
Bloom Filters: One Size Fits All?
Paul Hurley

IBM Research
Zurich Research Laboratory

pah@zurich.ibm.com

Marcel Waldvogel
University of Konstanz

marcel.waldvogel@uni-konstanz.de

Abstract— Bloom filters impress by their sheer elegance and
have become a widely and indiscriminately used tool in network
applications, although, as we show, their performance can often
be far from optimal. Notably in application areas where false
negatives are tolerable, other techniques can clearly be better.
We show that, at least for a specific area in the parameter
space, Bloom filters are significantly outperformed even by a
simple scheme. We show that many application areas where
Bloom filters are deployed do not require the strong policy of
no false negatives and sometimes even prefer false negatives.
We analyze, through modelling, how far Bloom filters are from
the optimal and then examine application specific issues in a
distributed web caching scenario. We hope to open up and seed
discussion towards domain-specific alternatives to Bloom filters
while perhaps sparking ideas for a general-purpose alternative.

I. INTRODUCTION

Bloom filters [1] pop up everywhere in networking. and
is the tool of first and last resort when looking at how to
compactly store set membership information in some form or
another. Yet it is self-evident that Bloom is not the one and
only way to go. We posed the question as to whether better
performance could be achieved; or if different applications
would benefit from, or even necessitated, other schemes for
set membership representation. This work shows that indeed
Bloom may, in certain circumstances, be far from optimal,
and even very simple schemes may do better and be more
appropriate.

Many efforts have focused on enhancing Bloom filters,
while one work [2] showed the benefit of compressing them;
something which had previously been considered impossible.
We take this one stage further and return to the underlying
goal–the compression of set membership information. This
helps in understanding the limitations (as well as advantages)
of Bloom filters and aids in the derivation of other schemes
that may be tailored to a particular networking application.

Bloom filters were first used to circumvent shortage of
local memory with main applications in the database domain.
Nowadays, they serve also as a method for set membership in-
formation exchange in distributed computing scenerios where
communication cost is the main limiting factor. Some appli-
cation areas include distributed caching [3], object location in
P2P networks [4], approximate set reconciliation [5], and set
intersection for keyword searches [6], [7].

TODO:more networking examples: ip traceback, rout-
ing, etc

A compact representation of a set is a data structure that
stores information as to whether an element is contained in
it. Using a representation size far below the size of explicitly
listing the set members can significantly reduce the storage
size with a resultant trade-off in accuracy. By far the most
prominent method is the aforementioned Bloom filter. This and
its derivatives and enhancements are the sole methods applied
in many network applications to date. It consists of an array
of bits, initially all set to zero. To add an element, several
hash functions with range over the bitmap are calculated.
The bits corresponding to the hash function output are set
to one. Set membership is ascertained by performing an AND
operation on all the bits stored at the indices that equal the hash
values of the requested element. The property of the filter that
stands out is the production of one-sided errors in membership
determination. A member of the set will always be correctly
ascertained as being such – or in other words, there are never
false negatives. The flip-side is that elements not in the set
may falsely be determined as belonging to the set – a false
positive. This is because all hash functions could map to values
that were previously set to one by other elements.

The restriction to only false positives is a strong character-
istic, which, intuitively, comes at a price, which–when this
characteristic is required or helpful–may be worth paying.
However, Bloom filters are so handy (and currently the only
kid on the block), that they seem to be used independently
of such considerations. Table I illustrates some of the most
prominent network application areas and their respective re-
quirements for one-sided error.

The list of applications comes from [8], where more detailed
descriptions and explanations of their uses can be found. One
application that does not rely on one-sided error is distributed
caching, whereby the validity of resources may expire and
new ones become available. Here, the existence of both false
positives and false negatives is inherent to caching and, while
not particularly cherished, tolerable.

In some applications, false negatives are even less costly
than false positives. For example, consider the problem of
calculating set subtraction as part of approximate set recon-
ciliation. False positives will introduce actual synchronisation
errors, whereas false negatives would simply cause some over-
head. Throughout, we will explore the tradeoff between the
types of mistakes in set determination by use of a parameter
α that controls the fraction of mistakes that may be false
negatives.

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext
First publ. in: IEEE Computer Society, 32nd IEEE Conference on Local Computer Networks, 2007, pp.183-190http://doi.ieeecomputersociety.org/10.1109/LCN.2007.17

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext

sabrina.wiech
Schreibmaschinentext

http://doi.ieeecomputersociety.org/10.1109/LCN.2007.17
http://nbn-resolving.de/urn:nbn:de:bsz:352-126314

TABLE I
NECESSITY OF RESTRICTION TO ONLY HAVING FALSE POSITIVES.

