
An XMLAn XML--Based Infrastructure to Enhance Based Infrastructure to Enhance
GeGe oo graphic Visual Analy t icsgraphic Visual Analy t ics

Marc Kramis, Cedric Gabathuler, Marc Kramis, Cedric Gabathuler,
Sara Irina FabrSara Irina Fabr ii kant,kant, and Marcel Waldvogeland Marcel Waldvogel

We propose a new streamlined two-step geographic visual analytics (GVA) workflow for efficient
data storage and access based on a native web-enabled XML database called TreeTank coupled
with a Scalable Vector Graphics (SVG) graphical user interface for visualization. On the one hand
this new storage framework promises better scalability with rapidly growing datasets available on
the Internet. On the other hand, it reduces data access and update delays for collaborative GVA
environments, while improving interactivity and flexibility from an end-user perspective. The pro-
posed framework relies on a REST-based web interface providing scalable, and spatio-temporal
read-write access to complex spatio-temporal datasets of structured, semi-structured, or unstruc-
tured data. The clean separation of client and server at the HTTP web layer assures back-wards
compatibility and better extensibility. We discuss the proposed framework and apply it on a proto-
type implementation employing world debt data. The excellent compression ratio of SVG as well as
its fast delivery to end users suggests encouraging further steps towards dynamic, highly interac-
tive, and collaborative geovisual analytics environments.

KEYWORDS: Geographic visual analytics, data storage and access, interoperability, Web inter-
face, XML, SVG

Marc Kramis, University of Konstanz, Department of
Computer and Information Science, Box V 519, 78457
Konstanz, Germany. Tel: +49 7531 88-4734; Fax: +49 7531
88-3739. Email: <marc.kramis@uni-konstanz.de>
Cedric Gabathuler, University of Zurich, Department of
Geography, Geographic Information Visualization &
Analysis, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Tel: +41 44 635-5151; Fax: +41 44 635-6848. Email:
<cedric@geo.uzh.ch>
Sara Irina Fabrikant, University of Zurich, Department of
Geography, Geographic Information Visualization &
Analysis, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Tel: +41 44 635-5150; Fax: +41 44 635-6848. Email:
<sara.fabrikant@geo.uzh.ch>
Marcel Waldvogel, University of Konstanz, Department of
Computer and Information Science, Box V 509, 78457
Konstanz, Germany. Tel: +49 7531 88-4948; Fax: +49 7531
88-3739. Email: <marcel.waldvogel@uni-konstanz.de>

IntroductionIntroduction
GVA is a highly interdisciplinary research

field, with tight links to different related
disciplines, having needs and interests in

synthesizing information and deriving insights
from massive, dynamic, ambiguous, and often
heterogeneous data sources (Keim et al. 2006).
The scientific objective of GVA is to understand
how both individuals and teams carry out
analytical reasoning and decision-making tasks
based on complex information, and to use this
understanding to develop and assess information
and communication technologies for this purpose
(MacEachren et al. 2006).

Increasing sizes and complexities of data sets
being collected, handled and analyzed by visual
analytics experts call for new cross-disciplinary
approaches {Andrienko, 2008 #53}. For
example, efficient and effective storage and
exchange of very large and complex distributed
spatio-temporal databases is not only an
important enabler for GVA, but also a research
focus of the database research community within
computer science. While previously large
geographic datasets were typically of structured
alpha-numerical nature (i.e., remote sensing
images, census datasets, etc.) more recently GVA
researchers face a multivariate mix of structured
(relational) databases, and increasingly semi-
structured (e.g., XML-based), and unstructured

(e.g., plain text) data sets, all readily available
on the Internet.

A flexible and dynamic data storage and access
infrastructure is especially needed when represent-
ing movement, dynamism, and change (An-
drienko et al. 2008). Ideally, GVAnalysts should
have efficient tools at hand for interactively
access, rapidly modify, exchange in real-time, or
generate entirely new representations on the fly
from underlying massive data sets, whenever the
research context requires it.

Today, GVA user interfaces establish the
necessary linkages between collected geographic
datasets, data representations stored in databases,
as well as external (graphic) visualizations
presented to a user that interact with internal
(mental) representations. Ongoing technological
developments provide continuously changing
data types (i.e., from tracking devices, LBS,
sensor networks, audio, etc.), which in turn
require new data handling structures for efficient
GVA.

According to MacEachren and Kraak (2001),
one of the challenges is to develop extensible
methods and tools that enable the understanding
of, and insights from, increasingly large and
complex volumes of geospatial data that are
becoming readily available these days. Scalabil-
ity of GVA solutions have become one of the
bottlenecks to deal with massive databases.

