is a list of recommendations and
a portable, effectual, and open-source Java implementation.

I. INTRODUCTION

Currently the use of Network Address Translation (NAT)
is the dominant solution to lessen the exhaustion of IPv4
addresses. This works great as long as the machines behind
the NAT box only initiate outgoing connections and do not
have to accept incoming requests.

NAT hole punching is one technique to traverse NAT boxes.
It has the advantage of not requiring any user configuration,
and establishes direct connections between two peers. Hole
punching is suitable for UDP and TCP. For TCP, two main
options exist, namely sequential and parallel hole punching.
These are the main targets of our analysis. The explanations
of the two approaches can be found in [2] and [3]. We compare
them according to various criteria in different scenarios.

II. BINDING MULTIPLE SOCKETS TO THE SAME PORT

Parallel hole punching requires binding multiple sockets to
the same local endpoint, which is not permitted by default.
Socket options can help, however.

A. OS capabilities

Different operating systems differ in their TCP implemen-
tations and how they support corner cases of the protocol;
moreover, different operating systems provide slightly differ-
ent socket APIs.

One difference in the protocol implementation concerns
simultaneous connection establishment. As tests of a set of
relevant operating systems—Windows 7, MacOS X 10.6.5,
Linux (Ubuntu 10.04 LTS), Solaris (OpenSolaris 2009.06), and
FreeBSD 8.1—have shown, all tested OSes support simulta-
neous connection establishment.

Another difference concerns the ability to bind two or more
sockets to the same port. This corner case is rarely well
documented or tested. Our second experiment therefore tested
whether a C program could bind two sockets to the same
port, examining all possible combinations of server (‘listen’)

and client socket creation. For each operating system, the
most reuse-friendly socket option was chosen. For MacOS X
and FreeBSD, this was their special SO_REUSEPORT, the
other three used the common SO_REUSEADDR. Table I shows
whether the particular combination worked (‘X’), did not work
(‘—’), or only worked when the client socket was already
connected or at least in connection setup before the second
socket was bound (‘C’), i.e., the remote endpoint was already
specified.

TABLE I: OS support for socket combinations.

Socket creation Operating System
First Second Windows Linux BSD MacOS X Solaris
Client Client X X X X C
Client Server X X X X C
Server Client X — X X —
Server Server X — X X —

The results indicate that on Linux and Solaris, the server
socket must be created after the client socket for the two to
coexist. Thus, a portable implementation should never rely on
the other order. This sequence can be achieved in parallel TCP
hole punching, but requires some care.

B. Support within Java

For a portable Java implementation, OS support by itself is
not sufficient; in addition, the OS’s capabilities must also be
accessible within Java.

To achieve platform independence, Java supports only the
use of SO_REUSEADDR. This restriction leads to the results
in table II, when testing the multiple-bind capabilities of the
different operating systems in Java.

TABLE II: Java support for socket combinations.

Socket creation Operating System
First Second Windows Linux BSD MacOS X Solaris
Client Client X X C C C
Client Server X X C C C
Server Client X — — — —
Server Server X — — — —

There is one notable difference to table I: MacOS X and
FreeBSD implementations now share the Solaris limitation
of a socket requiring at least a pending connection setup
before another socket can be bound to the same port, because
their SO_REUSEPORT option cannot be taken advantage of
in Java. Even though the limitations for Java are more strict

than for native applications as described in section II-A, the
most stringent case is not further curtailed. Therefore, the
consequences for portable, OS agnostic applications remain
the same.

For Java implementations, care needs to be taken that server
sockets for the Unix relatives cannot be reused due to the
limitations outlined in table II. While this is not a problem
under Windows, portable programs are required to close the
old server socket and create a new one instead of reusing
the existing socket, as a listening socket will prevent more
client sockets from being opened. This is especially important
because the first connection setup for parallel hole punching
generally fails.

