
Distributing XML with Focus on Parallel

Evaluation

Sebastian Graf1, Marc Kramis1, and Marcel Waldvogel1

Department of Computer Science, University of Konstanz
78457 Konstanz, Germany

firstname.lastname@uni-konstanz.de

Abstract. In contrast to relational databases the distribution of document-
centric XML is not well researched. While there are some suggestions on
how to split and distribute large XML documents, these approaches do
not consider the parallel query evaluation. In this paper, we present and
compare five different algorithms to search after suitable split nodes in
a large XML document. We then describe how to distribute extractable
sub-structures over a fixed number of peers and how to query these peers
in parallel to retrieve the final result. In addition, we analyse the impact
of our splitting algorithms with respect to scalability for two different
XPath expression classes on three well-known XML data sets. We con-
clude this paper with an outlook on future work, including result order-
ing during parallel query execution and dynamic re-distribution of XML
fragments to new peers due to updates.

1 Introduction

XML established itself as a first-class citizen throughout the modern computer
world despite its reputation as being too verbose and inefficient. However, people
do actually value features such as self-descriptiveness and data-before-schema.
In addition, XML stands for universal interchangeability – including long-term
archival – and comes along with a rich toolset.

Initially, XML was just used to exchange or store small amounts of data in
an unified way. Nowadays, even large data- and document-centric data sets are
stored in XML files or (native) XML databases. A single system storing such
enormous amounts of XML data quickly comes to its limits due to insufficient
amounts of storage space, processing power, or available main memory. When it
comes to massive concurrent access or to single-system failures, distribution to
multiple systems becomes the only feasible option.

The distribution of data-centric XML is straightforward and extensively re-
searched with relational databases where the aim is to distribute columns and
rows in a reasonable way. Here, reasonable means with minimal effort and opti-
mally suited to the workload to which the database is exposed. In stark contrast,
the distribution of document-centric XML is much more difficult. The straight-
forward approaches for distributing XML fragments will likely not result in a
balanced system. E.g., if a splitting algorithm splits the XML tree at the first



level, i.e., at the root node, some XML fragments are likely to contain large
sub-trees while others might only contain a few nodes.

It is a challenging task to automatically find the appropriate split nodes in the
tree because the system has to adapt to every single XML document and therein
to a potentially completely different topology for each sub-tree. In a system with
a fixed number of peers, it is important to split the tree in a way to make sure
that every single peer gets its fair share of XML fragments of comparable size.
In other words, the question is whether there exists a split algorithm which
produces an optimal distribution for any document-centric XML data. Only
when the XML fragments are evenly distributed over multiple peers, each one
has an equal chance of being involved in a parallel query evaluation. Still, chances
are that some peers get more involved due to a specific query workload. If the
distribution is already skewed due to a bad split algorithm, even simple queries
will create hot-spots and therefore bottlenecks in the whole system.

During our quest for the optimal split algorithm, we developed five different
approaches and analysed each one on three well-known large XML data sets.
The first is XMark [1], a generic data set, the second is Treebank [2], a cor-
pus of linguistic documents, and the third is DBLP, a listing of publications
relevant to computer science [3]. All three data sets contain a mix of mainly
document-centric but also data-centric aspects. For each data set, we evaluated
two different XPath expression classes. The first expression class is a depth-
first search consisting of a concatenation of many child axis steps, the second
expression is a breadth-first node count for a descendant step.

The rest of this paper is organised as follows. Section 2 describes the related
work. Section 3 contains our main contribution, i.e., the five split algorithms and
how the resulting XML fragments are distributed and queried in parallel. Section
4 discusses the benchmark results. Finally, Section 5 concludes this paper and
gives an extensive outlook on future work.

2 Related Work

Research started to look into distributed XML data only a few years ago. Many
approaches considering distributed queries are based on the assumption that
XML is already distributed [4–8]. The focus is laying on the distributed query
evaluation itself.

Based on the well-known distribution techniques of relational databases, i.e.,
the horizontal [9] and vertical fragmentation [10], some take this straightforward
concept of fragmentation into account [11–13]. The suggested algorithms work
well for data-oriented XML because of their regular structure.