Many different (server-side, client-side, hybrid)
data handling approaches are already available for
Internet-based geographic information systems
(GIS) with the goal to improve data access
performance (Chang and Park 2006). Each
approach has its specific advantages and disad-
vantages with respect to data manipulation and
management, user interactivity, and the distribu-
tion of server-side or client-side tasks (Chang
and Park 2006, Yao, and Zou 2008). In addition,
scalability and the provision for distributed
collaboration also varies significantly with each
approach.

One of the main challenges for highly interac-
tive and distributed GVA is the inherent
potential for media breaks when dealing with
distributed and diverse databases, thus reducing
the potential for knowledge discovery. For
example, knowledge might be disseminated
through one media channel such as written
communication in the form of emails or a journal
article that summarize insights from a database
that is not directly accessible anymore from this

particular media channel. Essentially, the media
break is enforced by the underlying data infra-
structure, as this infrastructure does not natively
support the dynamic adaptation of large-scale
data sets to various media channels. Each media
break within a collaborative research context
hinders knowledge discovery as it requires the
(manual) conversion of data from one format to
the next. The preparation, conversion, and
reviewing steps all require time and significant
computational resources when dealing with
massive datasets. Consequently, real-time or
interactive collaborations over a network are
severely hindered.

This contribution specifically presents a data
storage and a visual access framework capable of
dealing with both large-scale and frequently
changing semi-structured (XML-based) spatio-
temporal data sets increasingly used in current
GVA research contexts. The proposed GVA
infrastructure enables analysts to access and
modify large and complex data sets and rapidly
display these changes in response to user actions,
as needed for efficient and collaborative visual
data exploration environments {Andrienko, 2008
#53}.

Specifically, we propose an XML-based infra-
structure to reduce the potential number of media
breaks within geographic visual analytics. Our
infrastructure provides sound support to securely
store and quickly access dynamically changing
data, representing cognitive adequate knowledge
in a scalable, web-based, and collaboration-
oriented way. We describe the underlying
technology and provide a case study to demon-
strate the benefits resulting from it.

The rest of this article is organised as follows:
Section 2 outlines the technological research
context and related work. Section 3 describes the
proposed GVA data storage and access infrastruc-
ture, followed by Section 4 where we apply the
implemented prototype to a case study. Section
5 discusses our research findings, highlighting
opportunities and challenges of the proposed
approach. This is followed by a concluding
section 6, which includes an outlook to future
work.

BackgroundBackground

Recent developments foster the integration of
data storage and display technologies in ways
not possible before. The (well-designed) web-
enabled geovisualization display has become an

interface to massive complex and distributed
databases that can support efficient information
access and knowledge construction.

The Open GIS Consortium has initiated Web
mapping interoperability initiatives and specifica-
tions to develop interface specifications for
geographic data (OGC 2002). This includes the
Geography Markup Language (GML) encoding
standard to express geographic features (OGC
2007), or the Web Feature Service (WFS)
Implementation Specification for retrieving
geographic features across the web (OGC 2005).
In addition, geographic features stored in this
fashion can be displayed using the Scalable
Vector Graphics (SVG) format, an open standard
developed by the World Wide Web Consortium
(W3C) (Peng, and Zhang 2004). SVG is based
on the eXtended Markup Language (XML) to
describe two-dimensional geometric objects
(points, lines, and polygons). In Neumann, and
Winter (2001)’s words XML is seen as the future
core-technology for all up coming web-standards.

Peng and Zhang (2004) have outlined the role
of GML, SVG, and WFS in building an internet
geographic information system (GIS). Open
issues were in their opinion the compression of
GML and SVG files, seen also as one of the
easiest issues to solve. A more complex open
issue is the client-side SVG user interface, and
respective data processing tools to assist users as
they interact with GML data. More recently, Yao
and Zou (2008) have highlighted interoperability
challenges of Internet mapping tools based on the
open source approach. A core challenge is the
efficient transfer of data between relational and
object-oriented databases. For example, widely
used proprietary databases such as ESRI ArcSDE
or Oracle Spatial store geospatial information in
a binary long data type in an unpublished format.
To access this data for display with SVG first an
SQL query is required. The traditional approach
is to deliver the requested data in a Standard
Open Format, e.g., an ESRI Generate File. An
intermediate data conversion step is then required
to generate the SVG document from the ESRI
Generate File, before it can be presented to the
user in form of an easy-to-use graphical interface
(Dunfey et al. 2006).

According to Neumann and Winter (2001)
databases are easier to query or update while
XML is perfect for data-exchange and archiving.

SVG displays can be constructed directly out
of (XML) database and be presented to a user for
interactive geovisualization and visual analytical

knowledge construction. SVG is optimized for
graphic rendering on the Web. Features such as,
vector display, animation, interactivity, transpar-
ency, graphic filter effects, including shadows,
lighting effects, and easy editing are provided
with SVG (Yao, and Zou 2008). However while
SVG is very suitable for graphic content delivery
by providing flexibility for user interactions
(Neumann, and Winter 2001), one should
recognize the problem of missing topology for
advanced spatial analysis, and limitations in
cartographic symbolization such as missing
complex line-styles.

