
1

Treetank, Designing A
Versioned XML Storage

Sebastian Graf, University of Konstanz

Marc Kramis, Seabix AG

Marcel Waldvogel, University of Konstanz

Abstract

XML underlies the same constant modification scenarios like any other resource especially in flexible
environments like the WWW. Therefor intelligent handlings of versioned XML are mandatory. Due to the
structural nature of XML, the efficient storage of changes in the data and therefor in the tree needs new
paradigms regarding efficient storage and effective retrieval operations. We present a node granular XML
versioning approach which relies on the independence of the storage and the versioning system. Different
layers which have the ability to satisfy specific aspects of a node-granular versioning storage guarantee this
independence. Results prove that our architecture offers efficient handling of consecutive changes within all
modification scenarios while not restricting XML regarding its usage. Hence, our prototype system handles even
huge XML instances while ensuring equal access to each revision of the data.

Introduction
XML data as a text based format underlies heavy modifications especially due to its designation as
ligua franca in the world of WWW. Its flexible usages in configuration files, representation formats
and direct accessible data resources suffers from consecutive insert, remove and changing operations
on the data and therefor on the tree structure.

Even if XML is easy modificable e.g. with the help of XQuery/Update expressions, only few
approaches exist to handle different versions of the same data with focus on the storage. Current
versioning approaches are surely able to provide efficient methods to handle any kind of changes but
regarding XML with its tree- and text representation, there are only a small systems available to work
with different versions of the same data in a scalable way which is necessary especially for large XML
databases.

We therefor present an architecture for an integrative versioned XML database called Treetank. Based
on the different workloads and the flexible usages of XML, we motivate an independence between the
representation of the tree and its storage. This independence offers us high adaptability and constant
access to all versions with minimal overhead regarding storage and access time.

Related Work
Versioning left the area of being a tool for maintaining source code like CVS[cvs]. Even if CVS
and modern successors like SVN[svn] are able to fullfil versioning of XML based on their text-
representation, they do not make any use of the structure.

XML-Versioning nevertheless became common within the last years. Zholudev and Kohlhase present
with TNTBase[tnt09] an integrative XML versioning system. This system takes SVN[svn] as a base
and offers an integration of the versioning functionality with the Berkeley DB XML[bdbxml] database.
The overall XML structure is thereby maintained by two established and well maintained software
projects even if the versioning itself takes not place on node level.

Another approach regarding XML version is the Time Machine for XML[tm10]. XQuery PULs
represent deltas between XML versions. A specialized data-structure called π−tree cares about the
storage of the versioned nodes. Since this approach relies on an ORDPATH-based [ord04] encoding,
the underlaying page architecture offers clustering to overcome the linear search for the suitable π−

Treetank, Designing A
Versioned XML Storage

2

nodes and revision. Therefor, UBCC [ubcc00] is introduced to minimize this effect. UBCC works with
thresholds regarding usefulness. If a defined threshold is reached, the pages are rearranged regarding
their contents. This behavior can result in peaks and synchronization issues related to the read- /write-
performance, so we choose a different approach which makes use of the append-only paradigm as
described later.

ZFS[zfs03] represents a file system with features which we consider valuable for our native, versioned
XML storage. ZFS enables easy handling of versions, called Snapshots, and has its focus on both, the
scalability regarding large datasets and the integrity for different versions of the same data. Hence, its
page architecture acts as a starting point regarding design decisions in our system as explained later.

Motivation of three core concepts of a
versioned XML storage

The motivation for a node granular versioning system results in features for an efficient node storage
and retrieval architecture. Hence we want to motivate three core aspects which act as a base for our
proposed system.

1. The nodes must contain all information about their content and their position in the overall structure.

Regarding huge XML databases, the kind of storage of the XML must respect the tree structure.
Several approaches encode the position and the content of a node related to their overall position in
the tree to support efficient handling of the inherent data. Regarding versioning of nodes, such an
encoding must be specialized in a way that regardless of the kind of modification a minimal number
of nodes are touched to represent the change in the tree due to scalability reasons. An adaption of
the entire tree structure represented by one delta would not be practicable within a node-granular
versioning system.

2. The position of a node in a tree must be flexible regarding its position in the storage.

Even if the position of a node in a tree is fixed over time, we motivate an independence of its
role and its mapping to the storage. Modern storage systems use a page-based storage system for
organizing content on disk. Nevertheless, such page-based storage layers must be adapted to support
versioning in a native way.

