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I.REST-access on integrity-guarded 
resources

II. DOM-based Ajax for presenting flexible 
content

III. Guarding of distributed SOAP-
requests

Use Cases

Idea

+Recursive structure integrity for XML
+Suitable for updating operations on the 

tree-structure
-  Fast computation results in weaker hash 

operation
-  Equality of isomorphic structures

Generating the Results

✓ Reference implementation in 
Treetank with DOM-like node-
encoding
✓ Inserting of different instances 

and adaption of structure within 
all node insertions
✓ Comparing classic  Merkle-
Hash approaches and Rolling 
Boles based on time and hash 
collisions
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Figure 4: Incremental Insert of MusicXML instances

6.1 Performance Evaluation
Since Rolling Boles is in need of the ancestor path only re-
lated to a modified node, the aim of the performance evalua-
tion is to get knowledge about the overhead which goes along
with postorder traversals used by classical approaches like
DOMHash and XHash. Since these approaches are adap-
tions of the Merkle-Tree, we summarize them as Merkle-
Hash in our results. In our benchmarks, we make use of
the well-known XMark [12] generator which is designed to
create similar XML structures of variable sizes. We further
investigate the performance of our approach with two other
XML families namely the plays of William Shakespeare [3]
and MusicXML [5] since both represents complete differ-
ent kinds of XML: Shakespeare XML is dominated by text
nodes whereas MusicXML consists mainly out of isomorphic
subtrees.

Figures 2, 3 and 4 consists out of the time of insertion
mapped on single instances. In all cases, the integrity struc-
ture is maintained directly within the insertion of every sin-
gle node.

Figure 2 shows the insertion time of different XMark in-
stances with increasing sizes. It is clearly visible that cur-
rent approaches which rely directly on the checksums of the
children generate a linear overhead related to the instance
size. Since these approaches have to scan all children of one
node in order to regenerate a checksum, they all rely on
the number of all nodes in a tree. Therefore they are not
able to generate only a constant overhead like Rolling Boles
where the effort to update the checksums is only based on
the depth of the node inserted.

Figure 3 displays the same evaluation based on the plays of
William Shakespeare [3]. These XMLs give a good overlook
of the scaling of our approach regarding documents which
are text dominated. Again, the overhead of maintaining a
postorder-oriented structure is huge while the incremental
maintaining operations generates only a constant overhead.

Table 2: Collisions, XMark instances

f % Collisions % Collisions
Postorder Rolling Boles

0.001 19.36584 19.39993

0.002 23.44748 23.44748

0.003 26.42946 26.42946

0.004 25.59570 25.59570

0.005 26.87548 26.88239

0.006 26.27088 26.28290

0.007 26.77935 26.79440

0.008 27.55996 27.57756

0.009 27.77184 27.77580

0.010 29.41035 29.42065

0.011 30.07259 30.08550

0.012 29.30732 29.30732

0.013 29.55431 29.55704

0.014 30.14871 30.16368

0.015 30.46767 30.47471

0.016 29.94990 29.95853

0.017 29.22185 29.23830

0.018 30.08834 30.09822

0.019 30.02343 30.03449

Table 3: Collisions, MusicXML instances

Number Name % Collisions % Collisions
Postorder Rolling Boles

1 ActorPreludeSample 92.32616 92.49873

2 BeetAnGeSample 83.65879 83.89860

3 Binchois 85.09955 85.80604

4 BrookeWestSample 89.80986 89.95715

5 Chant 71.37331 71.56673

6 DebuMandSample 84.51530 84.93678

7 Dichterliebe01 88.94054 89.04707

8 Echigo-Jishi 82.42280 82.48219

9 FaurReveSample 88.20232 88.45713

10 MahlFaGe4Sample 85.45879 85.66096

11 MozaChloSample 86.08486 86.28868

12 MozartPianoSonata 87.28404 87.76780

13 MozartTrio 88.69742 89.10289

14 MozaVeilSample 85.67389 85.89381

15 Saltarello 90.71466 90.76682

16 SchbAvMaSample 89.71572 89.84950

17 Telemann 91.01628 91.17069

The mapping of the documents related to the numbering
on the x-axis in Fig. 3 can be dereferenced with the help of
Table 1.

Figure 4 shows the same performance benchmark on smaller,
structure oriented MusicXML [5] instances. These XML in-
stances mostly rely on the structure: Single pieces of music
are encoded in XML whereas some of these instances are
quite small, especially the documents 5 and 12. In these
cases we see that neither Merkle Tree based approaches nor
Rolling Boles generate any overhead. Based on the basic
effort which has to be made to insert XML into our system,
the overhead of insertion overlays the performance differ-
ences of Rolling Boles and Merkle Hash since both scale
similar when the size of the guarded XML instance is very
small. For huger XML instances, the scaling of both in-
tegrity approaches are similar to XMark and Shakespeare.

