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We propose a new streamlined two-step geographic visual analytics (GVA) workflow for efficient 
data storage and access based on a native web-enabled XML database called TreeTank coupled 
with a Scalable Vector Graphics (SVG) graphical user interface for visualization.  On the one hand 
this new storage framework promises better scalability with rapidly growing datasets available on 
the Internet. On the other hand, it reduces data access and update delays for collaborative GVA 
environments, while improving interactivity and flexibility from an end-user perspective. The pro-
posed framework relies on a REST-based web interface providing scalable, and spatio-temporal 
read-write access to complex spatio-temporal datasets of structured, semi-structured, or unstruc-
tured data. The clean separation of client and server at the HTTP web layer assures back-wards 
compatibility and better extensibility. We discuss the proposed framework and apply it on a proto-
type implementation employing world debt data. The excellent compression ratio of SVG as well as 
its fast delivery to end users suggests encouraging further steps towards dynamic, highly interac-
tive, and collaborative geovisual analytics environments. 
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IntroductionIntroduction   
GVA is a highly interdisciplinary research 

field, with tight links to different related 
disciplines, having needs and interests in 

synthesizing information and deriving insights 
from massive, dynamic, ambiguous, and often 
heterogeneous data sources (Keim et al. 2006).  
The scientific objective of GVA is to understand 
how both individuals and teams carry out 
analytical reasoning and decision-making tasks 
based on complex information, and to use this 
understanding to develop and assess information 
and communication technologies for this purpose 
(MacEachren et al. 2006). 

Increasing sizes and complexities of data sets 
being collected, handled and analyzed by visual 
analytics experts call for new cross-disciplinary 
approaches {Andrienko, 2008 #53}. For 
example, efficient and effective storage and 
exchange of very large and complex distributed 
spatio-temporal databases is not only an 
important enabler for GVA, but also a research 
focus of the database research community within 
computer science. While previously large 
geographic datasets were typically of structured 
alpha-numerical nature (i.e., remote sensing 
images, census datasets, etc.) more recently GVA 
researchers face a multivariate mix of structured 
(relational) databases, and increasingly semi-
structured (e.g., XML-based), and unstructured 



(e.g., plain text) data sets, all readily available 
on the Internet.  

A flexible and dynamic data storage and access 
infrastructure is especially needed when represent-
ing movement, dynamism, and change (An-
drienko et al. 2008). Ideally, GVAnalysts should 
have efficient tools at hand for interactively 
access, rapidly modify, exchange in real-time, or 
generate entirely new representations on the fly 
from underlying massive data sets, whenever the 
research context requires it. 

Today, GVA user interfaces establish the 
necessary linkages between collected geographic 
datasets, data representations stored in databases, 
as well as external (graphic) visualizations 
presented to a user that interact with internal 
(mental) representations. Ongoing technological 
developments provide continuously changing 
data types (i.e., from tracking devices, LBS, 
sensor networks, audio, etc.), which in turn 
require new data handling structures for efficient 
GVA. 

According to MacEachren and Kraak (2001), 
one of the challenges is to develop extensible 
methods and tools that enable the understanding 
of, and insights from, increasingly large and 
complex volumes of geospatial data that are 
becoming readily available these days. Scalabil-
ity of GVA solutions have become one of the 
bottlenecks to deal with massive databases. 

Many different (server-side, client-side, hybrid) 
data handling approaches are already available for 
Internet-based geographic information systems 
(GIS) with the goal to improve data access 
performance (Chang and Park 2006). Each 
approach has its specific advantages and disad-
vantages with respect to data manipulation and 
management, user interactivity, and the distribu-
tion of server-side or client-side tasks  (Chang 
and Park 2006, Yao, and Zou 2008). In addition, 
scalability and the provision for distributed 
collaboration also varies significantly with each 
approach. 

One of the main challenges for highly interac-
tive and distributed GVA is the inherent 
potential for media breaks when dealing with 
distributed and diverse databases, thus reducing 
the potential for knowledge discovery. For 
example, knowledge might be disseminated 
through one media channel such as written 
communication in the form of emails or a journal 
article that summarize insights from a database 
that is not directly accessible anymore from this 

particular media channel. Essentially, the media 
break is enforced by the underlying data infra-
structure, as this infrastructure does not natively 
support the dynamic adaptation of large-scale 
data sets to various media channels. Each media 
break within a collaborative research context 
hinders knowledge discovery as it requires the 
(manual) conversion of data from one format to 
the next. The preparation, conversion, and 
reviewing steps all require time and significant 
computational resources when dealing with 
massive datasets. Consequently, real-time or 
interactive collaborations over a network are 
severely hindered. 