Application area [8] Necessity of one-sided error

Distributed caching No
Object location in P2P systems No
Approximate set reconciliation No∗

Resource routing No
Loop detection No∗

Flow detection Yes
Multicast Yes
Hyphenation exceptions Yes
Set intersection Yes
Differential files Yes
∗ False negatives preferable

This paper first analytically determines the performance
of the Bloom filter and a very simple scheme we call the
cropped filter against the performance bounds given under a
simple, tractable model. We then look at how well we can
apply our findings in practice by a performance evaluation
in a distributed cache scenario. We show that our naı̈ve
cropped filter significantly outperforms Bloom filters for high
compaction rates, both in the analysis and cache simulation.
While several of the techniques described here could also
be used in conjunction with Bloom filters, it turns out that
pure cropped filters are more efficient than a combination
of cropped and Bloom filters. Cropped filters are of course
by no stretch the ultimate solution, and we believe smarter
alternatives will be found.

The rest of the paper is organised as follows. After pre-
senting related work in Sect. II, Sect. III presents an average-
case analysis of set compression from modelling. Section IV
describes specific application issues and summarises simula-
tion results obtained by different set membership compression
methods. We conclude in Sect. V with a short discussion of
our results and an outlook on related future research topics.

II. RELATED WORK

During the past 35 years, the Bloom filter captivated
many researchers and a multitude of evolutions subsequently
emerged. Most go in the direction of new functionality, which
is not the scope of this work. One example is the counting
Bloom filter [3], which introduces the ability to easily remove
elements. Instead of a bit array, the counting Bloom filter uses
a small number of bits per entry to keep count of the number of
elements, incremented upon insertion and decremented upon
deletion. The bloomier filter [9] looks at a Bloom filter as a
data structure for compactly encoding a function. It extends
the existing filter to encode arbitrary functions. Bloom filters
have also become an integral part of more complex methods.
The attenuated Bloom filter [4], for example, uses them for
dynamic document location.

The compressed Bloom filter [2] takes a step in the direction
of performance improvement, a goal it shares with this work.

It alters the Bloom filter in a way that improves accuracy for
a given size using compression, and looks at Bloom filters as
both a data structure to be used at proxies as well as a message
to be passed between them. A new optimization problem is set
up with the message size as a newly introduced parameter. The
compression rate depends on the size of the local Bloom filter
and the number of hash functions used. To achieve minimum
message size, infinite local memory and a huge number of
hash functions would be required, clearly impractical. Thus
all the compressed Bloom filter results shown in this paper
describe a (generally impractical) lower bound.

In the context of image compression, Weidmann and Vetterli
[10], [11] study spike processes and in particular the rate
distortion of sparse memoryless sources. This can also be
applied to the study of set representation, as explained later in
Sect. III-F.

III. AVERAGE-CASE ANALYSIS

In this section, we analytically study how far Bloom filter
performance differs from optimal compression under a certain
model. To the best of our knowledge, this is the first time such
a comparison has been performed, and the results, we believe,
are illuminating. We also describe a simple, alternate way to
compress set information which turns out to be better than one
might have expected.

TODO:describe α at this point

A. Problem Definition

TODO:Completely rewrite this part Consider the set
membership problem as follows. Let S = {s1, ..., sn} be a
subset of a global set G, i.e. si ∈ G. Let y be a set membership
representation of S, which uses m bits of information. Then,
Ŝ is the reconstruction of S from y.

S → x
Encode−−−−−→ y

Decode−−−−−→ x → Ŝ

For example, in a Bloom filter, G is the set of all possible
inputs, S the subset of G that is inserted into the filter, y the
output of the filter, and Ŝ all the elements in G that according
to the Bloom filter are contained in y. In practice, Ŝ would
rarely be explicitly constructed.

WRITE THIS: We examine contained in y by counting
the wrong answers to set membership queries in Ŝ, which In
information theory, such an error is referred to as a distortion.

B. Distortion

The probability of a membership query being answered
incorrectly can be used to compare different methods. The
measure used in the following analysis is the Hamming
distortion [12], whereby the distortion occurring for input x
and output x̂ is given by

d(q, q̂) =

{
0 if x = x̂,

1 if x 6= x̂.

For this measure, the expected distortion is equivalent to the
probability of a mistake. Let x = {x1, ..., xn} be a vector of
size n generated from the set S, where each xi is set to 1 if

si ∈ S and zero otherwise. This vector x is the characteristic
function of S. We similarly associate a vector x̂ with the set
Ŝ. The expected distortion between the two sets is then

d(S, Ŝ) =
1
n

n∑
i=1

d(xi, x̂i). (1)

So the distortion between two sets is the average of the per-
symbol distortion of the individual elements.

