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Abstract—Interest in distributed storage is fueled by demand
for reliability and resilience combined with decreasing hardware
costs. Peer-to-peer storage networks based on distributed hash
tables are attractive for their efficient use of resources and result-
ing performance. The placement and subsequent efficient location
of replicas in such systems remain open problems, especially (1)
the requirement to update replicated content, (2) working in
the absence of global information, and (3) determination of the
locations in a dynamic system without introducing single points
of failure.

We present and evaluate a novel and versatile technique,
replica enumeration, which allows for controlled replication and
replica access. The possibility of enumerating and addressing
individual replicas allows dynamic updates as well as superior
performance without burdening the network with state informa-
tion, yet taking advantage of locality information when available.
We simulate, analyze, and prove properties of the system, and
discuss some applications.

I. INTRODUCTION

Peer-to-peer (P2P) systems offer enormous potential. While
some may still equate it with music piracy, the technology
itself and its many uses are entirely content-neutral. In fact,
some IT specialists hope that peer services will provide a
method for matching the increasing reliance of business and
government processes on continuous, instantaneous, and reli-
able access to data. It has also been argued, that heterogeneous,
physically distributed systems are more resilient to attacks
using physical force against servers as well as intrusion and
distributed denial-of-service (DDoS) attacks. Recent advance-
ments in peer technologies, such as the introduction of the Dis-
tributed Hash Table (DHT) concept, have caused a noticeable
shift from unreliable toy systems to scalable enterprise-level
services capable of managing global data repositories. In con-
trast to the previously used technique of extensive flooding of
the network with queries, DHT enable the efficient addressing
of data at unknown locations using only the unique resource
(document) ID. A distributed mapping from a resource ID to
a set of hosts with minimal routing information in each node
is produced.

The availability of multiple replicas is crucial in order
to provide resilience and support high demands for certain
resources. Throughout, we assume each resource exists at
least as an original, with potentially further copies (mirrored,
replicated, or cached). The original and its copies will be
jointly referred to as instances of a particular resource, all
kept by holders.

In this paper, we present and evaluate, in detail, a novel
technique, called replica enumeration (RE), which allows end-
systems to make an informed decision about where replicas
are and which ones to access. It enables updates to reach all
replicas easily, thereby allowing updates to be pushed imme-
diately, without having to wait for the next synchronization
initiated by the replica holder. RE is achieved without explicit
meta-data or the need for a replica directory service,1 works as
an independent layer on top of any DHT, and suits the “dumb
network” and “local knowledge only” paradigms associated
with the Internet and P2P networks.

For each document, RE places replicas at the DHT addresses
determined by a two-variable hash of the document id and the
index of its replica instance. As we shall show, facilitating the
location of the closest replica is achieved through simple rules
regulating replica placement.

RE is well suited to a globally distributed storage system,
but also for applications in locally confined environments. Ex-
amples include its use for load balancing in a server farm or as
a backup for the company-wide centralized replica directory.
Other applications include distributed directory services or
databases, where location speed becomes critical and retrieved
data relatively small.

We analyze and prove the properties of RE and provide
simulation results. As part of our evaluation, we also present
classification criteria for replica management and discuss the
trade-offs of different mechanisms.

A. Paper Organization

The paper is organized as follows. Section II introduces
background and related work. Section III presents RE in detail.
Section IV shows the results of our simulations. Section V
describes applications and combinations of RE. Section VI
concludes the paper, and presents further work.

II. BACKGROUND AND RELATED WORK

A. Distributed Hash Tables

Several scalable overlay networks have recently sprung to
life. Sitting “on top” of the Internet, they add additional value
to the transport capabilities of the underlying network. DHT
provides a mapping from resource IDs to a set of hosts (d→

1. . . which in itself would need to be replicated and thus raise the demand
for a meta-replica directory service, ad infinitum.
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H) that is typically preceded by a mapping from resource
name to resource ID (N → d). DHTs are generally designed
to use minimal routing information in each node and to deal
with changes in host availability and network connectivity.