Based on document-centric XML, the resulting XML fragments could have
different structural characteristics. To our knowledge, there are only a few ap-
proaches, which take the structure itself into account to avoid possible irregulari-
ties when partitioning and distributing an XML-tree. [14] presented an approach
which is directly based on several structural constraints. i.e. the width, the size,
and the depth of sub-trees which can be extracted. In addition, the parameters



have to be manually set before-hand to obtain a fragmentation. Depending on
these parameters, a good fragmentation with respect to a parallel evaluation is
guaranteed.

A completely different approach with the same focus on parallel queries is
described in [15]. The parallel evaluation takes place either on distributed XML
which was partitioned with the help of graph-partitioning algorithms [16] or
on a variable fragmentation depending on an executed query. In this case, the
fragments are represented by DOMs. This reduces the usability of the vari-
able fragmentation because the DOMs have to be adapted each time the query
changes.

3 Splitting XML

Our approach involves two independent steps: First, we identify suitable nodes to
split. These nodes (and their respective sub-trees) are extracted from the original
tree structure as described in [14]. Afterwards, we store the sub-structures in a
given number of peers to achieve an independence between the number of peers
and the number of extractable sub-structures.

3.1 Five Split Algorithms

In this section, we present five different algorithms to find optimal split nodes.
Particularly, we account for document-centric data with respect to a parallel
evaluation of the resulting sub-trees. To evaluate and compare the presented
approaches the following main objectives are set:

– The split nodes should have equal tag names. If the tag names of the root-
nodes of the desired sub-structures are all unique, it is not guaranteed that
tree-walking queries working with node-tests can be processed in a parallel
way due to the different semantic aspects of the root-nodes of the extractable
sub-structures.

– The identified sub-structures should have a maximum size. Working on a
distribution in a server-client environment generates an overhead. The han-
dling of this overhead can only be justified if the evaluation of the fragments
is expensive. So the sub-structures should be as big as possible to ensure
that the distribution leverages a performance benefit.

– The resulting fragments should have an equal number of nodes. Regarding
the target of a parallel evaluation, the parallelism is used as long as each peer
is processing its data. Therefore to ensure a long-term parallelism, every peer
should have the same amount of data to process.

– The split algorithm should work without any meta-data. Every input to the
split operation must be based on a before-hand exploration of the structure
or at least of the DTD. Regarding document-centric data, an analysis with
the focus on structural and semantic constraints, is not easy. If the split
algorithm itself has knowledge about the XML instance, dependencies to
third-party inputs are minimized.



Level Split The first approach marks all nodes on a given level as split nodes.
An example is shown in Figure 1(a). This approach works perfectly for data-
oriented XML where the structure is quite similar as described with current
approaches based on horizontal fragmentation techniques inherited from the dis-
tribution of relational data. However, it is not guaranteed to get a good frag-
mentation result with this approach regarding document-centric data due to
the irregularity of the structure. As shown in Figure 1(a) all relevant sub-trees
with the corresponding split nodes a are identified. Thus, the condition of split
nodes with similar tag names is satisfied. The size of the identified sub-structures
is quite small regarding the other possible splits with the split nodes a,a,b,a,c

where the extracted sub-structures would be much larger. In this case the struc-
ture with the split nodes denoted with b and c would be extracted as well. This
is not intended because the tag name only occurs once in the set of split nodes.

Therefore, the Level Split possibly results in undesirable sub-structures. An
additional analysis must be performed to find the suitable levels in a given
XML instance. Especially regarding document-centric data with highly irregular
structures, the extracted sub-structures are potentially not matching the defined
requirements.

a a a a

aa ab c

c d

(a) Level Split

a a a a

aa ab c

c d

(b) Fanout Split

Fig. 1. Example of split nodes identified by the Level Split and the Fanout Split

Fanout Split To get only large sub-structures, we assume that a node with a
large sub-tree has a large fanout as well. Therefore, according to a given num-
ber of children, a node in the XML structure is marked as a split node if this
number exceeds a given threshold. This threshold must be set in advance of the
identification process. Consequently, a suitable exploration becomes inevitable.
An example of the result of the Fanout Split algorithm is shown in Figure 1(b).
Again, this approach works well for data-centric XML. For document-centric
structures, the identification of the split nodes should not be solely based on the
fanout of a node due to the irregularity of the document structure, as this can
result in nodes with a large fanout but relatively small sub-trees. Additional to
this possible violation of our design objectives, there is no assertion that there
are no unique tag names in the set of split nodes. In Figure 1(b), e.g., the split



node named b is set, but a parallel evaluation of the underlaying structure is not
possible because of the document-centric structure.