This contribution specifically presents a data 
storage and a visual access framework capable of 
dealing with both large-scale and frequently 
changing semi-structured (XML-based) spatio-
temporal data sets increasingly used in current 
GVA research contexts. The proposed GVA 
infrastructure enables analysts to access and 
modify large and complex data sets and rapidly 
display these changes in response to user actions, 
as needed for efficient and collaborative visual 
data exploration environments {Andrienko, 2008 
#53}. 

Specifically, we propose an XML-based infra-
structure to reduce the potential number of media 
breaks within geographic visual analytics. Our 
infrastructure provides sound support to securely 
store and quickly access dynamically changing 
data, representing cognitive adequate knowledge 
in a scalable, web-based, and collaboration-
oriented way. We describe the underlying 
technology and provide a case study to demon-
strate the benefits resulting from it. 

The rest of this article is organised as follows:  
Section 2 outlines the technological research 
context and related work. Section 3 describes the 
proposed GVA data storage and access infrastruc-
ture, followed by Section 4 where we apply the 
implemented prototype to a case study. Section 
5 discusses our research findings, highlighting 
opportunities and challenges of the proposed 
approach. This is followed by a concluding 
section 6, which includes an outlook to future 
work. 

BackgroundBackground  

Recent developments foster the integration of 
data storage and display technologies in ways 
not possible before. The (well-designed) web-
enabled geovisualization display has become an 



interface to massive complex and distributed 
databases that can support efficient information 
access and knowledge construction. 

The Open GIS Consortium has initiated Web 
mapping interoperability initiatives and specifica-
tions to develop interface specifications for 
geographic data (OGC 2002). This includes the 
Geography Markup Language (GML) encoding 
standard to express geographic features (OGC 
2007), or the Web Feature Service (WFS) 
Implementation Specification for retrieving 
geographic features across the web (OGC 2005). 
In addition, geographic features stored in this 
fashion can be displayed using the Scalable 
Vector Graphics (SVG) format, an open standard 
developed by the World Wide Web Consortium 
(W3C) (Peng, and Zhang 2004). SVG is based 
on the eXtended Markup Language (XML) to 
describe two-dimensional geometric objects 
(points, lines, and polygons). In Neumann, and 
Winter (2001)’s words XML is seen as the future 
core-technology for all up coming web-standards. 

Peng and Zhang (2004) have outlined the role 
of GML, SVG, and WFS in building an internet 
geographic information system (GIS). Open 
issues were in their opinion the compression of 
GML and SVG files, seen also as one of the 
easiest issues to solve. A more complex open 
issue is the client-side SVG user interface, and 
respective data processing tools to assist users as 
they interact with GML data. More recently, Yao 
and Zou (2008) have highlighted interoperability 
challenges of Internet mapping tools based on the 
open source approach. A core challenge is the 
efficient transfer of data between relational and 
object-oriented databases. For example, widely 
used proprietary databases such as ESRI ArcSDE 
or Oracle Spatial store geospatial information in 
a binary long data type in an unpublished format. 
To access this data for display with SVG first an 
SQL query is required. The traditional approach 
is to deliver the requested data in a Standard 
Open Format, e.g., an ESRI Generate File. An 
intermediate data conversion step is then required 
to generate the SVG document from the ESRI 
Generate File, before it can be presented to the 
user in form of an easy-to-use graphical interface 
(Dunfey et al. 2006). 

According to Neumann and Winter (2001) 
databases are easier to query or update while 
XML is perfect for data-exchange and archiving. 

SVG displays can be constructed directly out 
of (XML) database and be presented to a user for 
interactive geovisualization and visual analytical 

knowledge construction. SVG is optimized for 
graphic rendering on the Web. Features such as, 
vector display, animation, interactivity, transpar-
ency, graphic filter effects, including shadows, 
lighting effects, and easy editing are provided 
with SVG (Yao, and Zou 2008).  However while 
SVG is very suitable for graphic content delivery 
by providing flexibility for user interactions 
(Neumann, and Winter 2001), one should 
recognize the problem of missing topology for 
advanced spatial analysis, and limitations in 
cartographic symbolization such as missing 
complex line-styles. 