3. Changes to the stored nodes must rely on a convenient and confident transaction system.

Based on the encoding and the storage, changes related to the tree structure must rely on a defined
transaction system. Due to the atomicity of versions related to consecutive modification requests,
we believe that a transaction layer with a distinction between read- and write-accesses is the base
for a clean and trustable versioning system.

These three motivations build the pillars for our XML versioning system. Each pillar is covered by
one separate layer. The node-layer covers our first motivation about the node encoding. All aspects
regarding the content and the representation of a node represent this layer. The page-layer satisfies our
second motivation. This pillar of our system covers the kind of storage of nodes plus the arrangement
of pages related to each other to version the data. The third motivation results in our transaction-
layer. This layer is responsible for the accesses and the interfaces for implementing services. The next
section describe these three layers in detail since they represent the core aspects of our architecture
called Treetank.

Architecture of Treetank
The architecture of Treetank consists out of three main modules, called layers. Even if these layers
are arranged in a horizontal manner, they can be combined with different peculiarities to ensure
independency and flexibility. The node-layer, which represents the XML nodes, cares about the
encoding and the node information while referencing and dereferencing of nodes from and to the
persistent storage is part of the page-layer. The transaction-layer acts as the bridge between both and

Treetank, Designing A
Versioned XML Storage

3

offers access to the data to external resources, interfaces and applications. We will further describe
these three layers and how they interact with each other in detail:

Node-Layer
The first core layer of Treetank is the node-layer. Since we motivate node-granular versioning, we
ensure a suitable node representation within our architecture. For flexibility and scalability reasons,
Treetank maps the different node kinds of XML regarding their specific characteristics.

Figure 1. Different supported node-types

long: id
long: parentId
int: type
long: hash

AbsNode

long: firstChildId
long: leftSibId
long: rightSibId
long: childCount

AbsStructNode

int: name
int: uri
int: attribCount
int: namespCount

ElementNode

int: name
int: uri
byte[]: value

AttributeNode

byte[]: value
TextNode

DocRootNode

DeleteNode int: name
int: uri

NamespaceNode

Figure 1 defines all supported node-types in Treetank. As denoted, there is a distinction between nodes
which represent content only and nodes which have additional structural properties.

All nodes in our system have a fixed reference indicated by an unique identifier. This id, as denoted
in the AbsNode in Figure 1, is valid for one specific node over all versions. It satisfies the following
three requirements:

1. The unique identifier acts as a direct reference for other nodes. As described later, our encoding
relies on local relationships which are built upon these unique identifiers.

2. The unique identifier is the pointer for the nodes in our page-layer. Based on this identifier, our
system retrieves and stores any node.

3. The unique identifier offers direct access to specific nodes without additional encoding. Even if
the identifier is not order aware like e.g. ORDPATH [ord04], our identifier ensures direct access
to nodes for external resources.

Besides the unique identifier, all nodes hold a reference to their parents. Additional, structural nodes
like ElementNodes and TextNodes reference furthermore to their left-siblings, to their right-siblings
and to their first-childs. All of these fields are denoted as structural attributes and colored cyan in
Figure 1. These pointers build the backbone for our structure as explained later.

Regarding the concrete content of a node, each node holds furthermore a specific type key. The type
maps the XSD type to a concrete node. Since we rely on a central mapping of common tag-names,
uris and types, the field stored within each node is only a pointer. The target of this pointer is part of
the page-layer and described in the page-layer section. Additional, name and uri of NamespaceNodes,
AttributeNodes and ElementNodes are pointers to this central string store as well. The pale blue color
of the attributes on Figure 1 denote these referential attributes.

Variable content is stored directly in the node without any referencing. One example is the hash
value. The tree structure generates the hash with the help of the recursive relationship between nodes.

Treetank, Designing A
Versioned XML Storage

4

Therefor each hash value of a concrete node guards the integrity of its corresponding subtree. This
offers us the possibility to track changes in our structure without expensive diff-computations on
subtrees. Other attributes representing direct data are the count of associated nodes like children,
attributes and namespaces in ElementNodes as well as concrete text denoted as value in TextNodes
and AttributeNodes. These fields are called content attributes and colored orange in Figure 1.

