
Hecate,
Managing Authorization with RESTful XML

Sebastian Graf
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany
sebastian.graf@
uni-konstanz.de

Vyacheslav Zholudev
Jacobs University Bremen
School of Engineering and

Science
Bremen, Germany

v.zholudev@
jacobs-university.de

Lukas Lewandowski
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany

lukas.lewandowski@
uni-konstanz.de

Marcel Waldvogel
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany

marcel.waldvogel@
uni-konstanz.de

ABSTRACT
The potentials of REST offers new ways for communica-
tions between louse coupled entities featured through the
Web of Things [12]. The binding of the disjunct compo-
nents of this architecture creates security issues, such as
the centralized authorization techniques respecting the in-
dependence of the underlying entities. This results in the
question how authorization is performed respecting the flex-
ibility of REST without any knowledge about the underly-
ing resources. Nevertheless, possible knowledge about these
resources should enable the authorization workflow to of-
fer finer-granular permissions on substructures of the re-
sources. With our new approach - we named Hecate- we
offer a framework to assure simplified handling while keep-
ing the potentials and flexibility of REST . We have designed
an architecture based on XML with a flexible authorization
mechanism on the one hand and optional resource-awareness
on the other hand. The flexibility within the authorization
work-flow bases on permission sets respecting the HTTP-
verbs. Additional in-depth knowledge of the entity option-
ally extends these permissions with resource-aware filters.
Hecate offers not only great benefits because of its flexi-
bility, but also because of the optional extensibility proved
within the two reference implementations. With Hecate,
we show that a centralized authorization mechanism com-
bining independence and optional resource-based filtering
extends the flexibility of REST rather than restricting it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2011, March 2011; Hyderabad, India
Copyright 2011 ACM 978-1-4503-0623-2/11/03 ...$10.00.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

Keywords
XML, REST, Authorization

General Terms
Design, Management, Security

1. INTRODUCTION

1.1 REST and its flexible usage
REST [9] represents a flexible yet powerful technique to

support communication in distributed environments. HTTP
as its base evolves from a communication protocol to an
application protocol based on the accretive interaction of
services in heterogenous environments. One existing ex-
ample is the Web of Things [12]: Variable items interact
in this paradigm with each other whereas HTTP acts as
the communication- and application-protocol providing di-
rect stateless access and operations. The reason for using
REST as interaction technique lies in the supported oper-
ations going along with the HTTP-verbs, the lack of com-
plex handling of states and the variability regarding resource
characteristics. Based on this flexibility, REST itself is able
to work with all kinds of resources even if they are often
represented [16] by customizable formats like XML [3] or
JSON [5].

However, the direct allocation of items over common in-
terfaces like HTTP motivates security questions e.g. how to
guard the access on these resources in a flexible and scalable
manner. One solution lies in the centralization of the autho-
rization on commonly provided resources. Such a central-
ized permission model offers great benefits against resource-
based authorizations e.g. security consistency within all pro-
vided services and reduced overhead regarding shared rules.
Those rules would be applicable on different resources and

Hecate
Authorization Framework

PXD

user
model

Resources

firstname : "Peter"
lastname : "Paul"

<house>
 <floor>
 …
 </floor>
</house>

"lecture": {
 "start": "April 4th",
 "end": "June, 31st,
 "topic" "Web Apps"
}Requests &

Responses
floor 4
floor 3
floor 2
floor 1

Figure 1: Overview of proposed architecture

result in an integrative and transparent authorization archi-
tecture applied to a flexible resource handling which is based
on REST .

1.2 Problem Statement and Contribution
Even if HTTP offers easy yet entrenched techniques for

authenticating users, a centralized authorization endangers
the independence of the underlying resources. Authorization
relying on in-depth knowledge regarding the characteristics
of these entities would restrict the functionality of REST -
based environments. Such necessary awareness acts as a
contradiction regarding the flexibility and independence of
resources which must be preserved within a centralized au-
thorization architecture. Nevertheless, if a centralized au-
thorization mechanism makes benefit from optional knowl-
edge about commonly resources regarding resource-aware
permission appliances, this would enable such an approach
to offer permission rules not only mappable on the resource
but also on defined substructures of this entity. However,
this knowledge must influence any authorization workflow
in an extensional way to prohibit any restriction regarding
the independence of the different resources.

Based on this demanded feature-set, the question arises
what issues must be respected by designing an integrative
and transparent authorization architecture respecting the
flavors of REST with optional support of permissions on
substructure level. In our approach Hecate1, we present
such an integrative system satisfying the following constraints:

• The variable representations of the underlying resources
must be respected. Based on the variety of “things”
representing those entities, this point is crucial for not
reducing any functionality. That means that knowl-
edge of the underlying resource is beneficial but not
mandatory.