ApproachApproach  

We propose a web-enabled flexible and scal-
able GVA framework using a native XML-based 
data storage and handling back-end infrastructure 
coupled with Scalable Vector Graphics (SVG) at 
the system-user interface. This GVA infrastruc-
ture provides analysts with highly interactive, 
GVA tools to support complex data exploration 
and decision-making tasks. It includes flexible 
data depiction, high computer-user interaction, 
and collaboration over the Web. 

We favor SVG for our approach, as it allows 
for rapid system development and prototyping, 
provides fast response times for interactive query 
requests, and supports efficient data interoperabil-
ity over networks (Yao and Zou, 2008). 
Similarly to Yao and Zou (2008) and Dunfey et 
al. (2006) we expect that SVG will be supported 
natively in most if not all web browsers, and 
thus no extra plug-in will be necessary. 

We natively store SVG data in an XML-based 
database, even though other authors have argued 
against using SVG as basis for geovisualization 
(Yao, and Zou 2008), because it is not suitable 
for securely and efficiently storing, managing, or 
delivering spatial data over the network. We 
argue that TreeTank solves the remaining 
problems such as secure and efficient storage, 
management, and network-based data delivery. 
Another XML-based language is available, the 
Geographic Markup Language (GML), specifi-
cally targeted for geographic data. Fortunately, 
SVG and GML are highly compatible and can 
work in synergy. For example, Yao and Zou 
(2008) convert GML-based data to SVG before 
transmitting data to the client for display. 

We employ the representational state transfer 
(REST) technology for queries to and feature 
extraction from our XML database. REST is a 



set of network architecture principles, which 
outline how resources are defined and addressed. 
Practically speaking, REST defines a simple and 
scalable interface for exchanging resources over 
the Internet using the HTTP protocol. Each 
resource must be uniquely addressable through 
hypermedia links, meeting a universal syntax. A 
well-defined and typically small set of HTTP 
operations specifies how to proceed with the 
obtained resource. The basic operations are 
POST to create a resource, GET to read a 
resource, PUT to update a resource, and 
DELETE to remove a resource. The scalability 
and unquestioned expressiveness of REST makes 
it the interface of choice when it comes to handle 
large-scale SVG data on a network. The clean 
separation of client and server at the web layer 
(HTTP) allows both sides to be independently 
implemented while drawing from state-of-the-art 
standardized web technologies such as, Java, 
Ruby on Rails, or Adobe Flex. In addition, 
REST is a bidirectional interface both for 
querying and modifying the requested resource 
(Fielding, 2000). 

InfrastructureInfrastructure   
At the hearth of our contribution lies the switch 
to a native XML database capable to directly 
store and emit fine-grained XML data. Unlike 
traditional relational databases, native XML 
databases do not store the XML data as character 
large objects and inherently know about the 
XML structure and XML nodes. The finer 
granularity allows answering complex queries 
and extract the stored XML in a scalable fashion 
because the parsing and reconstruction process 
required with character large objects is omitted. 
In addition, most state-of-the-art native XML 
databases support modifications of the stored 
XML. 

Our XML-based infrastructure consists of two 
components, i.e., the web interface called 
Temporal REST (Giannakaras and Kramis 
2008), and the storage manager with the name 
TreeTank (code name Idefix) as described with 
(Gruen et al. 2006). The two components are 
connected to implement a two-step workflow as 
follows: 

1. An XQuery expression is issued to 
TreeTank through Temporal REST; 

2. TreeTank returns SVG through Tem-
poral REST. 

In stark contrast to the traditional three-step 
workflow based on traditional relational spatial 
databases, the intermediate data conversion step 
is eliminated, i.e., there is no need for converting 
the Standard Open Format such as an ESRI 
Generate File into SVG. The eliminated 
intermediate data conversion step both makes 
heavy use of CPU and IO and mainly contributes 
to the large end-to-end delay virtually inhibiting 
interactive Geographic Visual Analytics. 

The two following sub-sections give an intro-
ductory overview over the involved technologies. 

Temporal REST 
While there exists a variety of solutions to access 
XML resources over the Web, there is – to our 
knowledge – no generic and unified solution to 
conveniently access all of: 

1. The current revision of the XML 
resource or any subset thereof; 

2. The full revision history of the XML 
resource or any subset thereof; 

3. The full modification history of the 
XML resource or any subset thereof. 

We want to work with XML as a fine-grained 
tree of nodes and evolve this tree over time 
through user modifications. As such, we realize 
that we can access single nodes or whole sub-
trees, i.e., XML fragments, within a temporal 
dimension in a unified, scalable and robust way. 