As already mentioned, the structural backbone of any XML in our architecture is a specialized
node encoding. This encoding consists out of pointers to the unique identifiers to the left-sibling,
right-sibling, first-child and parent. Figure 2 shows such an encoded XMark[xma02] instance: Since
ElementNodes and TextNodes are structural, they embody the structure of the tree due to their stored
relationship to their specific neighborhood, e.g. each "category" node holds a reference to its parent
("categories"). Additionally, the first-child ("name") is referenced as well as the related left- and right-
sibling nodes ("category"), if existing. Attributes like"id" are not treated as structural nodes due to
their special association to ElementNodes. The nodes in Figure 2 map regarding their colors to the
different node types explained before.

Figure 2. Example Encoding of XMark-Instance in Treetank

regions

africa samerica

item

@id=
"item0"

location quantity

#text #text

categories

item

category

@id=
"category0"

name

#text

description

text

#text bold

3 4

5

6

7

8

9

10

11

34

44 76

77

78

79

80

8 1

82 83

#text

84

2

site

1

"docRoot"

Our encoding offers constant scaling regarding adaption of the structure within structural
modifications. Expect the insertion of the new child-node "namerica" as a child of the existing
"regions" node in Figure 2. This node should be inserted as a left-sibling node of "samerica". This
results in the following adaptions:

• The child-counter of the parent is increased.

• The hash-value of the ancestors are adapted.

• The right-sibling pointer of the new "namerica" node is redirected to the existing "samerica" node.

• The left-sibling pointer of the new "namerica" node is redirected to the former left-sibling node of
"samerica".

• The right-sibling pointer of the former left-sibling node of "samerica" is redirected to the new
"namerica" node.

Treetank, Designing A
Versioned XML Storage

5

• The left-sibling pointer of the existing "samerica" node is redirected to the new "namerica" node.

The adaptions on the encoding take only place on related nodes. Even if we insert huger subtrees under
the new node, the described adaptions remain the same. Regarding the removal of existing nodes,
the locality of adapted nodes is ensured as well. If we want to remove e.g. the first "category" node
including its subtree, we face the following adaptions:

• The child-counter of the parent is decreased.

• The hash-value of the ancestors are adapted.

• The first-child pointer of the parent is redirect to the existing "category" node which acted as a right-
sibling of the node to be removed.

• The left-sibling pointer of the existing "category" node which acted as a right-sibling of the node
to be removed is deleted.

These examples show that insertion and removal operations generate only minimal impact to the
overall structure. Due to the locality of our approach no global adaption takes place. Hence we consider
the pointers necessary for an integrative node versioning system. Furthermore the locality of our
approach offers us great possibilities to provide iterators based on the pointers and therefor on the
structure, e.g. providing XPath-Axis is straight-forward based on the pointers between the nodes.
Besides, combined with the unique identifier, exploration of even huge structures takes place based
on known and cached nodes denoted by their identifier or on the pointers of the nodes. The described
node-layer offers great extensibility for new nodes (e.g. CommentNodes which are not supported yet)
as well. Based on the modular structure, we further have the ability to equip our existing architecture
with permissions and encryption features on nodes directly. Our node-layer therefor not only allows
us to version with fine granularity but also to extend and adapt our architecture in a flexible way.

Page-Layer
The second layer which satisfies our motivation of flexibility for versioning is the page-layer. Since
the node-layer itself has no functionality to version any data, the storage takes care about the handling
of different versions. Yet, the versioning functionality is not easy adaptable to common sequential
paging architectures where ensuring constant access and minimal rearranging of data with respect
to consecutive changes is mandatory. Therefor, we introduce a more complex structure which offers
same access to all data with minimized redundancy and append-only architecture. This results in a
tree structure of pages motivated by the page layout of ZFS[zfs03]. The following Figure 3 shows the
concrete architecture:

Figure 3. Page-Layer Architecture

Indirect

Indirect

RevRoot

N
am

e

Node

Uber

Indirect

Indirect

Indirect

Indirect

RevRoot

N
am

e

Node

Indirect

Indirect

Indirect

Indirect

RevRoot

N
am

e

Node

Indirect

Indirect

Node Node

Treetank, Designing A
Versioned XML Storage

6

These page kinds have different attributes and intentions:

• The UberPage is the main entry point for each store and retrieval process. Therefor it is the only
page which stays synchronized at all times for ensuring integrity for all versions. It holds the
global version counter as well as direct references to IndirectPages and hence indirect references
to RevisionRootPages and NodePages.