III. HOLE PUNCHING EXPERIMENTS

Four criteria are key for the evaluation of NAT traversal
techniques, namely effectuality, performance, implementation
complexity, and resource usage. Obviously, the technique
should be effectual, i.e., work even under adverse circum-
stances, and the connection setup should be fast and efficient.
Moreover, the implementation should be easy to understand
(debug, test, and maintain), and avoid any resource wastes.

To verify the first two criteria, multiple tests were run in
two different environments:
Virtual Internet. All nodes and boxes were simulated in

our lab using virtual machines. The concrete setups are
described in full detail in section III-A.

Real Internet. Peers A and B were behind real NAT boxes,
behind DSL connections of different providers. The me-
diator has a public Internet address. The concrete setups
for this environment are described in section III-B.

Three different scenarios were evaluated in both environments:
Concurrent connection requests. Peer A launches multiple

concurrent requests for connection establishment. This
is particularly interesting for parallel hole punching that
has to cope with many sockets bound to the same local
port and with many concurrent threads that have to
synchronize with each other. The number of concurrent
requests was set to 5.

Successive connection requests. Peer A initiates connection
requests one after the other, with increasing waiting times.
One of the goals is to verify the long-term state retention
behavior of the NAT. For this experiment, the waiting
times are 1, 5, 10, 20, 30, 60, 120, and 240 s.

Random connection requests. 5 threads on peer A initiate
connections to peer B. Each thread uses a repeatable uni-
formly distributed pseudorandom waiting time between
subsequent connections in the range of 0 to 60 s. This
setup attempts to model real-world behavior.

A. ‘Virtual Internet’ Environment

Each participant is realized as a virtual machine. Even
the internet is simulated by a virtual switch with delay and
bandwidth limitation. More concretely, the delay between
peers A and B is 30ms, and the delay between any one peer
and the mediator is 25ms. The download bandwidth of the

peers is limited to 2048 Kb/s, the upload bandwidth to 192
Kb/s.

The NAT is implemented using standard iptables mas-
querading on Linux. This provides endpoint independent map-
ping, allowing only connection setup from the inside. Any
other packet is silently discarded.

The combination of one of the five considered operating
systems for peers A and B yields 25 different concrete setups.
On each of these setups, we performed tests for each of
the three scenarios (1) Concurrent connection requests, (2)
Successive connection requests, and (3) Random connection
requests. In all setups, the mediator was run on a virtual Linux
machine.

B. ‘Real Internet’ Environment

In this environment the communication takes place across
the real Internet with two DSL connections to the NAT boxes,
and the mediator placed on campus. Because the main focus
of this environment is on testing real NAT boxes, only two
different setups, i.e., combinations of OSes for peers A and
B, were used, namely peer A always running Windows 7 and
peer B running either MacOS X or Windows 7. The mediator
was run on Mac OS. All tested NAT boxes employed endpoint
independent mapping, as well as address and port dependent
filtering.

IV. EVALUATION

In this section we evaluate and compare the two hole
punching techniques with respect to the four criteria mentioned
in section section III.

A. Performance

Figure 1 contains the plots for the ’virtual Internet’ environ-
ment. Please note that only results for parallel hole punching
are shown because sequential hole punching does not work in
this environment, as will be discussed in section section IV-D.

As can be seen, for peer B running MacOS X the connection
times are around 1sec in most cases. These times stem from
the fact that simultaneous TCP connection establishment on
MacOS X takes about 1sec, as we could observe in isolated
tests. Whenever neither peer A nor peer B run MacOS X,
then the mean connection setup times vary between 250ms
and 690ms.

Figure 2 shows the results for the ’real Internet’ environ-
ment. Please note that they were not taken in a controlled
environment, so individual packet delay or losses do affect
comparability. Sequential hole punching clearly shows an
about 2sec higher setup time, which is due to the 2sec timeout
specified in [2]. This timeout should cover most situations
without packet loss today, although slow or lossy connections
might become a problem. Even in developed countries, these
2sec may not be enough, especially for mobile Internet access.