• Different permissions should be applied to one resource.
Therefore those permissions should refer to the same
corresponding URI as well since the operations de-
noted by the HTTP-verbs can be reflected by dis-
junct permission-sets. Optional knowledge about the
resource and applicable modification techniques should
be registered within these different permissions.

• The extensibility of REST must be kept. This in-
cludes easy adaption of our architecture regarding new

1Hecate is a greco goddess associated with magic and cross-
roads.

operations, new users and new resources as well as ex-
tensions on the operational level of the resource itself
(e.g. content types). Each adaption should only result
in constant overhead with respect to our authorization
architecture.

Hecate consists out of a modular infrastructure acting
as a layer handling authorization requests in a centralized
manner. This is achieved by surrogating the access to com-
monly registered resources through an adaptable authoriza-
tion mechanism. Hecate therefore consists out of a Permission
XML Document called PXD for the registered resources
within a resource provider and a user model for mapping
the specific users to the PXD . Since PXD is based on XML,
it has the ability to either be equipped with links to for-
ward the requests or to store direct content in its struc-
ture. The user model maps to the rules defined in the PXD
which are referenced with the help of fixed defined XPath [4]-
expressions. This combination offers us coverage of underly-
ing resources with HTTP-operation-based access rules. The
number of permissions is not restricted by linking one spe-
cific ruleset to one user instead the combination of rules
associated to one user takes place in the user model only.
Each rule within the PXD is furthermore able to support
optional resource-aware filtering depending on the request-
ing HTTP-verb as well as on known characteristics of the
entity.

Utilizing the extensibility of XML, we provide an easy
and straight-forward way to prove any incoming requests
against centralized permission-sets. Our implemented ar-
chitecture consists of a service where the user model and
the PXD feature the main components. This combination
offers a highly extensible and flexible mechanism for satisfy-
ing resource-aware authorization needs within single encap-
sulated requests. The PXD provides an easy way to directly
integrate content and to optionally intermediate filters re-
sulting in views and even finer-granular permissions on the
requested resource. These filters require in-depth knowl-
edge of the characteristics of the entity and enable requests
as well as responses to act on an even finer level than the
direct resource allocation over an URI.

1.3 Related Work
The eXtensible Access Control Markup Language(XACML)

[13] represents the base regarding authorization for XML
documents. Permissions and roles are reflected by a straight-
forward XML dialect. Damiani et al. [6] present a model
where permission roles on subtrees are bound to XPath-

expressions. A simple table maps the different permissions
to users. This approach is extended: Gabillon [10] makes
use of this idea by extending the proposed functionality for
updating purposes of native XML databases. Fan et al. [8]
defines furthermore views based on a computed DTD of the
permission model. We use the idea of Damiani [6] as well
since our permission model constitutes out of fixed XPath-
expressions. Since we rely on independent resources denoted
by links instead of direct XML as database, we further spec-
ify our authorization with respect to REST . This results in
our fixed schema described in Section 2.2.

X-RBAC [2] and its extension X-GTRBAC [1] represents
a policy specification of XML-based web services. In this
approach, rules and permissions find themselves in an XML
dialect similar to our approach. Even if this approach relates
to web services in general, it differs from Hecate since we
rely specifically on REST with independent resources and
not on XML as common resource format in a service context.
Related to SOAP, Damiani et al. [7] presents an approach
quite similar to ours. This approach encapsulates inlying
resources for authorization purposes specifically for SOAP-
based communication. Current HTTP approaches mostly
rely on authentication. These approaches e.g. from Story et
al. [15] or Peng et al. [14] offer possible extensions to Hecate
for authentication purposes.

2. HECATE
Since resources tend to have various different characteris-

tics, Hecate cannot rely on those specific peculiarities since
any adaption of the authorization process to concrete un-
derlying formats might result in a restriction of the overall
functionality. Nevertheless, in-depth knowledge about the
architecture of a resource enables an authorization workflow
to offer extended functionality represented by permissions
on substructure level of a resource. Hecate satisfies these
needs by an indispensable authorization workflow against
the URI and an optional, extending authorization workflow
against known substructures. More concise, based on the
URI, the HTTP-verb and the user credentials, the request
is either forwarded, denied or equipped with an optional fil-
ter which is resource-aware. Hecate acts as a proxy whereas
the representation of the underlying resource stays flexible
and unbound but can influence the authorization in an ex-
tensible way.

Figure 1 shows Hecate at a glance. Hecate includes
an authorization framework and a multiple number of re-
sources. The authorization framework consists out of a user
model, representing the authorization mapping to the user
credentials, and the Permission XML Document (PXD),
representing different rules and their mapping to HTTP-
functionalities, resources and optional resource-aware filters.
The resources are either stored directly in Hecate or linked
in the PXD . Note that each request is evaluated beforehand
by the authorization framework before consulting any un-
derlaying resources.