C. Input Model

The input model used is one where the probability of
an element being in a set is independently and identically
distributed. This corresponds to considering the input as a
discrete memoryless channel - which in this case is a Bernoulli
model. We are then enabled to understand, in the first instance,
this basic case, which also simplifies the analysis. Additionally,
when identifiers are composed of a hash of the entire space,
a Bernoulli model may be appropriate.

The model is useful not only for its tractability, but also
because it is not unfair on Bloom filters. On the contrary, ne-
glecting any possible correlation in the input shows them in a
better light performance-wise than they otherwise would, since
correlation is inherently neglected by the hashing mechanism.

Every element of the global set G is contained in the subset
S with a fixed probability p, thus,

P (s ∈ S) = p with P (s /∈ S) = 1− p.

The global set G is finite (although it can be made extremely
large). For simplicity, it is assumed throughout that p ≤ 0.5,
which is the typical situation under consideration. If p > 0.5,
the problem can be interpreted as storing the complement G\
S. All log functions are base 2 unless otherwise specified.

An alternative model would be to consider the size of the
set S given. There are small differences in this model, and we
shall return to this difference. TODO:improve

In traditional Bloom filter analysis, what is meant by
the probability of a false positive is in fact the conditional
probability, namely the probability of a false positive given
that it is known that the element being tested is not in S. We
consider the marginal probability.

D. Lower Bounds

We now show lower bounds on the expected rate of commu-
nication needed must be in order to be able to transmit a given
amount of information at a given fidelity [13]. The function
defining this bound is called the information rate-distortion
function. This returns the expected rate for a given distance
measure, and thus the results here are an average-case.

The rate R is the number of bits in the encoded sequence
per bit from the input. In other words, it is the compression
ratio. When the distortion is zero, the source can be encoded
losslessly.

The information rate-distortion function for a Bernoulli
source with parameter p combined with Hamming distortion

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Lower bound with only
 false positives
Lower bound with only
 false negatives

Fig. 1. The general lower bound compared the lower bounds with only false
positives and only false negatives. (Assuming equiprobable set membership,
p = 0.3, and global set size |G| = 100.)

is a well known result (e.g. see [12]) and given by

R(D) =

{
H(p)−H(D), 0 ≤ D ≤ p,

0, D > p,
(2)

where H(p) is the entropy of a Bernoulli(p) source, namely
that H(p) = −p log p− (1− p) log (1− p).

The source is the characteristic function of the set S in G,
as previously described in Sect. III-B. A lower bound for the
fidelity or expected error rate of all possible set membership
representations of a given size is illustrated in Fig. 1.

We also attain absolute lower bounds for methods restricted
to a one-sided error. We show in the appendices that the
theoretically reachable rate at a distortion where only false
positives are permitted is:

R(D) =

−p log p + D log D−
(1− p + D) log (1− p + D), D ≤ p,

0, otherwise.

The achievable rate when only false positives are allowed
is

R(D) =

−(1− p) log (1− p) + D log D−
(D + p) log (D + p), D ≤ 1− p,

0, otherwise.
(3)

These two lower bounds are also plotted in Fig. 1 which shows
that, especially for high compression TODO:this is wrong,
more bits are necessary to reach a certain distortion with only
false positives than when allowing false negatives or both-
sided errors.

E. Bloom Filter

Let us now compare Bloom filter performance to the lower
bound given in (2). Using the probability of a false positive

[8], the expected error probability for a given size m of the
Bloom filter which uses k hash functions in a space of n
possible elements is approximately,

∗ ∗ TODO ∗ ∗.

DERIVE IT TOO - ALSO An example of the expected error
probability as the size use to represent the set varies, is shown
in Figure 2. The large gap between the general lower bound
and the Bloom filter performance is partly due to the restriction
of only false positives, as can be seen by the lower bound when
only false positives are allowed. However, this accounts for
some but not all of the difference. Even when false positives
are absolutely necessary, there is potential for better coding.

As mentioned in Sect. II, the compressed Bloom filter
improves fidelity using compression. A regular Bloom filter
is kept in local memory and elements are inserted in a way
that in the end clearly less or clearly more than 50% of the bits
are set.1 This enables significant compression and results in
less distortion than with a Bloom filter using the same message
size. A compressed Bloom filter can achieve a false positive
rate arbitrarily close to (0.5)

m
k after inserting k elements and

assuming an optimal lossless compressor and message size m
[2]. In practice, compression such as arithmetic coding may
be used, which can be close to optimal [14]. Similar to the
derivation for Bloom filters, the distortion for their compressed
form is TODO:insert from appendix Fig. 2 confirms that
the compressed Bloom filter performs clearly better than the
uncompressed version. However, here also a gap between
the theoretically reachable distortion of a set membership
representation and the filters performance is evident.