ApproachApproach

We propose a web-enabled flexible and scal-
able GVA framework using a native XML-based
data storage and handling back-end infrastructure
coupled with Scalable Vector Graphics (SVG) at
the system-user interface. This GVA infrastruc-
ture provides analysts with highly interactive,
GVA tools to support complex data exploration
and decision-making tasks. It includes flexible
data depiction, high computer-user interaction,
and collaboration over the Web.

We favor SVG for our approach, as it allows
for rapid system development and prototyping,
provides fast response times for interactive query
requests, and supports efficient data interoperabil-
ity over networks (Yao and Zou, 2008).
Similarly to Yao and Zou (2008) and Dunfey et
al. (2006) we expect that SVG will be supported
natively in most if not all web browsers, and
thus no extra plug-in will be necessary.

We natively store SVG data in an XML-based
database, even though other authors have argued
against using SVG as basis for geovisualization
(Yao, and Zou 2008), because it is not suitable
for securely and efficiently storing, managing, or
delivering spatial data over the network. We
argue that TreeTank solves the remaining
problems such as secure and efficient storage,
management, and network-based data delivery.
Another XML-based language is available, the
Geographic Markup Language (GML), specifi-
cally targeted for geographic data. Fortunately,
SVG and GML are highly compatible and can
work in synergy. For example, Yao and Zou
(2008) convert GML-based data to SVG before
transmitting data to the client for display.

We employ the representational state transfer
(REST) technology for queries to and feature
extraction from our XML database. REST is a

set of network architecture principles, which
outline how resources are defined and addressed.
Practically speaking, REST defines a simple and
scalable interface for exchanging resources over
the Internet using the HTTP protocol. Each
resource must be uniquely addressable through
hypermedia links, meeting a universal syntax. A
well-defined and typically small set of HTTP
operations specifies how to proceed with the
obtained resource. The basic operations are
POST to create a resource, GET to read a
resource, PUT to update a resource, and
DELETE to remove a resource. The scalability
and unquestioned expressiveness of REST makes
it the interface of choice when it comes to handle
large-scale SVG data on a network. The clean
separation of client and server at the web layer
(HTTP) allows both sides to be independently
implemented while drawing from state-of-the-art
standardized web technologies such as, Java,
Ruby on Rails, or Adobe Flex. In addition,
REST is a bidirectional interface both for
querying and modifying the requested resource
(Fielding, 2000).

InfrastructureInfrastructure
At the hearth of our contribution lies the switch
to a native XML database capable to directly
store and emit fine-grained XML data. Unlike
traditional relational databases, native XML
databases do not store the XML data as character
large objects and inherently know about the
XML structure and XML nodes. The finer
granularity allows answering complex queries
and extract the stored XML in a scalable fashion
because the parsing and reconstruction process
required with character large objects is omitted.
In addition, most state-of-the-art native XML
databases support modifications of the stored
XML.

Our XML-based infrastructure consists of two
components, i.e., the web interface called
Temporal REST (Giannakaras and Kramis
2008), and the storage manager with the name
TreeTank (code name Idefix) as described with
(Gruen et al. 2006). The two components are
connected to implement a two-step workflow as
follows:

1. An XQuery expression is issued to
TreeTank through Temporal REST;

2. TreeTank returns SVG through Tem-
poral REST.

In stark contrast to the traditional three-step
workflow based on traditional relational spatial
databases, the intermediate data conversion step
is eliminated, i.e., there is no need for converting
the Standard Open Format such as an ESRI
Generate File into SVG. The eliminated
intermediate data conversion step both makes
heavy use of CPU and IO and mainly contributes
to the large end-to-end delay virtually inhibiting
interactive Geographic Visual Analytics.

The two following sub-sections give an intro-
ductory overview over the involved technologies.

Temporal REST
While there exists a variety of solutions to access
XML resources over the Web, there is – to our
knowledge – no generic and unified solution to
conveniently access all of:

1. The current revision of the XML
resource or any subset thereof;

2. The full revision history of the XML
resource or any subset thereof;

3. The full modification history of the
XML resource or any subset thereof.

We want to work with XML as a fine-grained
tree of nodes and evolve this tree over time
through user modifications. As such, we realize
that we can access single nodes or whole sub-
trees, i.e., XML fragments, within a temporal
dimension in a unified, scalable and robust way.

Only if we consider the whole life cycle of an
XML resource including the past revisions and
the (transaction-based) modification history, we
will get a complete idea of its true power.
Notably, collaboration processes frequently
involve asynchronous workflows. As such, the
effectiveness of the workflow largely depends on
the ability to highlight the modifications, which
took place during the last (or any past) step of
the workflow.