Reducing the timeout would thus make the protocol less
robust. A significant reduction of the timeout would require the
introduction of retransmits to achieve a reasonable connection
chance. This would in effect make the protocol very similar to
parallel hole punching, both in performance and complexity.

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]
MacOS X

Linux
Windows
FreeBSD

Solaris

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]

MacOS X
Linux

Windows
FreeBSD

Solaris

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]

MacOS X
Linux

Windows
FreeBSD

Solaris

Fig. 1: Mean connection setup times for parallel hole punching
in the ’virtual Internet’ environment. The upper plot shows
the results for the concurrent connection requests scenario,
the middle plot for successive connection requests, and the
lower plot for random connection requests. Error bars indicate
minimum/maximum times. The labels on the X-axis denote
peer A’s operating system, the color code of the bars indicate
peer B’s operating system.

B. Implementation Complexity

Sequential hole punching as described in [2] is rather
straightforward to implement, as there are only few parallel
operations needed: None on peer A, and for peer B only to
regularly send out keep-alive messages, which can be inte-
grated into the application main loop. However, [2] assumes
that there is no packet loss in the hole creation step and the

 0

 1000

 2000

 3000

 4000

 5000

Windows MacOS X Windows MacOS X

Se
tu

p
tim

e
[m

s]

Parallel Sequential

Concurrent
Successive

Random

Fig. 2: Mean connection setup times in the ’real Internet’
environment. Error bars indicate minimum/maximum times.
The labels on the X-axis denote peer B’s operating system,
the color code of the bars indicate the scenario under test.

timeout was chosen generous enough. When these assumptions
fail, the protocol will fail and recovery mechanisms need to
be designed in, which add further setup delays and complexity
to the main application having to deal with failures.

A parallel hole punching implementation requires more
thought, as it needs to deal with simultaneous use of sockets as
described in section II above. It also requires substantial thread
operations and synchronization, which adds to the higher
complexity of a parallel hole punching implementation.

C. Resource Usage

Parallel hole punching requires more resources on the peers
than sequential hole punching, as multiple threads need to be
running, more sockets are created and destroyed, and more
than one connection is open at the same time. Sequential hole
punching, on the other hand, requires more messages and more
actual connection setups and teardowns to the mediator.

Kernel resources for the mediator are higher for parallel hole
punching, as the mediator has to keep an open TCP connection
with each registered peer. For sequential hole punching, the
mediator can use a single UDP port to register all peers. On the
other hand, a mediator for sequential hole punching needs to
store some session information (correlator, corr), whereas a
mediator for parallel hole punching can be completely stateless
and is thus better scalable.

In summary, there is little difference between the two
approaches from the perspective of the peers. This is especially
true because today even mobile end devices, such as smart-
phones, have enough storage and CPU resources to support
slightly more demanding applications. As far as the mediator
is concerned, whether fewer open connections or stateless
operation is preferable cannot be decided independent of the
concrete environment and usage.

D. Effectuality

During our experiments, it became clear that actual NAT
is harder to deal with than pure theory and message sequence

diagrams would implicate. Some of these effects are discussed
below, structured into NAT box problems and end-system
behavior. A summary can be found in table III.

TABLE III: Hole punching effectuality components

Effectuality Parallel Sequential

N
A

T Mapping + –
Mapping loss + –
SYN-ACK checks + –

H
os

t Direct connection + (–)
Anti-virus + –
OS support (–) +

1) Mapping: Usually endpoint independent mapping is
mentioned as a precondition for hole punching. However, even
if one side, say peer A, employs address dependent mapping,
hole punching can succeed under the following conditions:

• peer A uses the same external IP address for all mappings;
• peer B uses endpoint independent mapping in combina-

tion with address dependent filtering or a less restrictive
filter policy.

In this situation, sequential hole punching works only when
peer A’s NAT is address dependent, but not when B’s NAT
is. Parallel hole punching, on the other hand, will succeed in
both cases due to its symmetric behavior.