F. Cropped Filter

We now describe a simple (and with hindsight, obvious)
method dubbed the cropped filter. It directly stores the out-
put of the source without any processing or compression.
The resulting lossy representation of the set contains perfect
information about m elements, m being the size of the
representation. The reconstruction of the set consists of the m
bits which are represented in the cropped filter and a maximum
likelihood decoding of the remaining elements that we do not
have further information about. For p ≤ 0.5, this amounts to
considering all elements for which we have no information as
not being in the set S.

TODO:Results should not be in terms of m
The expected error probability of a cropped filter at this

point would be:

D =
n−m

n
p

The second stage is to add a lossless compression step, and
produce what we call the compressed cropped filter. The
initial output is taken and fed into a compressor until the
final output size reaches the space m available for the lossy
set representation. A Bernoulli(p) sequence of length r can

1A traditional Bloom filter achieves maximum efficiency when 50% of the
bits are set.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Lower bound with only
 false positives
Bloom filter
Compressed Bloom filter

Fig. 2. Gap between theoretical lower bounds and the Bloom filter as well
as its compressed version. (Assuming equiprobable set membership, p = 0.2,
and global set size |G| = 500.)

be compressed without loss at an expected rate rH(p). The
expected error probability of a compressed cropped filter then
becomes

D =
(

1− m

nH(p)

)
p.

Surprisingly, it can be shown that, when n large relative
to m, the compressed cropped filter is, approximately op-
timal under identically and independently distributed input.
Concretely, this means that as p → 0, the performance of
the compressed cropped filter approaches the information-
theoretical lower bound. Given that the subset S will typically
be of magnitudes smaller than the global set size |G|, p will
often be very small. The normalised rate-distortion function
for the normalised Hamming distortion d = D

p is given by

R(d)
H(p)

= 1− H(pd)
H(p)

.

It can then be shown [11], that the normalised rate-distortion
function is asymptotically linear for small p:

lim
p→0

R(d)
H(p)

= 1− d.

Given this, along with the linearity of the compressed cropped
filter, and the fact that the rate-distortion curve and the
compressed cropped filter curve always have the intersection
points with the x- and y-axis in common, means that they
converge.

G. Bloom, Cropped and Ideal Filters

Figure 3 shows different methods of set representation
compared to the lower bounds. We see that the compressed
cropped filter is close to the general lower bound. As a result of
the significant difference between the general lower bound and
the lower bound with only false positives, the cropped filter
performance is below this lower bound of one-sided errors.
For most representation sizes, the compressed cropped filter
performs better than any method only having false positives.

0 1 2 3 4 5 6
x 104

0

0.2

0.4

0.6

0.8

1

Size of compact set representation [bits]

D
is

to
rt

io
n

Compressed Bloom filter
Cropped filter
Compressed cropped filter
Lossless coding barrier

Zoom

(a) Overview.

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6
x 10−3

Size of compact set representation [bits]

D
is

to
rt

io
n

Compressed Bloom filter
Cropped filter
Compressed cropped filter
Lossless coding barrier

(b) Enlargement of interesting area.

Fig. 4. Distortion for different methods of lossy set membership representation. (Global set size |G| = 216 and set membership probability p = 0.001.)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Lower bound with only
 false positives
Compressed Bloom filter
Cropped filter
Compressed cropped filter

Fig. 3. Distortion behavior of several methods of set membership com-
pressionand the theoretical error bound as well as the theoretical error
bound for methods only allowing false positives. (Assuming equiprobable
set membership, p = 0.2, and global set size |G| = 500.)

So far, we have considered small global set sizes. In Fig. 4,
the expected error probability of the compressed Bloom filter,
the cropped filter and its compressed form are plotted for
a global set size |G| = 216, which may be more likely in
practice. The interesting area lies on the left of the lossless
coding barrier, since for sizes bigger than this threshold, the
entire subset can be encoded without loss. One clearly sees
that the compressed cropped filter yields the lowest expected
error rate, confirming that, under certain conditions, there are
relatively trivial ways to get better performance than from a
Bloom filter.

IV. APPLICATION SPECIFIC ISSUES

A. Simulation Setup

In order to test the behavior and applicability of the above
introduced methods of set membership compression, a trace-

driven simulator of a distributed cache system was developed.
We started looking at the distributed caching application.
Bloom filters have often been used in this context [3], [15].
Other reasons for choosing this scenario include its simplicity
and tolerance for two-sided errors – in a web environment,
documents can disappear and new ones appear at any time.