6.2 Checksum Collisions
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tion is to get knowledge about the overhead which goes along
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DOMHash and XHash. Since these approaches are adap-
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4 BrookeWestSample 89.80986 89.95715

5 Chant 71.37331 71.56673
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The mapping of the documents related to the numbering
on the x-axis in Fig. 3 can be dereferenced with the help of
Table 1.

Figure 4 shows the same performance benchmark on smaller,
structure oriented MusicXML [5] instances. These XML in-
stances mostly rely on the structure: Single pieces of music
are encoded in XML whereas some of these instances are
quite small, especially the documents 5 and 12. In these
cases we see that neither Merkle Tree based approaches nor
Rolling Boles generate any overhead. Based on the basic
effort which has to be made to insert XML into our system,
the overhead of insertion overlays the performance differ-
ences of Rolling Boles and Merkle Hash since both scale
similar when the size of the guarded XML instance is very
small. For huger XML instances, the scaling of both in-
tegrity approaches are similar to XMark and Shakespeare.

6.2 Checksum Collisions

Table 1: Collisions, Shakespeare XML instances

Number Name % Collisions % Collisions
Postorder Rolling Boles

1 a and c 21.89107 21.89107

2 all well 21.73626 21.73626

3 as you 21.20843 21.20843

4 com err 22.27305 22.27305

5 coriolan 19.59637 19.59637

6 cymbelin 17.31237 17.31237

7 dream 17.31358 17.31358

8 hamlet 20.64356 20.64356

9 hen iv 1 18.01242 18.01242

10 hen iv 2 19.02951 19.02951

11 hen v 16.57031 16.57031

12 hen vi 1 16.65624 16.65624

13 hen vi 2 17.28408 17.28408

14 hen vi 3 19.22263 19.22263

15 hen viii3 15.52216 15.52216

16 j caesar 20.41749 20.41749

17 john 15.28960 15.28960

18 lear 21.35896 21.35896

19 lll 24.44469 24.44469

20 m for m 21.65987 21.65987

Number Name % Collisions % Collisions
Postorder Rolling Boles

21 m wives 24.78604 24.78604

22 macbeth 19.09541 19.09541

23 merchant 17.56916 17.56916

24 much ado 23.60733 23.60733

25 othello 22.67203 22.67203

26 pericles 18.16571 18.16571

27 r and j 19.38435 19.38435

28 rich ii 14.67171 14.67171

29 rich iii 19.93816 19.93816

30 shakespeare 21.20786 21.20786

31 t night 24.66138 24.66138

32 taming 21.76387 21.76387

33 taming 21.76387 21.76387

34 tempest 19.69146 19.69146

35 timon 20.66641 20.66641

36 titus 15.88324 15.88324

37 troilus 22.17166 22.17166

38 two gent 24.63514 24.63514

39 win tale 16.32369 16.32369

We would like to thank Anna Dowden-Williams for her more
than valuable input.
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Figure 1: Structural modification of an XML tree X by (a) attaching a single node i, or a complete XML tree structure
X � = (V �, E�, i) rooted at i, at a leaf node l ∈ V , respectively. (b) depicts the rolling deletion operation and its corresponding
modifications in X.

Algorithm 2: Rolling Insert algorithm.

Input: Node to insert i, parent node p to proceed i.
1 function:: rollingInsert (Node p, Node i) begin
2 oldHash ← p.check;
3 // update hash of p according to i
4 p.check ← p.check + i.check * PRIME;
5 newHash ← p.check;
6 // update ancestor(s), cf. Alg.??.
7 update(p.parent, newHash, oldHash);
8 // attach the new node/sub-tree to p
9 p.attach(i);

mation to update p.parent. Namely, the old check-sum of p
before the insert of i, and the updated check-sum after the
insertion of i are passed to the update algorithm to update
p.parent according to its predecessors in P (d, i)

In the case of adding a complete XML (sub-)tree X � =
(V �, E�, i) rooted at i, it is assumed that X � was created
using the three rolling operations as well. Thus, i.hash of
X � will contain a valid check-sum according to the defini-
tion of the concatenated check sum as given in Equ.(4). In
other words, i.hash constitutes the information about the
structure and content of X � in its check-sum.

Fig. 1(a) depicts the rolling insert operation pictorially as
well as the corresponding actions that need to be performed
in the concurring post-order technique.

Rolling Delete. Rolling delete is the second operation sup-
ported. Similar to rolling insert, rolling delete supports re-
moval of either a single leaf node r ∈ V from X (including
the edge (p, r) that connects r to its parent p), or a complete
(sub)-tree X � = (V �, E�, r) ⊆ X rooted at node r, the node
that was scheduled for removal.