Semantic Split To consider equal tag names of split nodes, this approach is
based on the occurrence of tag names. On each level, the occurrences of different
tag names on the sibling axis are counted. If there is more than one node in the
sibling axis, and each sibling has the same tag name, these nodes are identified
as split nodes. An example is given in Figure 2(a). Again, the grey sub-structures
can be queried in parallel. Unfortunately, as with the Level Split, the identified
sub-structures are quite small and therefore not optimal. The partitioning of sub-
structures as labeled with a on the upper level make more sense with respect to
parallel evaluations.

Moreover, an exploration to find suitable nodes is unnecessary. Additionally
the extracted sub-structures have a high similarity due to of the tag names of
their root node. This assures a parallel evaluation of these structures even if the
sub-structures themselves are small.

a a a a

aa ab c

c d

(a) Semantic Split

a a a a

aa ab c

c d

(b) Postorder Split

a a a a

aa b c

c d

a

(c) PostorderSem Split

Fig. 2. Example of split nodes identified by the Semantic Split, the Postorder Split and
the PostorderSem Split

Postorder Split To tackle the need for large extractable sub-structures, we
developed a split algorithm based on the designated number of fragments. With
the help of a post order traversal through the original tree structure, the sub-
tree size corresponding to each node is computed. A threshold n

i∗2
based on the

nodes n in the XML instance and the number of available peers i is computed.
At each node, the number of processed nodes is compared to the threshold.
If the threshold is attained, the actual node is marked as a split node and the
counter of nodes is reset. If no node has the potential to work as a split node, the
children on the first level are selected to achieve at least a basic fragmentation.
Figure 2(b) shows an example. Here, the two biggest possible sub-structures,
according to a given number of peers, are identified. Unfortunately, the identified
sub-structures have distinct tag names. This complicates parallel evaluations,



even if the corresponding sub-structures contain a large amount of nodes. The
split node obviously generates sub-structures with a similar load. Regarding
data-centric XML, this approach works well as the identified split nodes have
equal tag names.

PostorderSem Split To get rid of the possibly different tag names in the ex-
tracted sub-trees based on the Postorder Split, the PostorderSem Split combines
the post order traversal with the Semantic Split. The tree structure is processed
with a post order traversal similar to the Postorder Split. However, instead of
computing the size of the current sub-tree according to a given node, the sizes
of the processed nodes according to the tag name of the current node are stored.
This size must attain the same threshold as described in the Postorder Split.
If the threshold is attained, all nodes with the given tag name are marked as
split nodes. With this approach, the main objectives are satisfied. The extracted
sub-trees have an adequate large size, except too highly recursive occurrences of
the same tag name. In this case, this approach can lead to small sub-structures.
The similarity of the root-nodes of the extractable sub-structures is ensured by
the computation of traversed nodes according to the tag names. As the identi-
fication of the sub-structures is based on the number of nodes and the number
of available peers, this split-operator is not in need of a previous exploration of
the XML instance. However, if the XML data is based on a recursive DTD this
approach could result in suboptimal splits, because the number of corresponding
nodes related to a tag name can be falsified by the recursive occurrence of the
elements.

3.2 Distribution and Combination of extracted Sub-Structures

After the identification of suitable split nodes, with focus on a parallel evaluation
of the corresponding sub-structures, these sub-structures have to be extracted
and stored in different peers. The distribution of the identified structures is
conducted by a simple round-robin algorithm.

A suitable number of fragments according to the number of available peers is
chosen. Additional to these structures, a root fragment is initialised. Afterwards,
the original XML dataset is traversed in pre order. Each node is inserted in the
root fragment until the first split node is reached. Then, a proxy-node with an
unique id is inserted into the root fragment and a child fragment is selected in
round-robin order. On the child fragment, a corresponding proxy-node is inserted
which also has an unique id. With these ids a direct access between the proxy-
node in the root fragment and the proxy-node in the child fragment is obtained.
After inserting this proxy-node, the split node itself is inserted beneath this
proxy-node. Subsequently, each following node is inserted on this child fragment
until the traversal is leaving the current sub-tree. Finally, the following nodes
are inserted into the root fragment until the next split node is reached and so
on. Even document-centric data, depending on suitable split nodes, is very well
fragmented with this approach because split nodes with the same tag name are
distributed in round-robin fashion over all peers.