2.1 User Management
The user model acts as a central storage regarding user

identifiers and suitable references to the PXD over unique
identifiers. Table 1 shows an example of the user model.

The user store consists out of the user-ids which are mapped
to identifiers of different rules. “john.doe” is allowed to ac-
cess ruleset 13 while “jane.doe” is permitted to access the

rulesets 12 and 13. As one URI can be accessed through dif-
ferent rulesets as denoted in Sec. 2.2, the user model itself
is not aware about the concrete mapping of user-associated
rules to requested URIs. Since each rule maps to one spe-
cific HTTP-operation related to an unique URI, each au-
thorization performing an operation on a defined resource is
referenced only once in the user model.

Since we work on HTTP-operational level, already exist-
ing rules often match the requirements of a new user to be
inserted. A new user is simply inserted into the user store
including the mapping to the suitable permissions. If there
is no matching ruleset available for the denoted URI, a new
one is inserted in the PXD and referenced within the user
model.

As clearly visible, the user model is designed straight-
forward with less overhead while most logic regarding our
permission handling is included in the PXD .

2.2 Permission XML Document
The PXD represents Hecate related to rules, permissions

and additional filtering. The motivation for the architecture
of the PXD finds itself in the following four aspects:

1. A registered URI can be guarded by multiple rules.
Based on the different possible operations on one URI,
this aspect ensures a variable number of different au-
thorization sets.

2. Each rule maps on one specific HTTP operation de-
rived from the set of available HTTP-verbs. Therefore
we ensure unique REST awareness within each rule in
the PXD .

3. An additional optional resource-aware permission fil-
tering is provided besides the authorization on URI-
and REST -level. Even if this filtering is independent
from the data itself, it must be aware of the character-
istics of the data.

4. The resource can be referenced over links or stored in
the PXD itself. In both cases, the content related to
a resource remains independent against mapping rules
and permissions.

A fixed schema shown in Fig. 2 defines the PXD where
each of the four aspects maps to corresponding nodes in-
cluding suitable substructures:

• rule-nodes:
Each rule-node represents one specific permission. This
permission is bound to one specific resource over the
uri-attribute. Even if this attribute is mandatory, it
should not be used for unique identification since mul-
tiple rules can map on the same URI allowing different
operations. For unique identification of rules, an id-
attribute is included within each rule linking the user
model to the PXD . The concrete permission on the

Table 1: User Permissions

user-id rule-ids

john.doe 13
jane.doe 12 13

.

rization Framework beforehand. Thereby Hecate acts as a
proxy whereas the representation of the underlaying con-
crete resource stays flexible and unbound from the context
of the authorization workflow.

3.1 Overview
Figure 1 shows Hecate at a glance. Hecate can be de-

ployed as standalone web server or as an modular web ser-
vice. Anyway, it consists out of our Authorization Frame-
work and multiple Resources. The Authorization Frame-
work handles any incoming request. With respect to the re-
quested REST operation, our Authorization Framework proves
afterwards access to the underlaying resources.

Therefore, it consists out of permission XML document
called PXD and a user model represented as a table. The
PXD acts not only as a highly flexible mapping of allowed
operations mapped on defined resources but also as optional
container for resource contents themselves. That means that
content can either be stored directly in the PXD or linked
over XLink [5] references to any external resource. Fig-
ure 1 shows both possibilities: The PXD stores the contents
referenced by the bolt arrows directly in its own structure
whereas the dotted arrow denotes a linked resource repre-
sented by the different floors of a house-resource which is not
part of Hecate. Even if our Authorization Framework not
only represents rulesets for filtering incoming requests, it has
also the optional ability to overlay responses for rule-specific
representations. This operation is represented by the second
arrow from the Resources back to the Authorization Frame-
work . All of the correlations between URIs, REST -verbs,
resources, response filters and users are well-defined in the
PXD and referenced within unique identifiers. The URI or
designated ids reflect these unique identifiers. The central
XML is described in detail in section 3.3.

3.2 User Management
The Authorization Framework consists of two disjunct

components: The PXD representing the rules and resource-
mapping and a store handling all user-related data. Note
that the PXD stores no user-related data after all even if all
rules are identifiable within an unique identifier. The user
store references these unique identifiers. Figure 1 shows an
example of the user model.

As clearly visible, the design of the user store consists
only out of the user-id which is mapped to the ids of the
rules to match e.g. ”john doe” is allowed to access ruleset
13 while ”jane doe” is able to access ruleset 12 and 13. Note
that one ruleset maps always only one unique URI while an
URI can be accessed with different rulesets as we will see in
Section 3.3.