Similar to the rolling insert, the rolling delete operation will
first update the check-sum of p. Again, Alg.3 complies to
the definition of the concatenated check-sum function as in-
troduced in Equ.(4), however, this time the concatenation
operation ⊙ is replaced by subtraction. After p.check is
updated the modification update is propagated to p.parent
using rolling update.

Fig.1(b) depicts the concept of the rolling remove operation
as well as the concept of the necessary actions the concurring
post-order technique has to perform.

Rolling Update

Algorithm 3: Rolling Delete algorithm.

Input: Node to delete r, parent node p of r.
1 function:: rollingInsert (Node p, Node r) begin
2 newHash ← p.check - r.check * PRIME;
3 oldHash ← p.hash;
4 // update hash of p
5 p.hash ← newHash;
6 // update ancestor(s), cf. Alg.??.
7 rollingUpdate(p.parent, newHash, oldHash);
8 // remove node/sub-tree from p
9 p.detach(r);
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Figure 2: Incremental Insert of different XMark instances

5. ROLLING BOLES ANALYSIS

We already introduced the formal theory of Rolling Boles as
well as the practical implementation. Though, so far we did
not analyze

6. RESULTS

Our approach is sustained by two kinds of experimental re-
sults. All of these results were created with the help of
our native XML database system called Treetank [6]. The
benchmarks run on a 2 gHz Quad Core computer with 8GB
of RAM. We decided to partition our results into perfor-
mance evaluations and the computation of checksum colli-
sions which represents the occurrence of isomorphic subtrees
in the structure. The performance evaluations represent the
average of 100 runs to ensure the integrity of our bench-
marks.
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Figure 1: Structural modification of an XML tree X by (a) attaching a single node i, or a complete XML tree structure
X � = (V �, E�, i) rooted at i, at a leaf node l ∈ V , respectively. (b) depicts the rolling deletion operation and its corresponding
modifications in X.

Algorithm 2: Rolling Insert algorithm.

Input: Node to insert i, parent node p to proceed i.
1 function:: rollingInsert (Node p, Node i) begin
2 oldHash ← p.check;
3 // update hash of p according to i
4 p.check ← p.check + i.check * PRIME;
5 newHash ← p.check;
6 // update ancestor(s), cf. Alg.??.
7 update(p.parent, newHash, oldHash);
8 // attach the new node/sub-tree to p
9 p.attach(i);

mation to update p.parent. Namely, the old check-sum of p
before the insert of i, and the updated check-sum after the
insertion of i are passed to the update algorithm to update
p.parent according to its predecessors in P (d, i)

In the case of adding a complete XML (sub-)tree X � =
(V �, E�, i) rooted at i, it is assumed that X � was created
using the three rolling operations as well. Thus, i.hash of
X � will contain a valid check-sum according to the defini-
tion of the concatenated check sum as given in Equ.(4). In
other words, i.hash constitutes the information about the
structure and content of X � in its check-sum.

Fig. 1(a) depicts the rolling insert operation pictorially as
well as the corresponding actions that need to be performed
in the concurring post-order technique.

Rolling Delete. Rolling delete is the second operation sup-
ported. Similar to rolling insert, rolling delete supports re-
moval of either a single leaf node r ∈ V from X (including
the edge (p, r) that connects r to its parent p), or a complete
(sub)-tree X � = (V �, E�, r) ⊆ X rooted at node r, the node
that was scheduled for removal.

Similar to the rolling insert, the rolling delete operation will
first update the check-sum of p. Again, Alg.3 complies to
the definition of the concatenated check-sum function as in-
troduced in Equ.(4), however, this time the concatenation
operation ⊙ is replaced by subtraction. After p.check is
updated the modification update is propagated to p.parent
using rolling update.

Fig.1(b) depicts the concept of the rolling remove operation
as well as the concept of the necessary actions the concurring
post-order technique has to perform.

Rolling Update

Algorithm 3: Rolling Delete algorithm.

Input: Node to delete r, parent node p of r.
1 function:: rollingInsert (Node p, Node r) begin
2 newHash ← p.check - r.check * PRIME;
3 oldHash ← p.hash;
4 // update hash of p
5 p.hash ← newHash;
6 // update ancestor(s), cf. Alg.??.
7 rollingUpdate(p.parent, newHash, oldHash);
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that ∀ v� ∈ V �, ∃ v�� ∈ V ��:

f(h(v�)) = h(v��) ∧
f �
(h(v��)) = h(v�) ∧

l(f(d�), f(v�)) = l(d��, v��) ∧
l(f �

(d��), f �
(v��)) = l(d�, v�),

and ∀ (u�, v�) ∈ E�, ∃ (u��, v��) ∈ E��:

(f(u�
), f(v�)) = (u��, v��) ∈ E�� ∧

(f �
(u��

), f �
(u��

)) = (u�, v�) ∈ E�

In the context ofRolling Boleswe define that two documents

X �
and X ��

are structural equivalent and content equivalent

if X � ≡ X ��
. The dedicated reader will observe that our def-

inition of structural integrity does not include the order of

the child nodes of a node v. However, in praxis the order of

the child nodes only needs to be considered in strong con-

sistency checks of an XML document, e.g. when a signature

of an XML document needs to be verified. Strong integrity

checking is out of the focus of this paper as our concern is a

fast consistency check of an XML document.