Distributed caching was not a home ground for the cropped
filter, given the huge and very sparsely populated URL space,
as discussed below. The goal is to compare the influence
of different methods for set membership compression on the
response time in a distributed caching environment. The key
component under study is the set representation a proxy keeps
as knowledge of the documents available in neighbor proxies
that are part of a distributed cache. The performance of such a
system using Bloom filters, their compressed form, one using
cropped filters, and one using cropped filters combined with
a frequency strategy is measured and compared.

The goal in a caching system can be seen to be the mini-
mization of response time. Since the focus of this evaluation is
on the representation of documents, we only look at metrics of
this subsystem that have an influence on the overall response
time of the system. These are the correctness of the lookup
results and the computation time per lookup.

Correctness of the Lookup Results: A false positive, namely
a remote cache hit even though the remote cache does not
contain the document, causes an additional superfluous request
to the nearby cache. A false negative, namely a remote cache
miss even though the remote cache contains the document,
causes a remote request where one to a nearby cache would
have been sufficient. We define the cost of a request to the
internet and of a request to a remote cache to be cInt and cLoc
respectively. Therefore, the additional cost of a false positive
and of a false negative are cLoc and cInt−cLoc respectively.
The application specific tolerance for false positives and
negatives depends on the actual values of cInt and cLoc.

In networked applications, computation time is not the

bottleneck, and we thus consider it negligible in comparison
to network operations caused by false positives and negatives.

In different simulation runs, different methods of set mem-
bership compression are used and, for each one, the perfor-
mance for different sizes is measured. The workload plays a
very important role in the whole system because it determines
the theoretically possible hit and miss rate of the cache. It
should be representative, repeatable, and timely [16]. We there-
fore use a trace of a real web-proxy. It is a sanitised log file
from the CA*netII, Canada’s coast to coast broadband research
network, available at http://ardnoc41.canet2.net/cache/.

Cache BCache A

(3)

1 1 1

(2)

1 1 1A:

(1)
A:

requestsrequests

Fig. 5. Setup of the distributed cache simulation.

One simulation phase consists of three stages illustrated in
Fig. 5. In the learning phase, 10 000 HTTP requests are sent
to Cache A which stores the corresponding answers. Cache A
then compresses by creating a representation of the identifiers
of the stored resources and sends it to Cache B. In the Query
phase, 90 000 HTTP requests are sent to Cache B. Using the
representation of the documents at Cache A, it is checked
whether a document is available from Cache A. The number
of wrong answers is counted for different methods of set
representation.

B. Implementing Set Membership Compression

With cropped filters and their compressed form, there are
some implementation questions. One issue is that URLs gen-
erally can have a length of 1024 bytes and that storing this
amount for each URL is not feasible. However, there are
numerous possibilities for reducing the size of the label stored
for each element. A first approach is to use a hash function on
the URLs to reduce the label size. This may introduce hash
collisions. The optimal size of such a hash value is determined
with an optimization problem. In the optimum, a change in
size of the hash range causes a change of collision probability
that is equal to the marginal gain of an additionally stored
document.

Another approach for reducing the label size is to exploit
the fact that URLs generally contain redundancy that can

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Size of hashed values [bits]

In
co

rr
ec

t r
es

ul
ts

False Positives False Negatives

Fig. 6. Influence of hash rage size on the correctness of the lookup results
in a distributed cache. The error bars reflect 95% confidence.

be removed using a lossless compression scheme such as a
LZ77/78-based or arithmetic coder.

Unlike Bloom filters, cropped filters have the choice of
which elements to store. A clever strategy of which elements
to pick can, depending on the nature of the queries, strongly
improve the performance. If an incorrectly represented element
is requested multiple times, one false conclusion causes several
errors. Conversely, elements never requested by the application
do not cause any error in this case.
• Pick the first few: This is the cheapest method in

terms of computation cost. Another advantage is that
the compressed representation can be entirely constructed
very quickly and is first available at other nodes.

• Pick the best compressible items: This method causes
the cropped filter to contain the most elements. When no
information about the nature of the queries is available,
this method produces the smallest expected error rate.
However, it can be quite costly to find the best com-
pressible items.

• Pick the most important ones: Using information or a
prediction of the nature of the queries, the elements can
be chosen cleverly in order to produce the lowest error.
In a distributed cache environment, we would choose the
elements that have the highest expected request frequency
per storage bit in the compressed representation. Other
optimization metrics are conceivable such as download
time, resource consumption, frequency of requests, tem-
poral locality, or site locality.