A toy example of a DHT using rectangular subdivisions of a
two-dimensional ID coordinate space is illustrated in Figure 1,
each rectangle with its manager, represented by a filled dot.
When hosts join, they are assigned an ID in the same coor-
dinate space as the resources. The newcomer arranges a split
of the rectangle it is located in with the incumbent manager,
assuring that each rectangle always has exactly one manager.
To forward messages in such a system, each node only needs
to know its direct neighbors. Assume the bottom left host
would like to retrieve the resource whose ID corresponds to
the hollow circle, then it sends (as outlined by the arrows) the
request to the neighboring manager whose rectangle is closest
to the destination, which in turn repeats the process, until
the host responsible for the resource has been reached. This
process ensures that every resource is reachable efficiently,
even when hosts hold only limited routing information.2

Real DHTs come in a variety of

Fig. 1. DHT based on 2-D
rectangular subdivision

routing flavors, but all share the prop-
erty that messages are transported on
a hop-by-hop basis among constituent
nodes of the overlay network. Each
hop passes the message closer to the
destination, until it finally reaches the
node that claims the requested ID.

Some DHTs operate based on in-
tervals in skip-list-based ring topolo-

gies (Chord [1], [2], SkipNet [3]), some split hyperspaces into
manageable chunks (CAN [4], Mithos [5]), whereas others
are probably best described as a rootless tree implementation
(P-GRID [6], Pastry [7], Tapestry [8])

Many of these DHT systems are able to exploit the locality
of the underlying network. Locality aspects are typically
separated into geographic layout and proximity forwarding,
categories adapted from [9]. Moreover, a node that knows
more than another node will bring the message closer to its
ultimate destination, generally calculated in the resource ID
space. From among these nodes, proximity forwarding selects
one that is close by also in terms of the underlying network
(this is implemented in Chord and Pastry, among others).

Geographic layout, on the other hand, implies that the ID
space is already partitioned into regions (“hash buckets”) based
on the connectivity in the underlay, a method utilized by CAN
and Mithos. Geographical layout automatically implies some
form of proximity forwarding.

B. Replication
Traditionally, mirroring has been used for replication. Mir-

rors typically know about all or a subset of the other mirrors,
in order to be able to point at some of them. While this
redirection can be automated , it is most often performed man-
ually. Criteria for selecting a mirror may include reliability,
access latency, or throughput. To maintain data consistency,

2For easy of understanding, leave operations and outage handling are
omitted.

there often exists a relationship between the master and the
mirrors. Elaborate mirroring-based systems include Usenet
News, Akamai [10], Lotus Notes and IMAP.

A less organized method for replication includes caching,
which is widely used and researched in particular for web
caches (e.g. [11]). Here, consistency is achieved by a combina-
tion of the server stamping expiration dates and regular update
queries to the server. The caches are sometimes organized
into semi-hierarchical topologies to improve performance and
reduce server load.

Content distribution networks (CDNs) [12] are sets of inter-
operating caches that replicate documents to places where user
demand is high. Requests are mapped to close-by caches using
DNS servers that take server- and network load into account.
Consistency is maintained using time-stamping, version num-
bering, and on-demand purges (invalidations) of content. The
ability to assemble documents dynamically allows CDNs to
cache otherwise uncacheable content.

One of the most organized ways of linking DHTs and
caching is employed by OceanStore [13]. When there is a high
probability that a cached copy of the document can be found
along that route, DHT queries are redirected by Attenuated
Bloom Filters (ABF). In addition to the possibility of false
positives despite continuous ABF update traffic, there is no
way for the document originator to address selected (or update
all) replicas when the need arises.

Beehive [14] is a replication framework that provides con-
stant lookup times for query distributions that follow a power
law distribution. It works on top of DHTs that are based on
prefix routing such as Chord, Pastry or Tapestry. Using an
analytical model, Beehive divides the set of objects into groups
based on their popularity. Objects with high popularity are
replicated such that they can be found using a shorter prefix;
less popular objects need a longer prefix. Beehive minimizes
the number of replicas for a specified average prefix length.
Since prefix length is directly proportional to the number of
hops required to access an object, Beehive is able to provide
access in a constant number of hops.

The distributed hash (DHash) component of the Cooperative
File System [15] offers both caching and replication. It is
based on Chord. Documents, stored on a “home” server,
are replicated to a number of successors on the Chord ring.
The home server maintains meta-information, including the
identifies of the servers that hold replicas as well as latency
information. Clients retrieve this information from the home
server and choose the replica that is accessible with the
lowest latency. In addition, DHash caches documents along
the lookup path, using a least-recently-used strategy. DHash’s
cache mechanism may result in stale documents since updates
only affect replicated, but not cached documents.