• The IndirectPage acts as a container for pointers to other pages. IndirectPages occur between
the UberPage and RevisionRootPages as well as between one RevisionRootPage and its specific
NodePages. Both times, IndirectPages are aligned in a layer of 5 pages. Based on a pointer-set of

128 in each IndirectPage, we are handle to support revisions and nodes at the moment.

• The RevisionRootPage represents one concrete version of the data. Since each RevisionRootPage
acts as a root for the data modified or created in this concrete version, it provides one slide regarding
the overall dataset. Each transaction holds a fixed set of RevisionRootPages to access the data.

• The NodePage contains all concrete nodes. Therefor, NodePages are always leafs in the page-layer.
Starting from a RevisionRootPage, the unique identifier of a node tracks the related NodePage.
NodePages symbolize the append-only principle. Hence they do not offer possibilities to rearrange
nodes between each other.

• The NamePage is the central storage of common tag-names, uris and types. Regarding its
architecture, it acts as a flexible sized hashmap. Since tag-names mainly consists out of a fixed set
related to common XML instances, we decrease the overhead of storing atomic strings. Instead, we
reference the strings in the NamePage related to the corresponding revision and point to them over
unique keys in the related nodes.

The NodePages are filled differently related to the used versioning approach. That means that
differential versioning results in the storage of all nodes in the NodePages of the first version. All
upcoming versions store always the difference against the NodePages of the first version in the own
associated NodePages. Hence, each operation needs the RevisionRootPage of the first and the current
version as references. Incremental versioning stores all nodes in the NodePages of the first revision as
well. However, upcoming versions store only the difference against the last version. Therefore each
operation needs all RevisionRootPages lain between the current version and the first version. Note
that Treetank offers the possibility to write full-dumps whenever necessary to reduce this overhead.
Even if we work with an local encoding to minimize the impact of deltas to our structure, we further
adapt our system to fit perfectly write- or read-performance demanding workloads.

Since the kind of versioning reflects the load of the NodePages without any knowledge about the
overall tree structure, every transaction must hold the suitable set of RevisionRootPages to reconstruct
the structure. This set depends on the current versioning algorithm. For incremental versioning,
the set of RevisionRootPages consists out of all pages starting with the last full-dump. Regarding
differential versioning, only the last version and the last full-dump is selected. Starting from the set
of RevisionRootPages, each node is referenced in the same manner over the layer of IndirectPages.
This results in the same performance regarding all versions and all nodes. DeleteNodes are inserted
within removal operations to ensure the correct reconstruction of the tree distributed over multiple
RevisionRootPages and their subtrees.

The aspect of independent dereferencing of nodes regardless to the versioning and storage is also
founded on the unique identifier of the node. This identifier acts not only as the base for building up the
structure, it also represents the reference to its storage. With the help of the concrete node identifier,
the related NodePage is identified. Since an identifier is valid for only one node regarding the entire
lifespan of the database, this referencing architecture fits perfectly to our append-only approach. If one
NodePage reaches its maximum number of nodes, upcoming nodes are stored to the next NodePage.

Treetank, Designing A
Versioned XML Storage

7

Figure 4. Different NodePages with similar content

site

regions

africa samerica

item

categories

item

category

name description

site

regions

africa samerica

item

categories

item

category

name description

site

regions

africa samerica

item

categories

item

category

name description

1 1 1

22 3

55

56 60

70 80

8 1 92

3

4 8

2 1

88

56

57 60

2 3

4

5 6

6 1 72

73 74

This results in different distributions of nodes along NodePages based on their order of insertion.
Figure 4 shows the same tree stored on different pages since the structure is inserted into our
system within different orders. However, based on the unique identifier of each node, all pages are
dereferenced in the same manner and in the same time. Since forecasting of all upcoming modifications
between revisions is impossible, we believe that the flexibility and adaptability between encoding and
storage is an elegant yet effective way to guarantee constant read- and write-access to our data. With
our approach of storing append-only, we are further not facing common problems like fragmentation
or rearranging of the pages.

Even if we generate constant overhead regarding referencing and dereferencing of nodes compared
with existing paging techniques, our approach simplifies most of the issues that come along with a
versioning system. Together with the optimized node encoding, we reduce common drawbacks like
fragmentation and variable access times. The introduction of the unique node identifier in the node-
layer enables us furthermore to dereference any node within constant time over a fixed number of
IndirectPages.