C. Simulation Results

As mentioned previously, there are several ways to reduce
the total size of a URL, before its input to the cropped filter.
One possibility is to use a hash function. We examine the
behavior of the resulting errors for different sizes of the hash

0

1000

2000

3000

4000

5000

0 50000 100000 150000 200000 250000 300000
Size of compact set representation [bits]

In
co

rr
ec

t r
es

ul
ts

Cropped Frequency Cropped
Bloom Compressed Bloom

78867, 35722
86155, 86155

Fig. 7. Fidelity of lookup results in a distributed cache using different meth-
ods of set membership compression. The error bars reflect 95% confidence.

range. Here, the set representation simply stores the outcome
of the hash function for every request until a size of 40 000
bits is reached. The incorrect results for 90 000 subsequent
requests can be found in Fig. 6. The trade-of of collisions
vs. size of a label is evident, with the best collision to space
consumption rate of around 20 bits.

The approach of compressing the original URLs using
an existing compression scheme produces unfavorable results
although the achievable compression rate is around 85%.
Hashing into a space of, for example, 32 bits yields better
compression at a cost of almost no collisions.

The compression of the cropped filter as described in
Sect. III-F is difficult, and we therefore directly store the
identifiers. Application of an existing compression scheme to
the list of identifiers yielded little gain and is omitted from
the results.

In the subsequent simulation, the following compression
methods of set membership information are compared:

• Cropped filter: Stores the hash values of the requests
using a hash range of 20 or 32 bits, whichever yields
fewer errors depending on the size of the set membership
compression. The elements are stored in their request
order until the filter size is reached.

• Frequency cropped filter: It is the same as a regular
cropped filter but stores the elements that are most
frequently requested first.

• Bloom filter: The implementation of Bloom filters is
straightforward, and used in its original form as described
in [1]. The URL of the HTTP request is taken as a string
and the hashes calculated.

• Compressed Bloom filter: To the best of our knowledge,
these have not been implemented to date. We use its lower
bound of false positives [2] to find a lower bound for the

total number of expected errors.
The compressed size of the set membership information is
limited to 40 000 bits, the learning phase consists of 10 000,
and the query phase of 90 000 requests. The simulation was
executed 20 times using a different trace in each run. The
results can be found in Fig. 7.

For filter sizes up to 40 Kbits, all different implementations
of the cropped filter outperform the Bloom filter as well as
the compressed Bloom filter which exhibit large distortion.
For filter sizes from 60 to 300 Kbits, the (compressed) Bloom
filter produces less errors than a cropped filter and above 300
Kbits, both methods become error-free. There seems to be
a critical size below which the amount of false positives of
a Bloom filter is extortionate. This is not astonishing since
it uses at least one hash function and after inserting around
10 000 elements into an array of comparable size, we expect
most bits to be set to one which in turn causes lots of false
positives.

Comparing the different versions of the cropped filter, one
can clearly see that choosing the elements to be inserted
into a cropped filter with a frequency strategy significantly
reduces the resulting mistakes compared to just inserting the
first requested elements. The difference is biggest for filter
sizes around 40 Kbits.

The Bloom filter does not take advantage of specific knowl-
edge about the nature of the requests. However, it automat-
ically exploits the correlation between the inputs and the
requests. Consider the possible false positives that could arise
from an URL insertion into the Bloom filter. It is extremely
likely, that these strings are not proper URLs and would thus
never be requested. This results in lower false positives than
if all inputs were equiprobable.

Depending on the application, it is sometimes desirable to
represent some elements with a low error probability and in
doing so decreasing the average error rate. This is a major
advantage of the cropped filter.

The frequency cropped filter using 20 bits is better than the
one using 32 bits up to a filter size of 200 Kbits. This can
be explained with hash collisions that start to carry weight
when the overall error becomes small for larger representation
sizes. For smaller representation sizes, the fact that using a
small hash range allows for more elements to be stored is
predominant.

Although the cropped filter is not better than the Bloom
filter for all possible sizes, it has a significantly lower error
rate for some. Looking at the difference between the modelling
in Sect. III and the simulation results, we conclude that
the (compressed) cropped filter is especially good when the
elements have a reasonably small label, and when the global
set is small. If a prior transformation is necessary, it should
be minimised with respect to the loss of information e.g.
collisions.

Using one hash function for reducing the global set is
basically a special case of the Bloom filter; one with just
one hash function. However, the Bloom filter typically uses
an optimal amount of hash functions to prevent collisions and

is therefore superior. It combines the two steps of reducing the
global set and representing a set while optimizing the overall
loss.

Cropped filters have a distinct advantage. Using them,
further messages containing information about more elements
and thus resulting in more accuracy can easily be provided at
any time whereas a Bloom filter needs to be fully constructed
before transmission.

V. CONCLUSIONS

Although Bloom filters are the method of choice for com-
pression of set membership information in a lossy fashion, we
show that there can be a large price to pay. This is especially
true when only false positives are permitted, but, even in this
domain there is scope for improvement. As one size does not
fit all, it may be worth thinking twice before their use.