1

2

3 4 1
3

2 4

splitnodes root-proxy

client-proxy

Fig. 3. Layout of a Distribution with Proxy-Nodes

Figure 3 shows fragmented XML. The following sub-structures 1,2 and 3,4

are, with two given peers, distributed. Based on the assumption that the number
of different tag names of the split nodes is very limited, a good distribution of
parallel evaluable structures is given.

3.3 Query distributed XML Documents

XPath 2.0 [17] is a common expression language to select parts of an XML
document. It is used as a base for many wide-spread query and transformation
languages such as XQuery and XSLT. The XPath 2.0 expressions are divided
into axis steps to navigate in the tree, and node-tests to filter the required nodes.

With respect to a given fragmentation, expression evaluation can be used in
a straightforward way. First of all, we have to modify the expression to solely
use the forward axes. Due to the symmetry in XPath [18], this modification is
not a restriction. We did not implement the following axis in our prototype as
this kind of axis step is not used in practical applications. Note that querying
the following axis is not trivial because the distribution scatters the nodes of
interest throughout multiple peers.

A given XPath expression is executed at the root-fragment. The expression
traverses the tree in the designated order and, after reaching a proxy-node on the
root-fragment, is handed over to the appropriate fragment referenced through
the unique ids of the proxy-nodes. Thereafter, the expression proceeds with its
work on the root fragment without waiting for the result. The expression on the
child fragments is executed in parallel. To match the sub-tree of the fragment,
the expression might has to be adapted, e.g., a query just containing child steps
is pruned to perform only those child steps, which are actually executable on the
sub-tree. After the evaluation of the root fragment, the query processor waits for
the results from the fragments and the final result, which has to be combined,
is returned.

4 Benchmark Results

We evaluated our split algorithms in detail. Based on an environment of 3 servers,
with 8GB RAM, and two 2Ghz DualCore Opteron Processors, an evaluation on
1 up to 12 peers was run. The root fragment was handled by an iMac with a



DualCore 2.16Ghz Processor and 2GB RAM. All machines were connected by a
local switched gigabit network.

2 4 6 8 10 12

0.
1

0.
2

0.
5

1.
0

XMark: /site/closed_auctions/closed_auction/price/text()

Number Fragments

T
im

e[
s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(a) XMark – Get all prices from all closed
auctions

2 4 6 8 10 12

0.
5

1.
0

2.
0

5.
0

XMark: count(//item)

Number Fragments
T

im
e[

s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(b) XMark – Count all items

Fig. 4. XMark benchmark results

The benchmarks were performed on XML from the XMark-project [1] with
the size of 100MB, the Treebank XML [2], and the DBLP XML [3].

The results of two queries on the XMark dataset [1] are shown in Figure 4(a)
and 4(b). Figure 4(a) illustrates the drawback of the Postorder Split and the Pos-

torderSem Split. Regarding the Postorder Split, the query is only executed on one
peer as the split threshold was not reached. Using two peers, every sub-tree start-
ing at the first level of the XMark XML was extracted since none of the sub-trees
themselves could reach the threshold. As a result, the evaluation was performed
by just one peer (the one which has to handle the closed_auctions sub-tree).
When using three and four peers the left-sibling sub-trees of the closed_auctions

element were extracted. This induces an evaluation of the root-fragment that is
maintained on the workstation which in turn explains the poor performance.
Again, working with five and more peers induces to a complete extraction of
the closed_auctions sub-tree again. Thus, the performance is limited by a sin-
gle peer. Regarding the PostorderSem Split in Figure 4(a), the scaling depends
on the number of peers as well. While the split algorithm ignores all sub-trees
working with one and two peers, most large sub-trees are extracted by utilizing
three and four peers (e.g., item and open_auctions). This induces to a smaller
root fragment which can be processed in a faster way by the root-peer. By uti-
lizing five or more peers, all closed_auction sub-trees are extracted and can
therefore be evaluated in parallel. All other split operators induce an optimal
fragmentation even with only one peer.