We suggest Temporal REST as an interface
with its related protocol message exchanges to
generically implement our idea to exploit web-
based XML resources. According to the Pareto
principle, our proposal is simple enough for the
average web application developer and at the
same time it is extensible enough to be used
with complex setups.

There are three different ways to access nodes
and sub-trees, i.e., XML fragments, within an
XML resource. First, the step-by-step tree
navigation (XPath). Second, the query including
joins and other complex expressions (XQuery).
Third, the ID-based random node access (DOM).

Temporal REST supports all three and comple-
ments them with a temporal expression as
described later. Note that XPath is a subset of
XQuery.

XML IDs enable the user to tag the XML
document and to quickly access the XML
fragment by providing the XML ID. However,
most XML nodes are not tagged with such a
XML ID and are not available for random access.
We suggest the tagging of at least all element
nodes with a system-generated REST ID. Text
nodes or attributes are accessible through their
parent node. Other XML nodes such as com-
ments or processing instructions may be tagged
by the system on demand. One advantage of
having the system to do the REST ID assign-
ment is that the REST ID remains stable
throughout revisions and modifications, i.e., a
node or its modifications can be accessed
irrespective of the revision or position in the tree.
Another advantage is the guarantee of the
existence of an ID. The system can make the
REST IDs visible by tagging the serialized
XML with REST ID attributes bound to the
namespace of Temporal REST.

Each insertion operation assigns unique im-
mutable REST IDs to all new element nodes.
This assignment is made by the back-end that
stores the XML and does not affect any existing
user-assigned XML ID. REST IDs are numerical
and they are incrementally assigned starting at
one. REST IDs do not necessarily need to be
assigned in document order and they must not
change once assigned to a node. In addition, we
suggest not reusing REST IDs. This reduces the
confusion due to reassignments in future
revisions. Since deletions are less frequent than
insertions with most real-world workloads, the
loss of number space is considered to be
negligible.

Each insertion, update, or deletion of a XML
node results in a modification event. Each event
is assigned a new revision and a timestamp, an
author, and a comment to the whole revision.
Temporal REST communicates modifications by
encapsulating the modified node within an item
element. The item element contains the REST
ID of the modified node as well as revision, time
stamp, author, and comment information. As
such, both the insertion and the deletion can be
considered as a setting a node to a new value.
Deletion sets the node to the empty node. We
opted for this approach for two reasons. First, we
can streamline the transport of XML fragments

and modifications within the XQuery data
model, i.e., within a sequence of items. Second,
the back-end can combine the storage of the
modification event and the result of the modifica-
tion.

The select operation allows the retrieval of a
sequence of items as defined with XQuery. Each
item is an atomic value, a XML node, or a
modification event. The selection can be query-
based or REST ID-based. Temporal REST will
restrict the execution domain of both the query
and the REST ID according to the temporal
expression either selecting a point in time or a
time period. While a query may return a
sequence of multiple items, an access solely
based on a REST ID will return a sequence with
at most one item. If the query and REST ID
approach are combined together, the query treats
the node with the given REST ID as the root
node of the query. The query-based approach
allows to add new query languages in the future
and to express complex queries including
operations such as full-text search or joins. The
REST ID-based approach allows to directly
select an item with optimal performance since the
system does not have to compile and optimize
the query.

The temporal expression must be enclosed
with round brackets ‘(‘ and ‘)’ and contain a
single point in time or a time period consisting
of two points in time separated by a dash ‘-‘. A
point in time can be a revision number, an ISO
date in short notation, i.e., without dashes or
colons, or nothing, i.e., the last successfully
committed revision. A single point in time will
retrieve the XML fragments as they looked like
at the given revision. The time period will
retrieve the modifications between (and includ-
ing) the two provided points in time in the
according order. Leaving away the temporal
expression automatically causes a fallback to the
last successfully committed revision for back-
wards compatibility.

A single node or a whole sub-tree can be
inserted either as the first child of an existing
node or as its right sibling. As such, the insert
operation requires a query selecting a number of
nodes or a REST ID besides the actual XML
fragment to insert. During the insertion process,
the back-end system will assign the REST IDs
as described above. Note that the insertion of an
attribute must be made with the PUT operation
changing the whole node.

A single node can be replaced with or without
the replacement of its sub-tree. Again the
updating operation requires a query to select a
number of nodes to update or a REST ID. In
addition, the actual updated XML fragment has
to be provided. Restricting the effect of the
update to the node (not effecting its sub-tree),
allows the insertion of an attribute into an
existing node without changing its whole sub-
tree.

Whenever a node is deleted, the node and its
sub-tree are purged from the system (but not from
the past revisions). The deletion operation
requires a query or a REST ID to select the
nodes to delete.

TreeTank
TreeTank is a native XML database designed to
provide scalable read and write access to XML
data. TreeTank concurrently allows multiple read
and a single write transaction each of which
creates a new revision per transaction commit.
Furthermore, TreeTank was designed to be
secure and easy to maintain. The scalability of
TreeTank results from the concurrent use of
resources such as processing and storage units
and from the design of the main internal data
structure to store the XML tree.