2) Mapping drop: A NAT box could immediately destroy
a connection context when the connection is reset or closed.
This is disastrous for the sequential approach, because if the
remote NAT returns a TCP RST message to the hole creation
step, then the reverse connection in the last step will fail.

For parallel hole punching, the SYN packets are likely to
cross outside the NATs eventually, and thus create a successful
simultaneous connection setup.

3) Linux iptables SYN-ACK check: Linux iptables
is very strict at checking the validity of packets: In a correct
simultaneous setup, the replayed SYN packet must contain
the same sequence number as the original SYN. Most if
not all NAT boxes, however, do not check this condition,
whereas iptables does. Iptables therefore uses some
form of connection-dependent filtering. This behavior prevents
all sequential hole punching attempts in the ‘Virtual Internet’
scenario from succeeding. There was no problem, however, for
parallel hole punching, as both a server and client socket are
active, therefore resulting in a simultaneous connection setup,
supported iptables behavior.

We did not observe this kind of filtering with our tested NAT
boxes. However, as iptables is frequently used in semi-
professional and SME contexts, a hole punching technique
should be able to deal with such behavior.

4) Direct private connection: Parallel hole punching na-
tively supports direct connections to private addresses. This
is done in an attempt to connect more efficiently to machines
behind the same NAT and can be done with minimal additional
overhead. While the same behavior could be implemented for
sequential hole punching, the sequential nature would require
waiting for an additional timeout (likely) or error (unlikely).

Sequential hole punching to a peer behind the same NAT,
however, succeeds only if the NAT supports hair pinning.

5) AVG anti-virus software: In our experiments, sequential
hole punching failed when peer B was running Windows
with anti-virus software by AVG (version 10.0.1191). Close
examination revealed the following behavior introduced by
AVG: When connect() is called on a socket and then
aborted after the 2sec timeout, the application behavior is as
expected. However, a packet analyzer reveals that retransmits
of that initial SYN packet continue after 3 and 9sec, despite
the connect() having been aborted and the socket being
closed in the application at that time. However, the OS kernel
still believes the socket to be active. This discrepancy leads
to the wrong behavior, when the SYN packet from the final
connection establishment (last step) arrives: It connects with
the client socket, resulting in a simultaneous connection setup.
The application, however, has already abandoned that socket,
so no data transfer will be possible.

As AVG claims [1] their anti-virus products to be installed
on more than 110 million machines, this is a severe problem
for sequential hole punching. Parallel hole punching, once
more, is not affected by this problem.

E. Summary
Table IV summarizes the comparison between parallel and

sequential hole punching. As we have seen in section IV-D,

TABLE IV: Hole punching metric summary.

Metric Parallel Sequential

Effectuality + + + +
Performance + + +
Implementation – – –
Resources – –

parallel hole punching is by far the more effectual technique,
as it can deal with a number of non-standard and even
adverse conditions. Sequential hole punching, on the other
hand, is more vulnerable under the same circumstances. In
terms of performance, parallel hole punching is also supe-
rior to sequential hole punching. This is mainly due to the
timeout that is inherent to sequential hole punching. The
only criterion in favor of sequential hole punching is imple-
mentation complexity. With respect to resource consumption,
we do not see a clear winner on either side. Our open
source parallel hole punching implementation is available
at http://ice.in.htwg-konstanz.de/. For further
reading, [4] contains a more detailed version of this article.

REFERENCES

[1] AVG Technologies, “AVG Technologies - Unternehmensprofil,”
http://free.avg.com/de-de/company-profile.

[2] J. L. Eppinger, “TCP Connections for P2P Apps: A Software Approach
to Solving the NAT Problem,” Carnegie Mellon University, Tech. Rep.,
Jan. 2005.

[3] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across
network address translators,” in In USENIX Annual Technical Conference,
2005, pp. 179–192.

[4] D. Maier, O. Haase, J. Wäsch, and M. Waldvogel, “NAT Hole Punching
Revisited,” University of Konstanz, Tech. Rep. KN-2011-DiSy-02, 2011.