Transaction-Layer

The third pillar of our system is the transaction-layer. This layer acts as the bridge between node-
layer and page-layer since it covers the access to the nodes regarding read- and write-operations.
Since modifications in the tree regarding content and structure result in an adaption of both, nodes and
pages, we reduce the number of write accesses to one at one time. This results in a distinction between
ReadTransactions and WriteTransactions.

ReadTransactions are the common way to work with Treetank when it comes to query and retrieval
operations. Each ReadTransaction is bound to a version or timestamp to get exact the requested data.
Based on the node encoding, a ReadTransaction is able to navigate in the tree based on the id and the
pointers. This results in simple cursor operations where the transaction iterates either on the pointers
or jumps random-access like to already known nodes denoted by their identifier. More concise, each
ReadTransaction has the ability to move from one node to its left-sibling (if existing), to its right-
sibling (if existing), to its first-child (if existing), to its parent or to any other valid node denoted by
its identifier. These operations differ from the concrete node-type the cursor is bound at the moment
of its operation e.g. the move to a left-sibling is not possible if the cursor points to an AttributeNode.
All ReadTransactions are not only independent regarding their version but also regarding threads.
Each access to the data is thread-safe which results in a highly scalable system with respect of the
overlaying framework.

Treetank, Designing A
Versioned XML Storage

8

Figure 5. Insertion of nodes as first-child and as right-sibling

item

@id=
"item63"

76

africa

5

item

@id=
"item65"

82

item

@id=
"item62"

99
item

@id=
"item63"

76

africa

5

item

@id=
"item64"

99

item

@id=
"item65"

82

WriteTrans (5)
InsertAsFirstChild

WriteTrans (76)
InsertAsRightSib

In opposite to the ReadTransactions, WriteTransactions encapsulate modifications on the content.
These modifications cover both, content related updates as well as structure related operations. Each
WriteTransaction has the same operations than common ReadTransactions: They navigate the tree
based on normal cursor-move operations. In addition they offer methods to insert new elements.
Withal, the insertion of structural elements takes place either as insertion as a first-child or insertion
as a right-sibling. Insertion of nodes results commonly in:

• the creation of a new node. This new node gets its unique identifier while creation and is appended
at the end of a NodePage using the append-only paradigm.

• the adaption of the neighborhood. The related nodes are not recreated. Instead, only the pointers are
adapted. Nevertheless, a fresh copy of the nodes is stored within a NodePage related to the current
RevisionRootPage.

• the temporal persistent storage of the touched NodePages. These pages are cached in a persistent
transaction-log. This transaction-log is flushed to a new revision when all modifications are finished
denoted by a commit command. Triggered by this command, a new subtree is created in the page-
architecture to make the new revision visible to other transactions.

Figure 5 above shows an example of such an insert operation in the tree. The WriteTransaction is
moved to the node where an insertion is wanted. In the left picture, the cursor points to the node with
the id "5" and a new subtree is inserted as first-child. This operation adapts all of the dotted pointers.
As clearly visible, this results only in a constant set of nodes touched within this operation. In the right
picture, the cursor points to the node with the id "76" and a new subtree is inserted as right-sibling.
Again, the dotted lines show the pointers to be adapted.

The cursor based transaction-layer offers direct access to any nodes as well as insertion of new content
anywhere in the tree. Due to these flexible modification kinds, it provides an extensible and transparent
interface to be used by any kind of query- and modification interfaces.

Interworking between Node-, Page- and Transaction-
layer

Together these three layers represent the main functionality of our system. An example of the
interaction of all layers is shown in Figure 6

Treetank, Designing A
Versioned XML Storage

9

Figure 6. Interaction of the three layers within an insertion operation

item

@id=
"item63"

76

africa

5

item

@id=
"item65"

82

item

@id=
"item62"

99

Indirect

N
am

e

Indirect

Uber

5 76 82 ...

Node, 1

RevRoot
revision: 1

Indirect

N
am

e

Indirect

Uber

5 76 82 ...

Node, 1

RevRoot
revision: 1

Indirect

N
am

e

Indirect

RevRoot
revision: 2

5 76

Node, 1

item

@id=
"item63"

76

africa

5

item

@id=
"item65"

82

Insert

WriteTransaction

Transactionlog

Commit

99 ...

Node, 2

5 76

Node, 1

99 ...