The decision to only support a single write
transaction at any time allows to run any number
of processes concurrently accessing any past
revisions or modifications. The newly modified
data is clearly separated and only becomes
visible after the last successful transactional
commit to processes different from the write
transaction process. If multiple users want to
work on the same XML tree at the same time,
either a transaction manager is required which
coordinates, i.e., sequentializes the changes, or a
workflow has to be established which clearly
states when which user is allowed to do what.
Alternatively, a locking scheme has to be
established, which follows an optimistic or
pessimistic locking policy. However, it turns
out, that in many real-world use cases, only a
single user is working on a given part of the tree
at any time, or that the natural workflow of a
team working with XML data resolves modifica-
tion conflicts before they even could appear.

The data structure of TreeTank was optimized
for updates. At most three directly related nodes
must be updated, whenever a single node or sub-
tree is modified. Only the modified nodes are

stored on disk in a compressed page. Note that
traditional databases usually store the whole page
potentially containing dozens of nodes even
though only a single node may have changed.
Still, care has to be taken that reads do not have
to collect a huge number of scattered changes to
reconstruct a single page. We opt to intermit-
tently store a snapshot of the whole page to also
support reads with reasonable performance. The
mechanism of compressing all pages, only
storing the page modifications, and of intermit-
tently storing snapshots of the pages helps to
reduce the storage requirements by one order of
magnitude. TreeTank consequently does not
consume significantly more space even though it
can swiftly reconstruct any past state or modifica-
tion.

Security is not a choice with TreeTank – it is
always activated. Care was taken to only
implement time-proven cryptographic primitives
with sufficient key lengths and well-chosen
cryptographic modes not to create a weak link,
which could be attacked to break the whole
system. TreeTank encrypts all compressed pages
before they are stored on disk. This guarantees
the confidentiality of the stored XML tree, no
matter whether the TreeTank files are exposed to
the public or transferred through insecure
networks. Besides the encryption, a strong
message authentication code is derived from each
compressed page and stored with the reference to
this page. As each reference contains the message
authentication code of all its children, the
integrity and authenticity of the whole TreeTank
can be verified recursively. The root message
authentication code can be securely signed and
further secured by an external secure time
stamping mechanism, which also assures that
modifications can not be denied. The availability
of TreeTank can be guaranteed on the application
level by a master-slave replication, which
consumes very little network bandwidth and is
perfectly suited for geographically distributed
operation. The master-slave setup assures that all
modifications applied to the master are synchro-
nously or asynchronously propagated to the
slave. The tight integration of security allows to
store sensitive data in the TreeTank. This is
especially important because visualizations are
usually based on large data sets collected from
the internal operation of an organization or
project and must not be exposed to the public.

Preliminary measurements on a state-of-the-art
desktop computer show two significant advan-

tages of TreeTank. First, it compresses the
original XML data while storing it in its native
data structure. Second, it allows to quickly
retrieve the original XML. The promising
preliminary results of both the compression and
time measurements for three SVG files of different
sizes are as follows: The size of the TreeTank is
up to ten times smaller than the original SVG
file and TreeTank can deliver the original SVG
data up to twenty times faster than a relational
database with spatial extensions. The excellent
compression ratio is due to the verbosity of
SVG. The time of the data conversion step alone
(excluding the time to retrieve the original data
from the spatial database) takes much longer than
the time required to retrieve the whole SVG from
TreeTank.

Case StudyCase Study
In this section, we provide a case study to
demonstrate not only the feasibility but also the
significant benefit a user can gain from our
infrastructure. Most importantly, we want to
build a mindset of how to design and use our
infrastructure because it is notably different from
traditional workflows both on the technical and
application level. With our infrastructure at hand,
the user can organize and later modify the data in
the XML tree, as he likes. He can mix docu-
ment-centric sub-trees containing information,
e.g., in the OpenDocument format, with sub-
trees compliant with ready-to-visualize SVG
data, as well as data-centric statistical informa-
tion.

Throughout this case study, we build up an
example TreeTank essentially based on the gross
external dept positions in US$ per person. This
information is available on a quarterly base and
perfectly suited to show how a team can elaborate
sophisticated visualizations based on a set of
statistical data. Four revisions of the visualiza-
tion can be seen in Figure 1. Figure 2 depicts an
additional example of how GUI elements can be
laid out with SVG (including a sample chart).
Note that the TreeTank is exposed to authorized
users through a web service running Temporal
REST.

The first step is to convert the Excel-based
statistical information into a data-centric XML.
This is a straightforward step and only required if
the original data is not available as XML. The
resulting XML can be directly imported into
TreeTank by inserting the whole XML docu-

ment through Temporal REST. From now on,
we can query Temporal REST to extract the
whole document or any sub-tree therein.