Specialised cases include (1) Dynamic Replication [16],
which is based on our original idea [17] but requires knowl-
edge of the underlying structure and fine-tuning to work while
(2) Harvesf and Blough [18] try to create disjoint routes to
replicas.

Another approach is followed by Global Internet Anycast



TABLE I
COMPARISON ACCORDING TO CRITERIA CATALOG OF SECTION II-C

3 Criteria Fixed OceanSt. Proxy Beehive CDN GIA RE
Openness all near path locals yes all nearby all
Locality manual yes yes† yes‡ yes yes∗ often
Addressability yes no no yes no no yes
Freshness yes no no yes yes N/A yes
Adaptivity no yes yes no yes yes yes
Flexibility no yes yes yes yes yes yes
Variability no yes no no no yes no
State size full ABF minimal minimal full medium∗ minimal
Resilience yes yes yes yes yes partial yes
Independence no no yes no yes yes yes
Performance no impact redirect no impact no impact no impact measures local

The properties of caching proxies also apply to local replicas used in systems such as Lotus Notes or IMAP. Recall that adaptivity and
flexibility apply to the replica count whereas variability refers to the location.
† Only for recently-requested (cached) documents.
‡ Hop-count in underlying DHT is minimized.
∗ Only for frequently-requested documents.

(GIA) [19], which uses the BGP routing infrastructure and
in-router traffic analysis to identify the frequently used docu-
ments. Read-only accesses will then dynamically be redirected
to a nearby copy instead of the original, if the access rate
exceeds a given threshold. Updates are not supported by the
system and require the use of an out-of-band mechanism.

Replication in general unstructured networks has been
analyzed by Cohen and Shenker [20]. They show that the
inherent use of flooding in these networks discourages frequent
replication. Their result is not applicable to the directed queries
used in DHTs. Additionally, analysis of resource replication
in the event of selfish server nodes is given in [21]. APRE[22]
uses probabilistic search to achieve dynamic replication in
unstructured networks.

C. Replication Criteria

In order to help evaluate different forms of maintaining
multiple instances, we will use the following list of criteria
for the evaluation of replica management and access.
Openness. Replicas should be useful to many requesters, not

only a single user.
Locality. Obtaining a “nearby” replica is preferable. The

actual distance (or cost) metric used may include dynamic
parameters such as network and server load.

Addressability. For management, control, and updates, sup-
port should be provided for enumeration and individual
or group-wise addressing of replicas.

Freshness. Each replica access should yield the freshest doc-
ument version.

Adaptivity. The number of replicas for a resource should
be adaptable to demand, as a trade-off between storage
requirement and server load.

Flexibility. The number of replicas for one resource should
not depend on the number of replicas for another.

Variability. The locations of replicas should be selectable.
State size. The additional state, both distributed and central-

ized, required to maintain the replicas should be mini-

mum.
Resilience. As DHTs themselves are completely distributed

and resilient to outages, centralized state or other single
points of failure should be avoided.

Independence. The introduction of a new replica (respec-
tively, the removal of an existing replica) on a node
should depend on as few other nodes as possible.

Performance. Locating a replica should not cause excessive
traffic or delays.

Our models assume that, in this scenario, communication is
far more expensive than local computation.

D. Comparison

Table I compares RE with other replication policies, such
as local replicas or local caching proxies, the ABF used by
OceanStore, and replication to fixed, hard-coded locations, as
is often used in a database context.

Fixed installations often come with hard-coded replica refer-
ences, resulting in a system without communication overhead
that uses locality if correctly configured, but is highly resis-
tant to configuration changes, requiring manual intervention.
Adding a directory service leads to a trade-off between per-
formance impact and update frequency; typically the locality
property is also lost in the process.

OceanStore is able to place copies wherever needed, but
only queries that pass close to a cached copy will use it. The
downsides include (1) potentially significant traffic volume due
to frequent exchanges of bloom filters, (2) the possibility of
increased forwarding cost to the destination resulting from
misleading redirection caused by the ABF, and (3) the im-
possibility of updating or ensuring copy freshness.

Beehive is able to provide lookups with a constant average
path length, the drawback is that hop count in a DHT is
often unrelated to the network latency. In addition, Beehive
is restricted to prefix-based DHTs only; the location of where
replicas are stored is inherently coupled with prefix-based
routing.