Node, 2

ReadTransaction

Already existing data in revision "1" is retrieved with the help of a ReadTransaction. The red area
denotes this transaction which is bound to the pages under the RevisionRootPage with revision "1". If
an insertion of a new subtree occurs, the ReadTransaction must be replaced with a WriteTransaction.
The green area denotes this running transaction. Within this transaction, a new subtree with an "item"
element extends the existing tree. This extension results in one new NodePage with the new node and
an adaption of the existing NodePage with all nodes which are modified due to their updated pointers
to the new "item" element. Both pages are stored in the transaction-log while the WriteTransaction is
running. Within the commit-command, the changes in the page-layer from the transaction-log become
valid by inserting both, the modified and the new NodePages, under a new RevisionRootPage which
represents the new revision "2".

This example shows that our transaction-layer combines the independent node- and page-layer
regarding retrieval, storage and committing of data since it relies on both, the node encoding on the
one hand and the page architecture on the other hand. Consecutive modifications are cached within a
transaction-log which enables our architecture to work with respect to the well-known ACID paradigm.
Besides the transaction-log as the writing-cache, we include caching in the ReadTransactions which
results in the temporal storage of the actual page regarding the requesting transaction. Due to the
binding of transactions to relevant RevisionRootPages, we minimize the caching of irrelevant data.

Based on the decoupling of representation and storage of the nodes, we are able to implement new
node-types e.g. possible CommentNodes with only few effort. Such an extension results only in the
adaption of the node-layer with no impact to the page- or transaction-layer.

Schema-aware modifications are possible as well. Due to the atomicity of insertions on node-level
we have the ability to make constant checks against a registered schema. Even if this feature is not
implemented yet, it would be easy to offer on-the-fly validation of modifications with respect to a
schema valid for a defined set of versions. This would satisfy the temporal aspect of our approach
without soften the validity of schema-based XML.

Treetank, Designing A
Versioned XML Storage

10

Evaluation
Treetank is implemented in Java and an ongoing project within the Distributed Systems Group of
the University of Konstanz. It acts as a platform for multiple concluded and ongoing projects. For
extensibility reasons, Treetank works with flat files as well as with the Berkeley DB Java Edition[bdb]
which is also used as the transaction-log for the WriteTransactions.

Our evaluation is divided into two benchmarks. For the first benchmark, we insert XMark[xma02]
instances of two different sizes multiple times in our system. Each insertion results in a version. To
keep the number of nodes per version constant, we remove the data from the old version before starting
the new insertion operation.

Figure 7. Shredding and Serializing of XMark

0 20 40 60 80 100

5e
+

03
2e

+
04

5e
+

04
2e

+
05

revisions

[m
s]

XMark serialize, f=0.1
XMark serialize, f=1.0
XMark shredding, f=0.1
XMark shredding, f=1.0

Figure 7 shows the result. The shredding represents the insertion process while the serializing stands
for the retrieval process where the entire tree of one version is retrieved. We see that our systems
scales with the size of the data as well as with the insertion and retrieval time. The write-operation
takes always approximately the same time regardless of the version in which the data is inserted.
Regarding the serialization of each version, the page-layer is touched in the same manner which offers
similar retrieval performance within all versions. The reason for these scalings regarding insertion and
retrieval time is our layered architecture which offers the same insert- and access time regardless of
the requested version.

The second benchmark is the random access adaption of an incremental growing structure:
ElementNodes are randomly inserted in the tree either as first-childs or as right-siblings. After each
insertion, a random move to a node is performed where the next insertion takes place. A commit is
performed after the insertion of a fixed number of nodes (250, 500 and 1000). This operation continues
until 1000 revisions are created. This scenario represents the worst-case since no assumption can be
make where the next modification will occur and how it will affect the overall structure. Therefor we
chose to use a differential versioning approach within this benchmark to exalt the worst-case scaling
within the test of our architecture.

Treetank, Designing A
Versioned XML Storage

11

Figure 8. Performing random insert, Time

0 200 400 600 800 1000

10
0

20
0

50
0

10
00

20
00

50
00

20
00

0

revisions

[m
s] 250 nodes per commit

500 nodes per commit
1000 nodes per commit

Figure 8 shows the insertion time. Since the insertion takes place on a constant increasing structure,
the dereferencing of the sibling- and parent nodes for adaption and the storage of the new and modified
pages needs logarithmic effort (since the y-axis is scaled in a logarithmic manner). This fits our
architecture since we adapt only the neighborhood of a node and its ancestors for reconstructing the
hashes. However, our system is getting more stable over time with an increasing number of versions.