A simple method of storing some elements’ identifiers and
ignoring the rest yields better performance under independent
input. We are certain that better coding could be used to
improve on this too. Additionally, using coding tailored to
the application that takes into account, say, the relative cost of
false positives and false negatives would certainly yield fruitful
results.

Bloom filters remain strong when the application requires
or benefits from restricting possible errors to false positives
and when no a priori information is known about the type
of the queries the filter will subsequently be used for. The
cropped filter, on the other hand, is adaptable to incorporate
such information. They can also be interpreted as erasure
codes. Instead of simply guessing that all elements for which
we have no information are not in the set, this information
could be registered as missing - an erasure. Furthermore,
their simplicity allows subsequent refinement of the fidelity
by sending information of additional elements.

Much future work remains, particularly for suitable coding
schemes. We do not contend in any way that the Bernoulli
model is very representative of typical set membership. Source
input is of course not independently and identically distributed.
Rather, it is a significant first step, complementary to Bloom
filters with already many interesting conclusions to be drawn.
Extension to correlated input models is currently being inves-
tigated. In-depth analysis of the effects of reducing the global
set using hash functions would be useful. The simulations
considered the cache data independently between caches.
Exploiting possible correlation could be done by incorporating
Slepian-Wolf coding [17] in a set compression framework.

TODO:Add the enquiry model

ACKNOWLEDGEMENTS

Thanks to Andreas Diener for helping with some initial
simulations and tests.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed Com-
puting. ACM Press, 2001, pp. 144–150.

[3] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[4] S. C. Rhea and J. Kubiatowicz, “Probabilistic location and routing,” in
Proceedings of INFOCOM 2002, 2002.

[5] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content
delivery across adaptive overlay networks,” in Proceedings of ACM
SIGCOMM, Pittsburgh, Pennsivania, USA, October 2002, pp. 47–60.

[6] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in Proceedings of the ACM/IFIP/USENIX Middleware conference, June
2003.

[7] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel, “Bringing efficient
advanced queries to distributed hash tables,” in Proceedings of IEEE
LCN, Nov. 2004.

[8] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” in Proceedings of the 40th Annual Allerton Conference on
Communications, Control, and Computing, 2002, pp. 636–646.

[9] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: An
efficient data structure for static support lookup tables,” in Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, 2004, pp. 30–39.

[10] C. Weidmann and M. Vetterli, “Rate-distortion analysis of spike pro-
cesses,” in Proceedings of DCC’99, 1999.

[11] ——, “Rate distortion behavior of sparse sources,” EPFL, Tech. Rep.,
Oct. 2001.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 1991.

[13] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data
Compression. Englewood Cliffs, NJ, USA: Prentice-Hall, 1971.

[14] K. Sayood, Introduction to Data Compression. San Francisco, CA,
USA: Morgan Kaufmann Publishers, Inc., 1996.

[15] Squid, “Squid web proxy cache,” http://
www.squid-cache.org/, 2005.

[16] R. Jain, The Art of Computer Systems Performance Analysis. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 1991.

[17] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. IT-19, pp. 471–
480, July 1973.

APPENDIX A
PROOFS

We derive a general equation for the rate-distortion func-
tion for a discrete memoryless source, when the encoder
is explicitly constrained to satisfy a certain joint-probability
distribution between output and input. Consider a coder with
Bernoulli input X where P(X = 1) = p. Let the output X̂
also be a random variable on {0, 1} and the joint distribution
of X and X̂ be f(x, x̂) = P(X = x, X̂ = x̂).

The rate-distortion function R(D) is then, for the Hamming
distortion measure (1),

R(D) = min
P(X̂=x̂|X=x):f(0,1)+f(1,0)≤D

I(X; X̂)

where I(X; X̂) is the mutual information,

I(X; X̂) =
1∑

x=0

1∑
x̂=0

f(x, x̂) log
f(x, x̂)

P(X = x) P(X̂ = x̂)
.

which can also be written in terms of the entropy function H:

I(X; X̂) = H(X)−H(X|X̂).

The following result arrives easily, because we have, in effect,
fixed the joint probability of X and X̂ , thus rendering the
minimization in the rate-distortion curve redundant.

Theorem 1.1 (Rate-distortion constrained by α): Let the
system be constrained such that the fraction of mistakes

that are false negatives is the min(D, p/D) – namely that
f(0, 1) = min(αD, p) – where α ∈ [0, 1] is a parameter to
tune the amount of false negatives.