DHash is tightly integrated with Chord and does not work
on top of other DHTs. Unless a cache-hit occurs, clients first
access the home server in order to get the list of replicas,
which limits the benefits of accessing the replica with the
lowest latency. The location of replicas is not selectable.
Furthermore, while replicas are updated when content changes,
cached documents are not and access to stale documents is
possible.

Caching proxies and local replicas are only accessible by
local users (often just a single user) and therefore cannot be
shared unless combined with elaborate inter-cache communi-
cation schemes, which introduce significant overhead. They
cannot be kept up to date or be notified of updates.

CDNs optimize access to read-only documents. The over-
head in these systems is rather high; a monitoring system
constantly measures server- and network load and feeds the re-
sults into a DNS-server based control infrastructure that keeps
state information about replicas. State information in the DNS
servers is constantly updated in order to avoid inconsistencies.
Document replicas are not directly addressable, the matching
between client and replica is instead done by a third party,
the DNS server. Changes are allowed to propagate from the
original server only.

GIA is similar to CDNs, but uses the routing infrastructure
instead of DNS.

One weakness of RE is that it evenly distributes replicas
among the network nodes, thus not satisfying the variability
criteria. However, given the current level of network backbone
connectivity and capacity, even a small number of replicas will
lead to a configuration where at least one replica is sufficiently
close. Additionally, we believe that enhancements in RE that
tailor it to an estimate of the current node distribution are
likely to further improve the probability of finding a replica
nearby. This remains an item for future work.

For applications that require very low latency, combinations
with other schemes, such as those in Section V, may prove
helpful. The high conformance of RE to the other criteria is
another strong point in its favor. Note that several of RE’s
advantageous properties are provided or at least facilitated by
the underlying DHT. However, they are still advantages of RE,
as DHTs without RE lack these properties.

III. REPLICA ENUMERATION

Document replica placement in large-scale environments
has traditionally been driven by demand, either from a single
user or a small group. Caching proxies, for example, are placed
based on decisions of the local user community, independently
of where other caching proxies are. RE, on the other hand, uses
a coordinated approach based on a globally known algorithm
for placement.

The basic idea behind RE is simple: For each document
with ID d, the replicas are placed at the DHT addresses
determined by h(m, d), where m ≥ 1 is the index, or number,
of that particular instance, and h(·, ·) is the allocation function,

Listing 1 ADDITION
1: /* Triggered by high load */
2: Determine rd and atomically lock h(rd, d);
3: Create replica at h(rd + 1, d), ignore existing-replica errors;
4: Release lock on h(rd, d);

Listing 2 DELETION
1: /* Run at replica having an underutilized document d */
2: Determine the instance index, m, for this replicated document;
3: Exclusively lock the document h(m, d);
4: if exists h(m + 1, d) /* Are we the last replica? */ then
5: /* Cannot remove replica, would break rule 3 */
6: else
7: Remove local replica;
8: end if
9: Release lock on h(m, d);

typically based on a hash function shared by all nodes.4 The
allocation function may, for example, be defined to include
the original resource at its existing location d in the search as
follows: h(1, d) = d; h(m, d) = H(m||d), where H(·) is a
hash function and || is concatenation.

Thus, any node in the network can easily determine any
potential replica address. However, knowing only the potential
addresses is not sufficient. To access a replica, the number of
replicas actually present or the location of the closest replica
is needed.

To this end, following four simple replica-placement rules
govern basic system behavior:

1) Replicas are placed only at addresses given by h(m, d).
2) For any document d in the system, there always exists

an initial replica with m = 1 at h(1, d).
3) Any further replica (m > 1) can only exist if a replica

currently exists for m− 1.
4) No resource exists in more than R instances.

The first three of the above invariant rules indicate that for
a document d with rd replicas, the replicas will be placed at
h(m, d), where m ∈ [1, rd], resulting in a contiguous set of
values for m. The only system parameters that need to be pre-
agreed upon and remain static are the choice of hash function
h(·, ·) and the maximum number of replicas, R. With these
rules in place, the actual number of replicas currently present
is not needed to perform the most common operation, namely
lookup. Before introducing and tuning the lookup algorithm,
replica addition and deletion are, respectively, presented in
Listings 1 and 2.