Figure 9. Performing random insert, File

0 200 400 600 800 1000

5e
+

03
2e

+
04

1e
+

05
5e

+
05

2e
+

06

revisions

[b
yt

es
]

250 nodes per commit
500 nodes per commit
1000 nodes per commit

The space consumption scales in a similar manner. The append-only approach results as well in a
logarithmic adaption of the data regarding each version. This is based on our page-layer which stores
on the one hand all pages with nodes where the pointers have to be adapted and on the other hand
the corresponding IndirectPages of new and modified NodePages. Since this random-insert operation

Treetank, Designing A
Versioned XML Storage

12

results in huge deltas between two versions, logarithmic scaling of our storage satisfies our aim of a
versioned storage even if we target to decrease absolut storage consumed by our approach in future.

Conclusion and Outlook
Treetank offers the versioning of XML on node level. The key aspects of the proposed architecture
are the different layers in our architecture which offers due to their independence from each other
flexible adaptions to different workloads and extensions. Based on our specialized encoding and the
append-only paging system, we are able to version any XML instance with respect to scalability and
performance.

Since we perform any operation on the nodes themselves, we plan to equip Treetank with integrity
and security features like node-based permission control, XSLT-motivated information hiding and
specific encryption operations for defined subtrees and versions.

The page-layer and its flexibility regarding versioning algorithms offer different extension points as
well. Even if we already support multiple backends for the persistent storage, we plan to combine
Treetank with our native Java iSCSI implementation called jSCSI. This would enable our architecture
to store the data remotely based on block-based transmission. Another planned extension is the
optimization of the backend with respect to the absolut size of the storage. Furthermore, we develop
a versioning approach which make read- and write-operations more predictable over time. This
algorithm guarantees continuous read- and write loads without upcoming peaks and fits perfectly our
dereferencing approach based on a set of multiple RevisionRootPages and the append-only paradigm.

Our transaction-layer will be extended as well. One of the upcoming features will cover concurrent
modification accesses. These accesses are bound to fixed subtrees in which the operation will take
place. Based on the locality of our approach, we can ensure that modifications bound to these subtrees
are valid as long as the choice of the designated modification touches only disjunct subtrees. Upcoming
security features on the node-layer will further affect possible other extensions of the transaction-layer.

Besides specific adaptions mapped to our layers, we further plan to use Treetank as native XML
storage as well. Since our architecture allows concrete tracking of versions of huge XML instances,
we develop visualizations for temporal trees. Furthermore we plan to extend our work in the field of
distribution of XML and REST. These extensions will technically base on Treetank as well.

Bibliography
[bdb] Berkeley DB, http://www.oracle.com/technetwork/database/berkeleydb/

overview.

[bdbxml] Berkeley DB XML, http://www.oracle.com/technetwork/database/berkeleydb/
overview/xquery-160889.html.

[cvs] CVS, http://savannah.nongnu.org/projects/cvs.

[svn] Apache Subversion, http://subversion.apache.org.

[ord04] Patrick O'Neil, Elisabeth O'Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and Nigel Westbury.
ORDPATHs: insert-friendly XML node labels. ACM SIGMOD International Conference on Management
of Data. 2004. .

[tm10] Ghislain Fourny, Daniela Florescu, Donald Kossmann, and Markus Zacharioudakis. A Time Machine for
XML: PUL Composition. XML Prague Conference. 2010. .

[tnt09] Vyacheslav Zholudev and Michael Kohlhase. TNTBase: Versioned Storage for XML. Balisage: The
Markup Conference. 2009. .

[ubcc00] Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. Version Management of XML Documents. The
World Wide Web and Databases. 2000. .

Treetank, Designing A
Versioned XML Storage

13

[xma02] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana Manolescu, and Ralph Busse.
XMark: a benchmark for XML data management. International Conference on Very Large Data Bases.
2002. .

[zfs03] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum. The Zettabyte File System.
USENIX Conference on File and Storage Technologies (FAST). 2003. .

	Treetank, Designing A Versioned XML Storage
	Introduction
	Related Work
	Motivation of three core concepts of a versioned XML storage
	Architecture of Treetank
	Node-Layer
	Page-Layer
	Transaction-Layer
	Interworking between Node-, Page- and Transaction-layer

	Evaluation
	Conclusion and Outlook
	Bibliography