For the second step, we need a SVG represen-
tation of the world with all countries. Either, one
can rely on open source SVG world maps or
retrieve an individually configured world map
from a traditional relational spatial database to
best suit special requirements. To keep the
statistical data separate from the SVG data, we
insert the new node statistic as the parent of the
statistical XML data. Then, we insert a new
node geodata as the right sibling of statistic and
group the two nodes statistic and geodata under
the third new node example. We then insert the
whole SVG data under the node geodata. From
now on, we can retrieve the plain statistical data
by selecting the sub-tree rooted at statistic or
visualize the world map within any SVG-enabled
web browser by selecting the sub-tree rooted at
geodata. To combine the statistical data with the
visualisation, we have to make sure that both
sub-trees store the ISO country codes for each
country. If this is not already the case, we can
update each country in each sub-tree. Note that
most SVG-based world maps will separately
store a SVG path for each country.

Meanwhile, we created a set of revisions, each
consisting of a Temporal REST modification
request. At any time, we can retrieve an older
revision or list the modifications applied to past
revisions. This is convenient, if one wants to
know what changed, e.g., in the sub-tree under
geodata. It is also appeasing, because one can
revert the tree to a past revision if an unintended
modification took place. At no time, data is
overwritten or lost. Furthermore, the author of
the changes can provide commit comments with
each Temporal REST modification request to
document his intentions and the evolution of the
tree.

We prepare the visualization of statistical
information by defining value ranges and color
schemes for each value range. Then, we add the
color information as an XML attribute to each
element in the statistic sub-tree based on the
statistical value and make sure that the statistical
information is grouped in sub-trees for each year,
and within the years for each quarter. Next, we
add the SVG elements to the geodata sub-tree
required to draw a box displaying the color
scheme and value ranges. To better support
layering in SVG, we group the SVG elements
required to draw the box under the XML element

1a) 1b)

1c) 1d)

Figure 1a) shows the SVG sub-tree containing the map of the world and a description box. Figure 1b) shows

the gross external dept positions in US$ per person for the year 2006. Figure 1c) and Figure 2d) show the
same information for the years 2007 and 2008 respectively.

2)

Figure 2) shows an example of a rich SVG GUI providing a chart and extended end-user input facilities. Note
that this additional SVG sub-tree could be plugged-in seamlessly with the existing TreeTank.

description and then group the SVG path
elements required to draw the world map under
the XML element worldmap. This step helps to
interactively enable or disable layers and can later
be extended to support, e.g., layers containing
waterbodies, charts, or other GUI elements

required for improved and convenient user
interaction. To prepare the coloring of the
countries according to the selected statistical
data, we add the appropriate SVG color attribute
to each path element. Finally, we add a SVG

GUI element under geodata, which allows to
interactively select a quarter of the year.

The actual procedure to color the world map
according to the selection can either be imple-
mented with an XQuery expression issued
through Temporal REST or with JavaScript on
the client side. If XQuery is chosen, one must
select both the statistic and the geodata sub-tree
and then set the color attribute of the SVG path
elements to the color attribute of the statistical
data by joining them by country code. When
JavaScript is preferred, both the geodata and the
sub-tree containing the statistical information for
the selected quarter have to be transferred to the
client and then joined together by looping
through all countries and setting their color to
the color value found in the statistical data. Note
that the statistical data can be reloaded efficiently
and on demand with Ajax technology. The main
difference between the XQuery and the JavaScript
variant is, whether the work is done on the client
or the server side, and how much data has to be
transferred over the network. In the case of
XQuery, the join is calculated on the server side
for each request. Then, the result is transferred to
the client and immediately visualized. In case of
JavaScript, more data has to be transferred to the
client for the first request. Then, the join is
calculated and visualized. For later requests, only
the new statistical data is transferred, joined and
visualized. Consequently, JavaScript is the better
choice, if the workload consists of multiple
selections for different quarters. However, note
that current JavaScript runtime environments are
so slow that the XQuery variant might be faster
even though the whole data for the visualization
has to be transferred for each request. This may
change in the near future since most JavaScript
runtime environments currently undergo major
rewritings to speed them up significantly.

We have shown that the XML tree can be
grown exactly according to the user’s demand.
All involved data sources can gradually be
integrated with TreeTank and then queried and
further modified from within one single infra-
structure. While the last paragraphs only
considered a single user performing the modifica-
tions, we describe the collaboration of multiple
users collectively working on the same TreeTank
in the next paragraphs. Note that each user can
modify the XML tree and add more statistical
data or visualization elements as described
before. Though, it is important – as in any
professional publication or authoring workflow –

that each user behaves according to a policy.
With TreeTank and Temporal RES T, it is a
simple one:

- Concurrent modifications have to be
done in disjoint sub-trees.