Only if we consider the whole life cycle of an 
XML resource including the past revisions and 
the (transaction-based) modification history, we 
will get a complete idea of its true power. 
Notably, collaboration processes frequently 
involve asynchronous workflows. As such, the 
effectiveness of the workflow largely depends on 
the ability to highlight the modifications, which 
took place during the last (or any past) step of 
the workflow. 

We suggest Temporal REST as an interface 
with its related protocol message exchanges to 
generically implement our idea to exploit web-
based XML resources. According to the Pareto 
principle, our proposal is simple enough for the 
average web application developer and at the 
same time it is extensible enough to be used 
with complex setups. 

There are three different ways to access nodes 
and sub-trees, i.e., XML fragments, within an 
XML resource. First, the step-by-step tree 
navigation (XPath). Second, the query including 
joins and other complex expressions (XQuery). 
Third, the ID-based random node access (DOM). 



Temporal REST supports all three and comple-
ments them with a temporal expression as 
described later. Note that XPath is a subset of 
XQuery. 

XML IDs enable the user to tag the XML 
document and to quickly access the XML 
fragment by providing the XML ID. However, 
most XML nodes are not tagged with such a 
XML ID and are not available for random access. 
We suggest the tagging of at least all element 
nodes with a system-generated REST ID. Text 
nodes or attributes are accessible through their 
parent node. Other XML nodes such as com-
ments or processing instructions may be tagged 
by the system on demand. One advantage of 
having the system to do the REST ID assign-
ment is that the REST ID remains stable 
throughout revisions and modifications, i.e., a 
node or its modifications can be accessed 
irrespective of the revision or position in the tree. 
Another advantage is the guarantee of the 
existence of an ID. The system can make the 
REST IDs visible by tagging the serialized 
XML with REST ID attributes bound to the 
namespace of Temporal REST. 

Each insertion operation assigns unique im-
mutable REST IDs to all new element nodes. 
This assignment is made by the back-end that 
stores the XML and does not affect any existing 
user-assigned XML ID. REST IDs are numerical 
and they are incrementally assigned starting at 
one. REST IDs do not necessarily need to be 
assigned in document order and they must not 
change once assigned to a node. In addition, we 
suggest not reusing REST IDs. This reduces the 
confusion due to reassignments in future 
revisions. Since deletions are less frequent than 
insertions with most real-world workloads, the 
loss of number space is considered to be 
negligible. 

Each insertion, update, or deletion of a XML 
node results in a modification event. Each event 
is assigned a new revision and a timestamp, an 
author, and a comment to the whole revision. 
Temporal REST communicates modifications by 
encapsulating the modified node within an item 
element. The item element contains the REST 
ID of the modified node as well as revision, time 
stamp, author, and comment information. As 
such, both the insertion and the deletion can be 
considered as a setting a node to a new value. 
Deletion sets the node to the empty node. We 
opted for this approach for two reasons. First, we 
can streamline the transport of XML fragments 

and modifications within the XQuery data 
model, i.e., within a sequence of items. Second, 
the back-end can combine the storage of the 
modification event and the result of the modifica-
tion. 

The select operation allows the retrieval of a 
sequence of items as defined with XQuery. Each 
item is an atomic value, a XML node, or a 
modification event. The selection can be query-
based or REST ID-based. Temporal REST will 
restrict the execution domain of both the query 
and the REST ID according to the temporal 
expression either selecting a point in time or a 
time period. While a query may return a 
sequence of multiple items, an access solely 
based on a REST ID will return a sequence with 
at most one item. If the query and REST ID 
approach are combined together, the query treats 
the node with the given REST ID as the root 
node of the query. The query-based approach 
allows to add new query languages in the future 
and to express complex queries including 
operations such as full-text search or joins. The 
REST ID-based approach allows to directly 
select an item with optimal performance since the 
system does not have to compile and optimize 
the query. 