The adaption of user permissions is decoupled from the
storage of the rules. If a new user is inserted, it has to be
checked if there is an existing rule matching the purposes of
the designated users permissions. If so, a new user is simply
inserted into the user store with the suitable permissions.

Table 1: User Permissions

user-id rule-ids

john doe 13

jane doe 12 13

.

If there is no matching rule in the ruleset available for the
denoted URI, a new ruleset is inserted.

As clearly visible, the user model is designed straight-
forward with less overhead. We put most of the functionality
of Hecate in the PXDsince we respect not only the REST -
awareness of the resources within our Authorization Frame-
workbut also want to provide data-centric operations regard-
ing specific responses for different resources as explained in
the next section.

3.3 Permission XML Document
The second part of our Authorization Framework consists

out of a permission XML document called PXD . Since the
PXDrepresents a core aspect of Hecate, it is based on a
specific schema shown in Fig. 2.

PXD represents Hecate regarding the three following as-
pects: First of all, a registered URI can be guarded by mul-
tiple rules. This enables the PXDto provide high flexibil-
ity e.g. since multiple rules for one resource can be com-
bined regarding specific users. Second, each rule maps on a
specific set of allowed REST operations. These allowance
map on the concrete REST verbs. Therefore we ensure
REST awareness within each rule in the PXD . Third, be-
sides the authorization on URI- and REST level, we fur-
ther provide an optional data-centric response mechanism.
Within this technique, responses can be encapsulated with
the help of suitable transformations and filters. Therefore,
knowledge about the representation of the responding re-
source and its operations is necessary.

As clearly visible in Fig. 2, these features are mapped by
suitable substructures in the PXD .

• rule-nodes:
Each rule-node represents one specific permission. This
permission is bound to one specific resource over the
uri-attribute. Even if this attribute is mandatory, it
should not be used for unique identification and there-
fore referencing against the user store since we allow
the mapping of multiple rules for one resource. For
this purpose, an id-attribute is associated to each rule
which acts as unique primary-key for all rules. Fur-
thermore each rule-node has an optional attribute for
referencing to specific response-wrappers. We will dis-
cuss the purpose of rule-centric response-wrapping in
Section 4. The permissions themselves are encapsu-
lated as attributes mapped to REST and related to a
permission-node. Within such setup, we provide fine-
granular permissions based REST operations within
Hecate.

• data-nodes:
Each resource-node maps one specific resource. Since
we offer in the PXD itself the possibility to store con-
tent, each data-node consists either of a link or a con-
tent. A content-node can consists out of any type
representing the flexibility of XML as underlaying re-
source format whereas a link -node must contain an
URI for forwarding the request. Note that each data
must contain either content or a link. The referenc-
ing against the concrete resource takes place over an
attribute which maps the requested URI. Therefore,
each URI ends up in exactly one data-node where the
uri-attribute acts as a primary key related to the re-
source.

rule
@uri

@id

data
@uri

filter
@id

@perm_id

perm
@id

@filter_id

(a) References between PXD-data

Receiving Request

Get IDs of user
model related to

credentials
IDs found?

Yes

No

Get rules matching
the URI, the REST
verb and the IDs

Nodes
found?

No

Checking optional
filter for matching

permission
Yes

Filter
available

Yes

No
Forwarding
request and

returning result

Returning 403
(forbidden)

Returning 403
(forbidden)

Applying filter on either
request or result and returning

result

(b) Workflow for Authorization

Figure 3: PXD-schema and relations

resource is not stored directly in the rule-node but ref-
erenced over an extra perm-node.

• perm-nodes:
The actual permissions are represented by the perm-
nodes. Independent from an URI, each permission
represents exactly one single HTTP-verb and option-
ally links again a resource-aware filter. The referencing
of such a permission takes place over a dedicated id-
attribute linked within each rule-node.

• filter -nodes:
Each filter results in a filter -node. With an architec-
ture similar to the data-nodes, the filter -nodes rep-
resent resource-aware filters applied after the manda-
tory authorization. Since the filters are uniform and
therefore combinable with multiple similar resources,
we register those not related to the URI. Instead we
equip the filter -nodes with an own unique identifier de-
noted as id-attribute. This identifier is optional refer-
able within each perm-node. Section 2.3 describes the
architecture of the resource-aware filtering mechanism
in detail.

• data-nodes:
Each data-node represents one specific resource con-
sisting either of a link or direct content. The content
can be made out of any type representing the flexibil-
ity of XML as underlying resource format whereas a
link -node must contain a link for forwarding the re-
quest. The choice of using either content or a link is
exclusive and mandatory. The referencing against the
concrete resource takes place over an attribute which
maps the requested URI. Therefore, each URI is bound

@filter_id

resources

rule

@id

rule

link content

data

link content

filter

@uri

filter

@perm_id @id

data perm

@verb

perm

@id@uri

Figure 2: Schema of PXD

to exactly one data-node whereas the same underlying
data can be stored or referenced within multiple data-
nodes. In this data-node, the uri-attribute acts as a
primary key related to the resource.