While the current version of TreeTank does
not provide a facility to enforce this behavior, it
can be implemented technically on the applica-
tion layer or non-technically in the organizational
structure. We suggest a hierarchical responsibil-
ity delegation scheme:

- At any time, one author (person or
process) is responsible for a given sub-
tree unless he delegates a descendant to
someone else with the option to revoke.

This scheme can be extended by a non-
hierarchical access-control-list-based (ACL-based)
scheme if required. To clarify the hierarchical
responsibility delegation scheme, we imagine a
situation where one author A1 adds more
statistical data each quarter, one author A2 works
on the SVG-based GUI and color schemes
(Brewer 1994), and one author A3 links the
visualisations to scatter plots or other statistical
graphics (Andrienko and Andrienko 1999). One
possible hierarchical delegation then is as
follows. The owner of the TreeTank delegates
statistics to A1 and geodata to A2. A2 creates a
new node charts and delegates it to A3. Then,
all three authors concurrently modify the tree and
will never cause isolation conflicts such as lost
writes or dirty reads as they are stated in the
ACID model, which is one of the oldest and
most important concepts of database theory. Lost
writes are prohibited by design because each
author works in his responsibility domain, i.e., a
dedicated sub-tree. Dirty reads are avoided
because each author will only see successfully
committed changes and has the option to query
the tree as it was like at a fixed revision.
Whenever he wants to switch to a newer
revision, he first checks for modifications on the
sub-trees of interest and whether they impact his
own work, e.g., introduce an inconsistency
because the color attributes were dropped.
Finally he can adapt his part of the tree to the
modifications.

DiscussDiscuss ionion
The findings from the case study based on a

prototype implementation of our XML-based
infrastructure open a wealth of opportunities for
the end-user as well as an array of research

challenges. The immediate benefit of our
infrastructure is the very efficient use of process-
ing and storage resources. Much more user
requests can be handled per time unit and the
degree of interactivity is dramatically improved,
as the user actions are no longer a matter of
minutes but seconds. Both throughput and
interactivity are essential for collaboration-
oriented environments where end-users are used
to interact in an asynchronous as well as a
synchronous fashion. The support for the
evolutionary growth of tree (XML) data struc-
tures and the ability to store and query, e.g.,
statistical and SVG data, side-by-side, help to
reduce unnecessary media breaks, which hinder
the dissemination of (visually) discovered
knowledge.

The research challenges are manifold. One
challenge is to find and categorize tree structure
and tree design patterns. Our infrastructure allows
to store huge amounts of unstructured data in a
single TreeTank. Without patterns, the Tree-
Tank is likely to end up as a junk room where
everything is contained but rarely something can
be found in time. Hand in hand with the patterns
comes the question how to best organize and
manage the concurrent access of multiple users
assuming changing roles. In our case study, we
suggested an organization form natural for tree-
based data structures. But there may be other
more efficient ones. As with the tree structure and
tree design patterns, the collaboration-oriented
(authoring) workflows have to be collected,
categorized, implemented, and tested with real
teams. From a technical point of view, the
challenge arises to integrate various indices with
TreeTank to speed up specialized queries such as
full text queries or spatial queries on rasterized
data. While the server side can be further sped up
with the help of indices, the client side GUI and
JavaScript environments still need to be revised
to unleash the processing power of modern
desktop or notebook computers. The GUI
functionality of browsers and SVG plug-ins is
not yet on par with native applications. Even the
extensive use of Ajax and JavaScript does not
hide the current shortcomings.

The case study made the assumption that there
are multiple users but only one single TreeTank.
In case that multiple teams concurrently grow
their data structures in independent TreeTanks,
the question arises, how all these distributed
TreeTanks can be integrated into one unified
storage. While our infrastructure solves the

aspect of integrating different data sets into one
tree, it does not yet provide support to integrate
multiple trees into a forest.

ConclusionConclusion
We propose a new streamlined two-step GVA

workflow for efficient data storage and access
based on our native web-enabled XML database
TreeTank and couple it with a SVG graphical
user interface for visualization. Not only does our
XML-based infrastructure substantially reduce
access delays due to the elimination of interme-
diary data format conversion steps. It rather
extends the user’s options by providing
significantly better scalability, inherent data
security, and, most importantly, the ability to
collaboratively work in GVA environments
thanks to optimized update support. With up to
twenty times shorter data access delays and up to
one tenth of the traditional storage requirements,
our infrastructure aims at improving interactivity
and flexibility from an end-user perspective.

Furthermore, our infrastructure suggests a
paradigm shift leaving behind dispersed discon-
nected data sets as well as media breaks and
introduces a tightly integrated unified storage for
complex spatio-temporal datasets of structured,
semi-structured, or unstructured data. The clean
separation of client and server at the HTTP web
layer assures back-wards compatibility and better
extensibility. Future work is going to fully
implement the latest XML query facilities such
as XQuery, XQuery Update and XQuery Full
Text to give the end-user state-of-the-art tools at
his hands to query large-scale data sets. Espe-
cially the full-text feature will further improve the
value of our infrastructure for the collaboration-
oriented end-user because he can freely search in
all comments and documents stored along with
the spatio-temporal data. Besides this, we will
investigate, how to most efficiently distribute
TreeTank for even better scalability.