The temporal expression must be enclosed 
with round brackets ‘(‘ and ‘)’ and contain a 
single point in time or a time period consisting 
of two points in time separated by a dash ‘-‘. A 
point in time can be a revision number, an ISO 
date in short notation, i.e., without dashes or 
colons, or nothing, i.e., the last successfully 
committed revision. A single point in time will 
retrieve the XML fragments as they looked like 
at the given revision. The time period will 
retrieve the modifications between (and includ-
ing) the two provided points in time in the 
according order. Leaving away the temporal 
expression automatically causes a fallback to the 
last successfully committed revision for back-
wards compatibility. 

A single node or a whole sub-tree can be 
inserted either as the first child of an existing 
node or as its right sibling. As such, the insert 
operation requires a query selecting a number of 
nodes or a REST ID besides the actual XML 
fragment to insert. During the insertion process, 
the back-end system will assign the REST IDs 
as described above. Note that the insertion of an 
attribute must be made with the PUT operation 
changing the whole node. 



A single node can be replaced with or without 
the replacement of its sub-tree. Again the 
updating operation requires a query to select a 
number of nodes to update or a REST ID. In 
addition, the actual updated XML fragment has 
to be provided. Restricting the effect of the 
update to the node (not effecting its sub-tree), 
allows the insertion of an attribute into an 
existing node without changing its whole sub-
tree. 

Whenever a node is deleted, the node and its 
sub-tree are purged from the system (but not from 
the past revisions). The deletion operation 
requires a query or a REST ID to select the 
nodes to delete. 

TreeTank 
TreeTank is a native XML database designed to 
provide scalable read and write access to XML 
data. TreeTank concurrently allows multiple read 
and a single write transaction each of which 
creates a new revision per transaction commit. 
Furthermore, TreeTank was designed to be 
secure and easy to maintain. The scalability of 
TreeTank results from the concurrent use of 
resources such as processing and storage units 
and from the design of the main internal data 
structure to store the XML tree. 

The decision to only support a single write 
transaction at any time allows to run any number 
of processes concurrently accessing any past 
revisions or modifications. The newly modified 
data is clearly separated and only becomes 
visible after the last successful transactional 
commit to processes different from the write 
transaction process. If multiple users want to 
work on the same XML tree at the same time, 
either a transaction manager is required which 
coordinates, i.e., sequentializes the changes, or a 
workflow has to be established which clearly 
states when which user is allowed to do what. 
Alternatively, a locking scheme has to be 
established, which follows an optimistic or 
pessimistic locking policy. However, it turns 
out, that in many real-world use cases, only a 
single user is working on a given part of the tree 
at any time, or that the natural workflow of a 
team working with XML data resolves modifica-
tion conflicts before they even could appear. 

The data structure of TreeTank was optimized 
for updates. At most three directly related nodes 
must be updated, whenever a single node or sub-
tree is modified. Only the modified nodes are 

stored on disk in a compressed page. Note that 
traditional databases usually store the whole page 
potentially containing dozens of nodes even 
though only a single node may have changed. 
Still, care has to be taken that reads do not have 
to collect a huge number of scattered changes to 
reconstruct a single page. We opt to intermit-
tently store a snapshot of the whole page to also 
support reads with reasonable performance. The 
mechanism of compressing all pages, only 
storing the page modifications, and of intermit-
tently storing snapshots of the pages helps to 
reduce the storage requirements by one order of 
magnitude. TreeTank consequently does not 
consume significantly more space even though it 
can swiftly reconstruct any past state or modifica-
tion. 

Security is not a choice with TreeTank – it is 
always activated. Care was taken to only 
implement time-proven cryptographic primitives 
with sufficient key lengths and well-chosen 
cryptographic modes not to create a weak link, 
which could be attacked to break the whole 
system. TreeTank encrypts all compressed pages 
before they are stored on disk. This guarantees 
the confidentiality of the stored XML tree, no 
matter whether the TreeTank files are exposed to 
the public or transferred through insecure 
networks. Besides the encryption, a strong 
message authentication code is derived from each 
compressed page and stored with the reference to 
this page. As each reference contains the message 
authentication code of all its children, the 
integrity and authenticity of the whole TreeTank 
can be verified recursively. The root message 
authentication code can be securely signed and 
further secured by an external secure time 
stamping mechanism, which also assures that 
modifications can not be denied. The availability 
of TreeTank can be guaranteed on the application 
level by a master-slave replication, which 
consumes very little network bandwidth and is 
perfectly suited for geographically distributed 
operation. The master-slave setup assures that all 
modifications applied to the master are synchro-
nously or asynchronously propagated to the 
slave. The tight integration of security allows to 
store sensitive data in the TreeTank. This is 
especially important because visualizations are 
usually based on large data sets collected from 
the internal operation of an organization or 
project and must not be exposed to the public. 