4.2 Rolling Boles in Practice
In the proceeding section we discussed the theoretical model

of Rolling Boles. This section is concerned with implemen-

tation details of the presented approach. We present the

three rolling operations that reflect the most basic modifica-

tions that can be applied to an XML document, as well an

update operation. The later propagates check-sum updates

for nodes in the document bottom-up towards the root node

of the document. The former operations are simply inserts,

deletions, and content modifications of the XML document.

The three modification operations are atomic operations,

finalized by updating and propagating the updated check-

sum(s). In other words, no two operations can be executed

in parallel on a single XML document. Though, these three

operations can easily be composed into more complex oper-

ations. In addition we compare the implementation details

of Rolling Boles in more detail to the classical post-order

based solution
1
.

As all three modification operations rely on the propagation

of updated check-sums up to the root of the XML document

we first introduce the concrete implementation of the check-

sum update algorithm (cf. Equ.(??). The update algorithm

is shown in Alg.??. In this implementation the update op-

eration ⊙ is a composition of three statements: (1) The out-

dated check-sum o of the predecessor of u is removed from

u by computing the “hash code” of o and remove it from the

check-sum of u (line4 in Alg.1). (2) In turn, add the “hash

code” of the updated check-sum of the predecessor of u to

u.check (line5, Alg.1). (3) Finally, the update is propagated

to the parent of u by a recursive method invocation, passing

the p updated check-sum, outdated associated with u is

by Similar, the check-sum of u is updated a second time by

adding the hash code updated o by means of multiplication

1
Cf. Sec.2 for a summary of the most recent incarnations of

the post-order based methods.

Algorithm 1: Implementation of the check-sum update

function – as defined in Equ.?? – to propagate updates on

a direct path towards the root node of an XML document.

Note, in contrast to the formal definition of c() this algo-

rithms works bottom up.

Input: Node to update u, old hash value o of child, new

hash value n of child.

1 function:: c (Node u, o ∈ Z, n ∈ Z) begin
2 if u �= NULL then
3 // compute the new check-sum according to

the update information.
4 new ← u.check - o * PRIME;

5 new ← new + n * PRIME;

6 old ← u.check;

7 // update hash of u
8 u.check ← new;

9 // recursive invocation to update
ancestor(s).

10 c(u.parent, new, old);

First we introduce the pseudo code of the check-sum update

algorithm (cf. Alg.??) according to Equ. (4). The algorithm

requires three parameters. First, the node u that requires a

check-sum update according to a modification anywhere in

the sub-tree rooted at u. In addition, the update algorithm

requires the updated check-sum of the direct predecessor of

u as well as the outdated check-sum of u. The update

to the node u itself

implementation details of the hash function h(x) used in our

experiments when comparing Rolling Boles with the concur-

ring post-order method(s). Throughout our experimental

evaluation ofRolling Bolesas well as the comparison with its

concurring post-order technique we use as a benchmark im-

plementation this hash function will be used to compute the

hash value of a single node in either of the two techniques.

Rolling Insert. Following we introduce the rolling insert al-
gorithm. The concept of the rolling insert is simple. In the

case of an insert operation either a single node i is attached
to an existing leaf node p ∈ V in X, or a complete XML

tree structure X �
= (V �, E�, i) (rooted at i) is attached to p,

respectively. Alg. 2 shows the pseudo code of the rolling in-

sert operation. The algorithm assumes that the actual (and

valid) check-sums of the two operands p and i are already

associated with the nodes. We refer to the actual check-sum

of a node v with v.check. Note, the implementation of the

update of the integrity information in the tree after an insert

operation complies to Equ.(4).

The node i to be inserted is passed to the algorithm along

with the leaf node p where to attach i. Subsequently, the

check-sum of p is updated with the check-sum of i times a

constant, sufficiently large prime number. After the updated

check-sum of p is stored in p.check the update is propagated

to the parent node of p denoted as p.parent. The update

is performed by executing the rolling update algorithm (cf.

Alg.??), supplying the algorithm with the necessary infor-

• Incremental Computation of 
recursive hash-values

• Only ancestors need to be read 
and written within single 
adaptions of the hash-structure

• No read of siblings related to 
adapted nodes necessary