The rule- and the perm-nodes represent based on the de-
scription above the central instance for permission-handling.
All operations are either granted or revoked based on the
URI and the related HTTP-verb which are checked against
the rule- and perm-nodes. Figure 3a shows the relations
to other elements within the PXD based on fixed defined
IDREF s. Since rule-nodes and perm-nodes rely on the map-
ping of single HTTP-operations to unique URIs, the aggre-
gation of the rules takes place in the user model only. Even
if former versions of our PXD offered multiple resources
referable within one rule, rule-nodes now only contain one
link to a resource, since the effort of combination of com-
mon rules enables Hecate to combine and adapt existing
rules in a more flexible way than the usage of complex rules.
The same reason resulted in the reference of single HTTP-
operations against unique permissions instead of the com-
bination of multiple operations mapped on one rule-node.
Such complex rules tend to degenerate due to the neces-
sity of cross-checks since other referencing users are affected
within modifications and adaptions of those rules.

Regarding adaptions, Hecate provides high flexibility:
Any new resource ends up in a data-node. Further, one
or multiple rule-nodes represent the permitted operations
by linking to suitable perm-nodes which are created if not
already existing. If necessary, this creation includes an op-
tional resource-aware filter. Due to the independence of the
filter -, and perm-nodes against the URI, both are combin-
able within common and similar resources in dedicated rule-
nodes.

Figure 3b shows the workflow of information processing
in Hecate within each request. Since each request con-
tains the information about the requesting user and the URI,
these two pieces of information are used to identify the rule
applied on the request. The identification takes place as
XPath-expression. The expression consists out of the re-
quested URI, the HTTP-verb and the ids retrieved from the
user model. All information is combined via INTERSECT s
in XPath-predicates which ensures scalability regarding the
complexity of the rule-retrieval process. After retrieval of
the matching rule, optional filters are dereferenced. If no
filter is registered within the matching rule, the request is
simply forwarded to the resource. In the case of a filter reg-
istration, either the content of the request or of the response

house
floor
room

DATA

GET john.doe:secretpass@http://house/floor4

HTTP-REQUEST

PERMITTED
DATA

http://house/
RESOURCE

/house[./floor/@id=4]//lamps/*

XPath RESPONSE

@id=4
lamps
lamp lamp

room

lamps
lamp lamp

(a) Data-Aware Response

XQ
ue

ry
 U

pd
ate

POST john.doe:secretpass@http://house/floor4
HTTP-REQUEST

for $status in /house//lamp/@status return
replace value of node $status with "ON"Body

VDoc
Spec

house
floor

room @id=4
room

lamp lamp

lamps
/house[./floor/@id=4]//lamps

Permission-XPath

VDochouse
floor

room @id=4
room

lamp lamp

lamps

mod.VDoc

only marked
Nodes modified

No

Yes

Returning 403
(forbidden)

Apply Changes

Marking Nodes

(b) Data-Aware Request

Figure 4: Specific Response and Request

is modified within this filter. This finer-granularity handling
of permissions is described in detail in Sec. 2.3.

Based on its modular structure consisting of the user model
and the PXD , Hecate is highly adaptable and flexible.
Our focus lies on scalable modifications and fast retrieval
of rules which is both ensured due to the tree-structure of
the PXD . Additional, the independence of the underlying
resource is maintained whereas benefits are gathered from
optional knowledge about the resources. Within the archi-
tecture of Hecate, we satisfy these constraints based on our
loose coupling of permissions against resources and users and
the optional filtering mechanism with awareness to the lay-
out of the resources. This mechanism is described in detail
in the next section.

2.3 Data-Aware Permissions
The indispensable part of the authorization workflow within

Hecate relies on resource-independent data only. This in-
cludes the URI of the resource, the HTTP-verb and the
user-credentials as denoted in the section before. Identifi-
cation of concrete substructures of a resource within this
authorization workflow is only supported as long as the sub-
structures are clearly identifiable regarding disjunct URIs
and their mapping regarding data-nodes to the content. If
multiple URIs map to the same resource due to the lack
of identification of fixed substructures, the related permis-
sions are able to access all data registered within the related
data-node. Hecate is without the following extension nei-
ther able to distinguish between different substructures of
the same resource nor able to offer fine-granular permission
sets on these substructures.