Preliminary measurements on a state-of-the-art 
desktop computer show two significant advan-



tages of TreeTank. First, it compresses the 
original XML data while storing it in its native 
data structure. Second, it allows to quickly 
retrieve the original XML. The promising 
preliminary results of both the compression and 
time measurements for three SVG files of different 
sizes are as follows: The size of the TreeTank is 
up to ten times smaller than the original SVG 
file and TreeTank can deliver the original SVG 
data up to twenty times faster than a relational 
database with spatial extensions. The excellent 
compression ratio is due to the verbosity of 
SVG. The time of the data conversion step alone 
(excluding the time to retrieve the original data 
from the spatial database) takes much longer than 
the time required to retrieve the whole SVG from 
TreeTank. 

Case StudyCase Study   
In this section, we provide a case study to 
demonstrate not only the feasibility but also the 
significant benefit a user can gain from our 
infrastructure. Most importantly, we want to 
build a mindset of how to design and use our 
infrastructure because it is notably different from 
traditional workflows both on the technical and 
application level. With our infrastructure at hand, 
the user can organize and later modify the data in 
the XML tree, as he likes. He can mix docu-
ment-centric sub-trees containing information, 
e.g., in the OpenDocument format, with sub-
trees compliant with ready-to-visualize SVG 
data, as well as data-centric statistical informa-
tion. 

Throughout this case study, we build up an 
example TreeTank essentially based on the gross 
external dept positions in US$ per person. This 
information is available on a quarterly base and 
perfectly suited to show how a team can elaborate 
sophisticated visualizations based on a set of 
statistical data. Four revisions of the visualiza-
tion can be seen in Figure 1. Figure 2 depicts an 
additional example of how GUI elements can be 
laid out with SVG (including a sample chart). 
Note that the TreeTank is exposed to authorized 
users through a web service running Temporal 
REST. 

The first step is to convert the Excel-based 
statistical information into a data-centric XML. 
This is a straightforward step and only required if 
the original data is not available as XML. The 
resulting XML can be directly imported into 
TreeTank by inserting the whole XML docu-

ment through Temporal REST. From now on, 
we can query Temporal REST to extract the 
whole document or any sub-tree therein. 

For the second step, we need a SVG represen-
tation of the world with all countries. Either, one 
can rely on open source SVG world maps or 
retrieve an individually configured world map 
from a traditional relational spatial database to 
best suit special requirements. To keep the 
statistical data separate from the SVG data, we 
insert the new node statistic as the parent of the 
statistical XML data. Then, we insert a new 
node geodata as the right sibling of statistic and 
group the two nodes statistic and geodata under 
the third new node example. We then insert the 
whole SVG data under the node geodata. From 
now on, we can retrieve the plain statistical data 
by selecting the sub-tree rooted at statistic or 
visualize the world map within any SVG-enabled 
web browser by selecting the sub-tree rooted at 
geodata. To combine the statistical data with the 
visualisation, we have to make sure that both 
sub-trees store the ISO country codes for each 
country. If this is not already the case, we can 
update each country in each sub-tree. Note that 
most SVG-based world maps will separately 
store a SVG path for each country. 

Meanwhile, we created a set of revisions, each 
consisting of a Temporal REST modification 
request. At any time, we can retrieve an older 
revision or list the modifications applied to past 
revisions. This is convenient, if one wants to 
know what changed, e.g., in the sub-tree under 
geodata. It is also appeasing, because one can 
revert the tree to a past revision if an unintended 
modification took place. At no time, data is 
overwritten or lost. Furthermore, the author of 
the changes can provide commit comments with 
each Temporal REST modification request to 
document his intentions and the evolution of the 
tree. 

We prepare the visualization of statistical 
information by defining value ranges and color 
schemes for each value range. Then, we add the 
color information as an XML attribute to each 
element in the statistic sub-tree based on the 
statistical value and make sure that the statistical 
information is grouped in sub-trees for each year, 
and within the years for each quarter. Next, we 
add the SVG elements to the geodata sub-tree 
required to draw a box displaying the color 
scheme and value ranges. To better support 
layering in SVG, we group the SVG elements 
required to draw the box under the XML element 



 
1a)       1b) 

 

 
1c)       1d) 

 
Figure 1a) shows the SVG sub-tree containing the map of the world and a description box. Figure 1b) shows 

the gross external dept positions in US$ per person for the year 2006. Figure 1c) and Figure 2d) show the 
same information for the years 2007 and 2008 respectively. 