2 4 6 8 10 12

2
4

6
8

Treebank: //in/text()="f+Bu4sdNyH7L+g9JUP2zuB=="

Number Fragments

T
im

e[
s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(a) Treebank – Searching after a given
string

2 4 6 8 10 12

0.
5

1.
0

2.
0

5.
0

Treebank: count(//NN)

Number Fragments

T
im

e[
s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(b) Treebank – Counting all NNs

Fig. 5. Treebank benchmark results

The second query on the Postorder Split fragmentation shown in Figure 4(b)
performs as bad as in Figure 4(a). The reason is similar to the first XMark query:
as the regions sub-tree is extracted, no performance gain can be achieved due
to the fragmentation. The other split operator, which has a worse performance,
is the Level Split. The XML instance was splitted at level 2. Regarding the
first query, an optimal distribution for the closed_auction nodes was achieved.
However, the processing of the second query is not executed in an optimal way.
The load of the different sub-trees containing the item nodes is not fair as the
parent nodes of the item sub-trees were extracted (e.g., samerica, namerica,

europe, ...). This shows that a strict horizontal splitting can result in suboptimal
fragmentations when document-oriented data is involved.

Figure 5 illustrates the results of queries executed on the Treebank dataset [2].
In this case, the Semantic Split does perform rather poor as this highly document-
oriented dataset has a stringent irregular structure so that similar tag names on
the sibling axis are quite seldom. The Level Split was set in level 2 to show the
importance of an optimal level even for document-oriented data. All other split
operators lead to the desired fragmentation.

In Figure 6 the evaluation of the fragmented data-centric DBLP XML [3] is
shown. All split operators generate a similar fragmentation. except the Semantic

Split. Due to the different tagnames of the nodes on the first level, only few very
small sub-structures are identified. So both queries are executed on the root-
fragment only.

Other famous XML databases like Wikipedia and Swissprot were bench-
marked with similar results. Depending on the parameter (fanout, level, peers)
the scaling is similar to the examples shown in Figures 4, 5 and 6.



2 4 6 8 10 12

5
10

15
20

DBLP: /dblp/inproceedings[/year/text()="1968"]/title

Number Fragments

T
im

e[
s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(a) DBLP – Searching after a proceedings
of a given year

2 4 6 8 10 12

5
10

15
20

25

DBLP: count(//author)

Number Fragments

T
im

e[
s]

1 2 3 4 5 6 7 8 9 10 11 12

Level Split Evaluation
Fanout Split Evaluation
Semantic Split Evaluation
Postorder Split Evaluation
PostorderSem Split Evaluation

(b) DBLP – Count all authors

Fig. 6. DBLP benchmark results

5 Summary and Outlook

Our findings affirm the assumption that a trivial split algorithm does not consis-
tently achieve an optimal distribution. The presented automatic split algorithms,
though, can split large XML documents with the same overhead as a trivial split
algorithm, but with much better scalability when it comes to parallel query
evaluation. Regarding the summary in Table 1, we see that the different split
operators cover different aspects of the five defined heuristics.

Level Fanout Semantic Postorder PostorderSem
Split Split Split Split Split

Similar Split Nodes – – + – +
Large Sub-Trees + + – + –

Equal Load – – – + +
Autoconfiguration – – + + +

Table 1. Summary of Spit Algorithms

The similarity of the split nodes and the equality of the load can be positive
as well as negative regarding the Level Split and the Fanout Split. This depends
on the selected level or the chosen threshold. The Semantic Split scales well for
data-centric data. Regarding document-centric data, a good fragmentation can
not be guaranteed. The fragments of the Postorder Split are as equal as possible
regarding the structure of the original XML data. This equality is available



with the PostorderSem Split as well in most cases. Only with highly recursive
structures, multiple small sub-structures are identified. Yet, in all of our test
cases, no negative fragmentation was achieved with the PostorderSem Split and
a high number of participating peers. For further information of our approach
we refer to our technical report [19].

We see many open questions for future work in the area of distributing large-
scale XML data for parallel query evaluation:

– Depending on the query, a simple parallel evaluation may need to reorder the
result retrieved from multiple peers. We want to investigate which queries are
affected and whether this reordering operation can be prevented or efficiently
done during either the split operation or the parallel evaluation.

– While XPath provides a fundamental idea of what the evaluation time will
be, it is only a sub-set of current query languages such as XQuery. We want
to look at XQuery and how it can be executed in parallel by rewriting the
query itself or by optimising and splitting the logical operator tree.