The solution to solve this problem is the registration of
resource-aware filters. Such filters offer an extension to the
common authorization workflow within Hecate and are ap-
plied after successful authorization against the requested
URI. Since these filters are optional, the common autho-
rization workflow is not constricted even if the appliance
of the additional filtering scales with the complexity of the
additional filter.

Even if no concrete information about specific datasets
must be given, the necessary knowledge for deploying such
resource-aware filters includes the kind of the data as well
as the layout of the dataset (e.g. the structure of an XML
or the kind of columns in CSVs). Based on this knowledge
regarding the underlying data, resource-aware filters are es-
tablished with respect to the representation of the data on

the one hand and on a fixed defined purposes of filtering on
the other hand.

Based on this layout awareness of the resource, these fil-
ters are referenced within perm-nodes unbound from any
URI. Instead, the referencing takes place over designated
identifiers. This enables Hecate to apply the same filters
on similar but disjunct resources. Similar to the content ref-
erencing within data-nodes, filter -nodes either contain direct
content or a link.

The filtering mechanisms stay as independent as the resource-
characteristics, since the filter must adore both, the repre-
sentation and the independence of different resources. There-
fore these filters represent an optional feature which can
only be used if knowledge about the underlying resource is
present. A concrete workflow of appliances of such methods
working with XML-based resources is given within the next
Sec. 3.

Since this registration takes place per perm-node and there-
fore per rule-node, it is only possible to register exact one
filter on each operation. This disables filtering operations
on the request and on the response at the same time. Due
to the nature of REST , read and write accesses are clearly
distinguished. This distinction can be mapped on the appli-
ance of the filters.

• read-access:
Filters on read-accesses act as direct filters regarding
the data-retrieval process resulting not in a modifica-
tion of the request but an adaption of the response.
Consequently, the data is requested based on the URI
including possible REST -parameters and afterwards
filtered with the operation denoted in the correspond-
ing filter -node.

• write-access:
Since modification requests return most often simple
HTTP-codes to denote success or fail, the filtering of
the response is not as necessary as an adaption of
the content to be written. As a consequence, write-
accesses are manipulated within the request itself. This
results in a possible adaption of the body of a HTTP-
request regarding the modification of the data.

The different appliance of filters reflected by the different
purposes of the related requests fits the authorization work-
flow of Hecate. Even if this workflow is commonly applica-
ble on all resources, we will show a real-life example based
on XML-resources on the next section.

3. XML-BASED RESOURCES
Since XML offers flexible adaption as well as enriched

toolsets, multiple non-REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware filtering.

Listing 1: A resource before modifying

1 <house >
<floor id="1">

3 <room >
...

5 <lamps >
<lamp status ="OFF" id="1.1"/ >

7 <lamp status ="OFF" id="1.2"/ >
</lamps >

9 </room >
</floor >

11 ...
<floor id="4">

13 <room >
...

15 <lamps >
<lamp status ="OFF" id="4.1"/ >

17 <lamp status ="OFF" id="4.2"/ >
</lamps >

19 </room >
</floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple floors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
different “things” are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >
<rule id="12" perm_id ="22"

3 uri="http :// house/floor /4"/>
<rule id="13" perm_id ="23"

5 uri="http :// house/floor /4"/>
...

7 <data uri="http :// house/floor /4"">
<content >

9 /house/floor[@id=4]
</content >

11 </data >
...

13 <filter id="43">
<link >

15 /house/floor[@id =4]// lamps
</link >

17 </filter >
<perm id="22" filter_id ="43"

19 verb="get"/>
<perm id="23" verb="get"/>

21 </resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two different rules are
mapping the denoted resource. While rule “13” allows the
retrieval of all data from the 4th floor, rule “12” filters the
same resource by only returning lamps-nodes. This addi-
tional filtering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the filtering of lamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware filtering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP-operation. Related to modification requests, such a
filtering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can offer a simple yet
effective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them efficiently.

As a rough approximation, VDocs are “XML (database)
views” analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocs are the results of XQueries
computed on demand from the XML files explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a file system), presented to the user as documents.
Furthermore they can be presented as file system entities in
database or physical files written to a file system. Like views
in relational databases, VDocs become very useful abstrac-
tions in the interaction with collection of XML documents.
VDocs are defined by a VDoc Specification which essen-

tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocs Specs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
defined either in VDoc Spec itself or passed on-the-fly upon
a VDoc obtaining. Parameters may dramatically change the
content of VDoc whereas there only one VDoc Spec exists.
As we will see in Section 3.2 the single VDoc Spec may be
used to manage modifying REST requests consistently in a
fine-granular manner.

Additionally, one of the most advanced features is the abil-
ity to edit VDocs and process the modified version further:
changed parts of a VDoc that came from files in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDoc is not allowed; otherwise a VDoc

processor should complain and disallow further processing.
Naturally, VDoc XQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocs is that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP-

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of fine-
grained filtering rules expressed via XPath, certain XQuery
Update modifications might be forbidden for a certain user.