 

 
2) 
 

Figure 2) shows an example of a rich SVG GUI providing a chart and extended end-user input facilities. Note 
that this additional SVG sub-tree could be plugged-in seamlessly with the existing TreeTank. 

description and then group the SVG path 
elements required to draw the world map under 
the XML element worldmap. This step helps to 
interactively enable or disable layers and can later 
be extended to support, e.g., layers containing 
waterbodies, charts, or other GUI elements 

required for improved and convenient user 
interaction. To prepare the coloring of the 
countries according to the selected statistical 
data, we add the appropriate SVG color attribute 
to each path element. Finally, we add a SVG 



GUI element under geodata, which allows to 
interactively select a quarter of the year. 

The actual procedure to color the world map 
according to the selection can either be imple-
mented with an XQuery expression issued 
through Temporal REST or with JavaScript on 
the client side. If XQuery is chosen, one must 
select both the statistic and the geodata sub-tree 
and then set the color attribute of the SVG path 
elements to the color attribute of the statistical 
data by joining them by country code. When 
JavaScript is preferred, both the geodata and the 
sub-tree containing the statistical information for 
the selected quarter have to be transferred to the 
client and then joined together by looping 
through all countries and setting their color to 
the color value found in the statistical data. Note 
that the statistical data can be reloaded efficiently 
and on demand with Ajax technology. The main 
difference between the XQuery and the JavaScript 
variant is, whether the work is done on the client 
or the server side, and how much data has to be 
transferred over the network. In the case of 
XQuery, the join is calculated on the server side 
for each request. Then, the result is transferred to 
the client and immediately visualized. In case of 
JavaScript, more data has to be transferred to the 
client for the first request. Then, the join is 
calculated and visualized. For later requests, only 
the new statistical data is transferred, joined and 
visualized. Consequently, JavaScript is the better 
choice, if the workload consists of multiple 
selections for different quarters. However, note 
that current JavaScript runtime environments are 
so slow that the XQuery variant might be faster 
even though the whole data for the visualization 
has to be transferred for each request. This may 
change in the near future since most JavaScript 
runtime environments currently undergo major 
rewritings to speed them up significantly. 

We have shown that the XML tree can be 
grown exactly according to the user’s demand. 
All involved data sources can gradually be 
integrated with TreeTank and then queried and 
further modified from within one single infra-
structure. While the last paragraphs only 
considered a single user performing the modifica-
tions, we describe the collaboration of multiple 
users collectively working on the same TreeTank 
in the next paragraphs. Note that each user can 
modify the XML tree and add more statistical 
data or visualization elements as described 
before. Though, it is important – as in any 
professional publication or authoring workflow – 

that each user behaves according to a policy. 
With TreeTank and Temporal RES T, it is a 
simple one: 

- Concurrent modifications have to be 
done in disjoint sub-trees. 

While the current version of TreeTank does 
not provide a facility to enforce this behavior, it 
can be implemented technically on the applica-
tion layer or non-technically in the organizational 
structure. We suggest a hierarchical responsibil-
ity delegation scheme: 

- At any time, one author (person or 
process) is responsible for a given sub-
tree unless he delegates a descendant to 
someone else with the option to revoke. 

This scheme can be extended by a non-
hierarchical access-control-list-based (ACL-based) 
scheme if required. To clarify the hierarchical 
responsibility delegation scheme, we imagine a 
situation where one author A1 adds more 
statistical data each quarter, one author A2 works 
on the SVG-based GUI and color schemes 
(Brewer 1994), and one author A3 links the 
visualisations to scatter plots or other statistical 
graphics (Andrienko and Andrienko 1999). One 
possible hierarchical delegation then is as 
follows. The owner of the TreeTank delegates 
statistics to A1 and geodata to A2. A2 creates a 
new node charts and delegates it to A3. Then, 
all three authors concurrently modify the tree and 
will never cause isolation conflicts such as lost 
writes or dirty reads as they are stated in the 
ACID model, which is one of the oldest and 
most important concepts of database theory. Lost 
writes are prohibited by design because each 
author works in his responsibility domain, i.e., a 
dedicated sub-tree. Dirty reads are avoided 
because each author will only see successfully 
committed changes and has the option to query 
the tree as it was like at a fixed revision. 
Whenever he wants to switch to a newer 
revision, he first checks for modifications on the 
sub-trees of interest and whether they impact his 
own work, e.g., introduce an inconsistency 
because the color attributes were dropped. 
Finally he can adapt his part of the tree to the 
modifications. 