When α ∈ [1 + (p− 1)/D, p/D], the rate-distortion is:

R(D) = H(p) + H(1 + (2α− 1)D − p) + αD log αD

+ (p− αD) log(p− αD) + (1− α)D log((1− α)D)
+ (1− p− (1− α)D) log(1− p− (1− α)D) (4)

and 0 otherwise.
Proof: Consider, firstly, the case α < 1 + (p − 1)/D.

In this mode of operation, independently picking the coder
output as 0 with probability αD

p , and as 1 otherwise, achieves
a probability of a mistake not greater than D without needing
to encode anything (R(D) = 0). It also ensures that the
probability of a false negative is αD as required. What remains
to be shown is that the total distortion is less than or equal to
D, i.e. that

αD + (1− αD

p
)(1− p) ≤ D

which is true if and only if

αD ≤ D + p + 1
2− 1/p

.

This is true since αD ≤ D + p + 1 and p ≤ 1.
Consider now the case where α ≥ p/D. Then, using a

coder with output always 0, obtains no false positives and
a probability of a false positive p. This coder does what is
required since p ≤ αD ≤ D.

The remaining case is when α ∈ [1+(p−1)/D, p/D]. The
distortion is the sum of the probabilities of a wrong answer,

D = E[d(X, X̂)] = f(1, 0) + f(0, 1) = αD + f(0, 1),

so f(0, 1) = (1− α)D.
It also follows that f(1, 1) = p − αD as p = P(X =

1) = f(1, 0) + f(1, 1). Similarly, 1 − p = P(X = 0) =
f(0, 0) + f(0, 1), implies that f(0, 0) = 1 − p − (1 − α)D.
The joint probability is thus completely specified:

f(x, x̂) =
[
1− p− (1− α)D (1− α)D

αD p− αD

]
.

The rate-distortion curve is then

R(D) = I(X; X̂) = H(X)−H(X|X̂)

= H(p)− P(X̂=0)H(X|X̂=0)

− P(X̂=1)H(X|X̂=1).

Now,

−H(X|X̂ = 0) = P(X = 0|X̂ = 0) log P(X = 0|X̂ = 0)

+ P(X = 1|X̂ = 0) log P(X = 1|X̂ = 0)

and therefore

− P(X̂ = 0)H(X|X̂ = 0) = f(0, 0) log
f(0, 0)

P(X̂ = 0)

+ f(1, 0) log
f(1, 0)

P(X̂ = 0)
. (5)

Similarly,

− P(X̂ = 1)H(X|X̂ = 1) = f(0, 1) log
f(0, 1)

P(X̂ = 1)

+ f(1, 1) log
f(1, 1)

P(X̂ = 1)
.

Combining this and (5), along with the facts that P(X̂ = 0) =
f(0, 0)+ f(0, 1) and P(X̂ = 1) = f(0, 1)+ f(1, 1), it is easy
to see that (4) follows.
The goal is to guarantee a false negative rate of α. If the
focus were on ensuring a fixed fraction of mistakes that are
false positives, there would only be a minor change in the
outlier cases.

TODO:check the source-coding theorem holds here
We now derive distortion (i.e. the marginal probability of a

false positive) when a Bloom filter is used, under the assump-
tion of perfect random hash functions. TODO:Comment on
general dependence difficulties in n-k model proofs.

Theorem 1.2 (Bloom distortion given Bernoulli input):
Let the Bloom filter use k independent hash functions, the
size of the global set G be n, and the size of the bloom
filter be m bits. Using this Bloom filter, the probability of a
mistake for the ith element in G is

P(Xi 6= X̂i) = (1− p)
(
1− fn−1

)k
. (6)

where f = 1− p + p (1− 1/m)k.
Proof: The Bloom filter ensures no false negatives so

P(Xi 6= X̂i) = P(Xi = 0, X̂i = 1). We first derive the
conditional probability P(X̂i = 1|Xi = 0). Suppose b be a bit
set in the Bloom filter. Let Hl be the event that hash function
l doesn’t set bit b with element i as input and Fj the event
that b is not set by the ‘actions’ of jth element of G, i.e.

Fj = {Xj = 0} ∪ ({Xj = 1} ∩H1 ∩H2 ∩ · · · ∩Hk) .

Then,
P(Fj) = 1− p + p (1− 1/m)k = f.

The event that b is not set is then B = F1 ∪ F2 ∪ · · · ∪ Fn.
The Fj are independent events so P(B|Xi = 0) = fn−1 and
thus,

P(X̂i = 1|Xi = 0) = P(all k bits are turned on) =
(
1− fn−1

)k
.

It then follows that P(Xi = 0, X̂i = 1) = (1−p)
(
1− fn−1

)k
.

TODO:Can we approximate this like people usually do?

	Text1: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-126314