To overcome this problem we are proposing to use the
VDocs concept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request filtering restrictions posed by an XPath expression.

We propose to have a VDoc Spec that admit two param-
eters: an URI of the resource and the filtering XPath ex-

pression. We call such a VDoc an authorization VDoc . Fine-
granular editing approach needs several items with respect
to VDocs:

1. The VDoc Spec is supposed to fetch the resource iden-
tified by the URI and go through all nodes that the
XPath expression selects and mark them as editable.
Not every XPath expression will select at least one
node: in this case it will mean that no part of the re-
source can be modified. Evaluating XPath expressions
is not a part of the XQuery specification, however,
many XQuery processors provide such a functionality
either via extension XQuery functions or a possibil-
ity to implement your own external XQuery function
in some other programming language. So we consider
such a feature as given in our possession.

2. The XQuery Update statement supplied with a POST
request will be executed on the VDoc content.

3. A VDoc processor compares the modified and the origi-
nal VDocs and controls that only parts that were marked
editable in step 1 are modified. If a VDoc processor
identifies that some nodes that are not changeable are
modified nonetheless, then it returns an error code to
Hecate which in turn sends a forbidden response
back to a user. Otherwise, there are two options how
to proceed further:

• Send a modified VDoc with editing markers filtered
out2.

• Send an XQuery Update statement to the un-
derlying system since we can guarantee that this
statement would not modify disallowed nodes in
the resource.

After Hecate receives a response from the underlying sys-
tem it can generate the appropriate response for the client.

Despite that the described approach provides fine-granular
permissions for modifying resources, it has several disadvan-
tages which might be a good price to pay for the flexibility
we gain:

• Typically the processing of VDocs is done in the main
memory resulting in scalability problems if the resource
is big enough not to fit into the main memory. A pos-
sible solution to overcome this problem would be to
use an XML database in the Hecate layer.

• Fine-granular editing of the resource implies two pro-
cessing steps: (i) a modification of the resource in
Hecate, and (ii) its modification in the underlaying
system. It might be not so efficient as doing the modi-
fication in only one software component. On the other
hand, it allows us to maintain the loose coupling be-
tween our authorization framework and the underlying
system.

2Those markers could be some auxiliary attributes embed-
ded into the XML elements, special comment nodes or some
kind of processing instructions – this depends on a VDoc
processor implementation

3.3 A Modifying Example
Let us consider a simple example of a data-aware request

where the related workflow is shown in Fig. 4b. Assume that
a user is allowed to modify the state of the lamps only on
the fourth floor of a particular house resource (the filtering
XPath would look like /house/floor[@id=4]//lamps), and
all lamps in the house are initially off as denoted in List. 1.

Now assume that the user sends a request with an XQuery
Update statement that intends to switch all lamps on:

for $status in /house//lamp/@status return
replace value of node $status with "ON"

The authorization framework first supplies the URI of the
requested resource together with a filtering XPath expres-
sion to an authorization VDoc Spec (see Section 3.2). A result
VDoc will have elements amenable to modifications marked
with special VDoc attributes 3. After the content of VDoc is
retrieved, a supplied XQuery Update expression is applied
to it (see List. 3).

Listing 3: A marked and modified resource

<house >
2 <floor id="1">

<room >
4 ...

<lamps >
6 <lamp status ="ON" id ="1323412"/ >

<lamp status ="ON" id="5456"/ >
8 </lamps >

</room >
10 </floor >

...
12 <floor id="4">

<room >
14 ...

<lamps >
16 <lamp vdoc:uri ="..."

vdoc:xpath ="/ house [1]/ floor [4]/ room [1]/ lamp [1]"
18 status ="ON" id="3443"/ >

<lamp vdoc:uri ="..."
20 vdoc:xpath ="/ house [1]/ floor [4]/ room [1]/ lamp [2]"

status ="ON" id="5456"/ >
22 </lamps >

</room >
24 </floor >

</house >

Note that the status of not marked lamps (for the floor
1) have also been modified. A VDoc processor will compare
it with an original VDoc (where all lamps are off) and will
recognize that the statuses of not marked lamps have also
been changed, thus it means that the modification was not
allowed for every XML node that has been altered. There-
fore a forbidden request is sent back to the user. If there
were only lamps on the fourth floor that we modified then
a VDoc processor would successfully validate changes and
would send a POST request with a modified resource to the
underlying system filtering out the marker attributes before-
hand.