ReferencesReferences
Andrienko G.L., and N.V. Andrienko. 1999.

Interactive maps for visual data exploration.
International Journal of Geographical Information
Science 13(4): 355-374.

Andrienko G.L., N.V. Andrienko, J. Dykes, S.I.
Fabrikant, and M. Wachowicz. 2008. Geovisualiza-
tion of dynamics, movement and change: key issues
and developing approaches in visualization
research. Information Visualization 7(3): 173-180.

Brewer, C.A. 1994. Colour use guidelines for mapping
and visualization. Visualisation in Modern
Cartography, Elsevier Science Inc., New York. pp.
123-147.

Chang Y.S., and H.D. Park. 2006. XML Web Service-
based Development Model for GIS Applications.
International Journal of Geographical Information
Science 20(4): 371-399.

Dunfey R.I., B.M. Gittings, and J.K. Batcheller. 2006.
Towards an open architecture for vector GIS.
Computers & Geoscience 32: 1720-1732.

Devogele, T., C. Parent, and S. Spaccapietra. 1998. On
spatial database integration. International Journal
of Geographical Information Science 12(4): 335-52.

Fairbairn D., G. Andrienko, N. Andrienko, G. Buziek,
and J. Dykes. 2001. Representation and its
Relationship with Cartographic Visualization, A
Research Agenda. Cartography and Geographic
Information Science 28(1): 13-28.

Fielding R.T. 2000. Architectural Styles and the
Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine.

Gahegan M. 2007. Multivariate Geovisualization.
Handbook of Geographic Information Science,
Blackwell Publishers. pp. 292-316.

Giannakaras G., and M. Kramis. 2008. Temporal REST
– How to Really Exploit XML, IADIS International
Conference WWW/Internet.

Gruen C., Holupirek A., Kramis M., Scholl M., and
Waldvogel M. 2006. Pushing XPath Accelerator to
its Limits. In Proceedings of EXPDB 2006,
Chicago, IL, USA.

Keim D.A., Mansmann F., Schneidewind J., and Ziegler
H. 2006. Challenges in Visual Data Analysis.
Information Visualization (IV’06), Tenth Interna-
tional Conference on Information Visualisation. pp.
9-16.

Kraak M.J. 1998. The Cartographic Visualization
Process, From Presentation to Exploration.
Cartographic Journal 35(1): 11-15.

MacEachren A., and M.J. Kraak. 2001. Research
Challenges in Geovisualization. Cartography and
Geographic Information Science, 28(1): 3-12.

MacEachren A., G. Cai, M. McNeese, R. Sharma, and S.
Fuhrmann. 2006. GeoCollaboration Crisis
Management, Designing Technologies to Meet
Real-World Needs. Proceedings of the 2006
international conference on Digital government
research, volume 151 of ACM International

Conference Proceedings Series. ACM Press. pp. 71-
72.

Neumann A., and A. Winter. 2001. Time for SVG-
Towards high-quality interactive web-maps. In:
Proceedings of the 20th International Cartographic
Conference, Beijing, China. pp. 2349-62.

OGC. 2002. Overview of OGC’s Interoperability
Program, available at
http://portal.opengeospatial.org/files/?artifact_id=
6196, last accessed on November 10, 2008.

OGC. 2005. Web Feature Service Implementation
Specification, available at
http://portal.opengeospatial.org/files/?artifact_id=
8339, last accessed on November 10, 2008.

OGC. 2007. OpenGIS Geography Markup Language
(GML) Encoding Standard, available at
http://www.opengeospatial.org/standards/gml, last
accessed on November 10, 2008.

Yao X. and L. Zou. 2008. Interoperable Internet
Mapping, An Open Source Approach. Cartography
and Geographic Information Science 35(4): 279-
293.

Peng Z.R., and C. Zhang. 2004. The roles of geography
markup language (GML), scalable vector graphics
(SVG), and Web feature service (WFS) specifica-
tions in the development of Internet geographic
information systems (GIS). Journal of Geographical
Systems 6(2): 95-116.

Worldbank. 2008. The world bank data & research,
available at http://econ.worldbank.com, last
accessed on November 10, 2008.

Marc Kramis,

University of Konstanz
<marc.kramis@uni-konstanz.de>

Cedric Gabathuler,

University of Zurich
<cedric@geo.uzh.ch>

Sara Irina Fabrikant,

University of Zurich
<sara.fabrikant@geo.uzh.ch>

Marcel Waldvogel,

University of Konstanz
<marcel.waldvogel@uni-konstanz.de>