– Currently, we split a static XML document. We are interested in updates and
how they lead to re-assignments of the XML fragments to keep the whole
distribution in balance. This may be achieved through moving the fragments
themselves or by dynamically further splitting up the XML fragments.

– The availability of indices may lead to faster evaluations for certain queries,
i.e., an index can usually answer the query in logarithmic time without the
need to do a full XML fragment traversal. However, an index will incur
more update overhead and may itself grow so large that it also must be
distributed. E.g., a full text index which has to store a term occurring in a
large percentage of the nodes is no longer useful. Through splitting the XML
document in smaller parts, we also make sure to split the domain of each
index and potentially reduce the over-all update and search time.

– The reliability and availability of large XML documents will also become an
issue. E.g., it is no longer possible to export Wikipedia to an XML file within
a single day. Loosing the whole file due to a peer failure is catastrophic and
would interrupt a service relying on it for too long. As soon as Wikipedia is
distributed, the loss of a single peer will only erase a small part of the overall
document. The question then becomes how to store a single XML fragment
on multiple peers and how to exploit this knowledge to further speed up the
query evaluation when each peer has its individual performance and variable
network connection quality.

With our five split algorithms, we break new ground on how to distribute
large-scale XML data sets and how to query them in parallel for scalability
reasons. However, much work remains before a cluster of peers will automatically
and collaboratively store and query such large-scale XML data sets.



References

1. Schmidt, A., Waas, F., Kersten, M., Florescu, D., Carey, M., Manolescu, I., Busse,
R.: Why and how to benchmark XML databases. ACM SIGMOD Record 30

(2001) 27–32
2. Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus

of English: the penn treebank. Computational Linguistics 19 (1993) 313–330
3. Ley, M.: The DBLP Computer Science Bibliography: Evolution, Research Issues,

Perspectives. LECTURE NOTES IN COMPUTER SCIENCE (2002) 1–10
4. Suciu, D.: Distributed Query Evaluation on Semistructured Data. ACM Transac-

tions on Database Systems 27 (2002) 1–62
5. Bose, S., Fegaras, L.: XFrag: A Query Processing Framework for Fragmented XML

Data. Proceedings of the WebDB (2005)
6. Buneman, P., Cong, G., Fan, W., Kementsietsidis, A.: Using partial evaluation in

distributed query evaluation. Proceedings of the 32nd international conference on
Very large data bases (2006) 211–222

7. Abiteboul, S., Bonifati, A., Cobéna, G., Manolescu, I., Milo, T.: Dynamic XML
documents with distribution and replication. Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data (2003) 527–538

8. Bremer, J., Gertz, M.: On Distributing XML Repositories. Proc. of WebDB (2003)
9. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.

Proceedings of the 1982 ACM SIGMOD international conference on Management
of data (1982) 128–136

10. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms
for database design. ACM Transactions on Database Systems (TODS) 9 (1984)
680–710

11. Ma, H., Schewe, K.: Fragmentation of XML documents. Proceedings XVIII Simpo-
sio Brasileiro de Bancos de Dados (SBBD 2003)Õ, Manaus, Brazil (2003) 200–214

12. Lü, K., Zhu, Y., Sun, W., Lin, S., Fan, J.: Parallel Processing XML Documents.
Proceedings of the International Database Engineering and Applications Sympo-
sium (IDEASÕ02) (2002)

13. Ma, H., Schewe, K.: Heuristic Horizontal XML Fragmentation. Proc. of CAiSE
(2005)

14. Bonifati, A., Cuzzocrea, A.: Efficient Fragmentation of Large XML Documents.
LECTURE NOTES IN COMPUTER SCIENCE 4653 (2007) 539

15. Lu, W., Chiu, K., Pan, Y.: A Parallel Approach to XML Parsing. The 7th
IEEE/ACM International Conference on Grid Computing (2006)

16. Karypis, G., Kumar, V., Center, A.H.P.C.R., of Minnesota, U.: Parallel multilevel
k-way partitioning scheme for irregular graphs. SIAM Review 41 (1999) 278–300

17. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., Simeon,
J.: XML Path Language (XPath) 2.0. W3C Working Draft 15 (2002)

18. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. Lecture
Notes In Computer Science (2002) 109–127

19. Graf, S., Waldvogel, M.: Splitting and distributing large document-centric xml
databases. Technical Report KN-15-09-2008-DISY-04, University of Konstanz
(2008)