DiscussDiscuss ionion   
The findings from the case study based on a 

prototype implementation of our XML-based 
infrastructure open a wealth of opportunities for 
the end-user as well as an array of research 



challenges. The immediate benefit of our 
infrastructure is the very efficient use of process-
ing and storage resources. Much more user 
requests can be handled per time unit and the 
degree of interactivity is dramatically improved, 
as the user actions are no longer a matter of 
minutes but seconds. Both throughput and 
interactivity are essential for collaboration-
oriented environments where end-users are used 
to interact in an asynchronous as well as a 
synchronous fashion. The support for the 
evolutionary growth of tree (XML) data struc-
tures and the ability to store and query, e.g., 
statistical and SVG data, side-by-side, help to 
reduce unnecessary media breaks, which hinder 
the dissemination of (visually) discovered 
knowledge. 

The research challenges are manifold. One 
challenge is to find and categorize tree structure 
and tree design patterns. Our infrastructure allows 
to store huge amounts of unstructured data in a 
single TreeTank. Without patterns, the Tree-
Tank is likely to end up as a junk room where 
everything is contained but rarely something can 
be found in time. Hand in hand with the patterns 
comes the question how to best organize and 
manage the concurrent access of multiple users 
assuming changing roles. In our case study, we 
suggested an organization form natural for tree-
based data structures. But there may be other 
more efficient ones. As with the tree structure and 
tree design patterns, the collaboration-oriented 
(authoring) workflows have to be collected, 
categorized, implemented, and tested with real 
teams. From a technical point of view, the 
challenge arises to integrate various indices with 
TreeTank to speed up specialized queries such as 
full text queries or spatial queries on rasterized 
data. While the server side can be further sped up 
with the help of indices, the client side GUI and 
JavaScript environments still need to be revised 
to unleash the processing power of modern 
desktop or notebook computers. The GUI 
functionality of browsers and SVG plug-ins is 
not yet on par with native applications. Even the 
extensive use of Ajax and JavaScript does not 
hide the current shortcomings. 

The case study made the assumption that there 
are multiple users but only one single TreeTank. 
In case that multiple teams concurrently grow 
their data structures in independent TreeTanks, 
the question arises, how all these distributed 
TreeTanks can be integrated into one unified 
storage. While our infrastructure solves the 

aspect of integrating different data sets into one 
tree, it does not yet provide support to integrate 
multiple trees into a forest. 

ConclusionConclusion   
We propose a new streamlined two-step GVA 

workflow for efficient data storage and access 
based on our native web-enabled XML database 
TreeTank and couple it with a SVG graphical 
user interface for visualization. Not only does our 
XML-based infrastructure substantially reduce 
access delays due to the elimination of interme-
diary data format conversion steps. It rather 
extends the user’s options by providing 
significantly better scalability, inherent data 
security, and, most importantly, the ability to 
collaboratively work in GVA environments 
thanks to optimized update support. With up to 
twenty times shorter data access delays and up to 
one tenth of the traditional storage requirements, 
our infrastructure aims at improving interactivity 
and flexibility from an end-user perspective. 

Furthermore, our infrastructure suggests a 
paradigm shift leaving behind dispersed discon-
nected data sets as well as media breaks and 
introduces a tightly integrated unified storage for 
complex spatio-temporal datasets of structured, 
semi-structured, or unstructured data. The clean 
separation of client and server at the HTTP web 
layer assures back-wards compatibility and better 
extensibility. Future work is going to fully 
implement the latest XML query facilities such 
as XQuery, XQuery Update and XQuery Full 
Text to give the end-user state-of-the-art tools at 
his hands to query large-scale data sets. Espe-
cially the full-text feature will further improve the 
value of our infrastructure for the collaboration-
oriented end-user because he can freely search in 
all comments and documents stored along with 
the spatio-temporal data. Besides this, we will 
investigate, how to most efficiently distribute 
TreeTank for even better scalability. 
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