4. IMPLEMENTATION
Hecate consists out of modular components enabling in-

tegration into already existing projects. We therefore prove

3In current VDoc implementation those attributes denote the
URI of a document and the XPath location of an element in-
side the document. Strictly speaking, such detailed informa-
tion is not necessary for our scenario, however, this marking
stays consistent with a general VDoc editing approach.

the practicability of Hecate within two independent projects
namely JAX-RX [11] and TNTBase [17]. While JAX-RX
represents a common layer for equipping XML databases
with uniform REST -functionality, TNTBase represents a
native XML database system itself. Even if the purpose of
both projects is different, Hecate equips both systems with
authorization. Within both implementations we prove that
the idea of Hecate is easy implementable within current
infrastructures. Furthermore, with JAX-RX, we extended
our common layer for XML resources with the functional-
ity so third-party XML based projects can make direct use
of our approach. JAX-RX as well as TNTBase are both
available as free open-source projects.

5. CONCLUSION
Hecate enables REST -resources to be guarded within

an integrative authorization management. The access con-
trol stays independent from the resource representation and
is based on HTTP-operations. With optional knowledge
about the underlying resource, Hecate is able to offer fil-
ters and operations with finer granularity for the resources.
We proved our approach with an implementation included
in JAX-RX and TNTBase and showed the practicality of
our independent authorization model

Hecate enables a central permission management for mul-
tiple resources. The resources must not be aware of each
other neither must Hecate be aware of the characteristics
of the resources. Even if the HTTP-operations represent
the base for our permission model, Hecate supports ad-
ditional resource-aware filtering. This filtering must occur
under awareness of the resource from which the response is
filtered.

Open problems include the mapping of resource-bound
user credentials into the Hecate authorization framework.
Another mapping regarding Hecate users and resource-user
is necessary to solve this issue.

The next steps include the awareness of recursive resources.
Based on the tree-structure of the PXD , an order-awareness
of nested resources increase the granularity of the autho-
rization. Furthermore we want to exploit the usage of finer
filters. Since the current permission model for requests relies
only on HTTP-verbs, we believe that the already proposed
filtering of the responses and the requests offers multiple ar-
eas of future work especially regarding the representation of
collections and temporal views of resources.

6. ACKNOWLEDGEMENT
We would like to thank Anna Dowden-Williams for her

more than valuable input.

7. REFERENCES
[1] R. Bhatti, E. Bertino, and A. Ghafoor. A trust-based

context-aware access control model for web-services.
Distributed and Parallel Databases, 18(1):83–105,
2005.

[2] R. Bhatti, J. B. Joshi, E. Bertino, and A. Ghafoor.
Access control in dynamic xml-based web-services with
x-rbac. Technical report, Purdue University, 2003.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and T. B.
Textuality. Extensible Markup Language (XML) -
version 1.0, 1997.

[4] J. Clark and S. DeRose. XML path language (XPath)
version 1.0, 1999.

[5] D. Crockford. The application/json media type for
javascript object notation (json), 2006.

[6] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. A fine-grained access
control system for XML documents. In ACM
Transactions on Information and System Security
(TISSEC), 2002.

[7] E. Damiani, S. D. C. di Vimercati, and P. Samarati.
Towards securing XML Web services. In ACM
workshop on XML security, 2002.

[8] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In ACM SIGMOD
international conference on Management of data, 2004.

[9] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[10] A. Gabillon. An authorization model for XML
databases. In ACM Workshop on Secure Web
Services, 2004.

[11] S. Graf, L. Lewandowski, and C. Grün. JAX-RX,
unified REST access to XML resources. Technical
report, University of Konstanz, 2010.

[12] D. Guinard, V. Trifa, F. Mattern, and E. Wilde.
Architecting the Internet of Things, chapter From the
Internet of Things to the Web of Things: Resource
Oriented Architecture and Best Practices. Springer,
2010.

[13] S. Hada and M. Kudo. XML access control language:
Provisional authorization for XML documents.
Technical report, IBM Research Research Laboratory,
2000.

[14] D. Peng, C. Li, and H. Huo. An extended
UsernameToken-based approach for REST-style Web
Service Security Authentication. In Computer Science
and Information Technology, 2009. ICCSIT 2009. 2nd
IEEE International Conference on, 2009.

[15] H. Story, B. Harbulot, I. Jacobi, and M. Jones.
FOAF+ SSL: RESTful authentication for the social
web. In First Workshop on Trust and Privacy on the
Social and Semantic Web (SPOT2009), 2009.

[16] E. Wilde. Putting things to REST. Technical report,
2007.

[17] V. Zholudev and M. Kohlhase. TNTBase: a Versioned
Storage for XML. In Balisage: The Markup
Conference 2009, 2009.

[18] V. Zholudev and M. Kohlhase. Scripting Documents
with XQuery: Virtual Documents in TNTBase. In
Balisage: The Markup Conference 2010, 2010.