Locking is used to simplify the algorithm and render it
deterministic. Verification of rule 3 after a lock-free addition/
deletion can be used to recover from temporary inconsis-
tencies. RE does not require permanent consistency. In fact,
there may be temporary inconsistencies if rd is modified in
the middle of a lookup, resulting, possibly, in some topmost
replica(s) being not considered for retrieval.

4We assume that h(·, ·) is pseudo-random, uniformly distributing the DHT
addresses of the replicas. This is not required for system correctness but
performance would need to be re-evaluated.



Listing 3 AWARE: Location-aware replica selection
1: /* Locate a replica for document ID d */
2: r ← R;
3: /* Calculate cost for each potential replica */
4: ∀i ∈ [1, R] : ci ← cost(h(i, d));
5: while r ≥ 1 do
6: m← index of minimal cost among ci, (i ≤ r);
7: Request document with ID h(m, d);
8: if request was successful then
9: return document;

10: end if
11: r ← m− 1;
12: end while
13: return nil;

The actual mechanisms used to decide on addition/deletion
of a replica are orthogonal to, and outside the scope of, this
paper. Examples include any of the replica holders being
overloaded, the topmost replica holder being short on storage,
or a query node finding performance inadequate. Each of these
nodes can then initiate the appropriate measures.

A. Basic Lookup: Locality-Aware, Reliable Case

Several DHT systems, such as CAN, Mithos and SkipNet,
support some notion of locality, i.e., from the DHT address,
any device can estimate if the destination address is likely
to be close. Also, there are several other systems that allow
distance determination that can be used in conjunction with
DHTs (e.g. [23], [24]).

Assumptions: For a first description, let us assume the
existence of a reliable DHT with support for locality; i.e. for
two addresses returned by the hash function h(·, ·), any device
is able to decided which of the two is closer. We will later
generalize the system to include unreliable behavior, lack
of a priori knowledge of distances, and faster convergence.
We also assume initially that distance information is perfect.
Local computations are considered to be much cheaper than
communications, and, for ease of analysis, the assumption that
the hash function h(·, ·) conforms to an essentially uniformly
random distribution.

The basic algorithm is similar in spirit to a binary search
on the initial range [1, R], with a different pivot element
selection process. Instead of picking the middle element, as
in ordinary binary search, the node m with the least cost is
picked and probed. If it contains the replica, no further probing
is necessary. Otherwise, rule 3 that rd < m means that the
search range can be reduced to [1,m−1]. The process is then
repeated with the resulting narrower span until it succeeds.
Success is guaranteed because of rule 2, unless, of course,
the document has not been stored in the DHT at all. The
search is also explained in algorithmic form in Listing 3. The
expected number of probing rounds required is approximately
logarithmic with the maximum number of replicas R. This is
proved in Section III-B.

Figure 2 provides an example for R = 12. The potential
replicas are shown as vertical bars, with increasing instance
indices from left to right. The length of the bar indicates the
distance to the querying node. The first five nodes (in the
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Fig. 2. Lookup Probing Strategy (R = 12, rd = 5)

dashed rectangle) contain a replica. The closest three nodes are
labeled A to C, in order of increasing distance. The algorithm
is then:

1) The closest node, A, is probed, but fails.
2) The range shrinks to only the first six nodes, up to

but excluding A. The second closest, B, thereby is also
excluded.

3) The closest node remaining in the reduced range, C, is
probed and succeeds.

If large proportions of the population were to attempt to
bypass the protocol and directly access the replica with index
1, that node could be quickly overloaded.As they would mostly
harm other “cheaters,” there seems to be little incentive to take
the shortcut. Also, in a location-aware system, replica number
1 might be more costly to access than the optimal replica, even
including the search phase.

B. System Properties

This section will provide correctness proofs and perfor-
mance analysis and show that AWARE will find the closest
instance if at least one exists. Closed form solutions for the
probability distribution, expected value, and variance of the
number of rounds necessary to find a replica are derived (equa-
tions (1), (4) and (5) respectively), as well as approximations
for the expected value and variance.

Before diving into the details, we would like to provide
an understanding of the number of rounds required as a
consequence of the probability distribution in (1). Figure 3
considers the example where there are a maximum of R = 100
replicas and shows the distributions when the number of
replicas of the document is 1, 2 or 10, when no replicas of
the document being searched for are added or deleted during
a search operation. We see that the expected number of probing
rounds is very small relative to the maximum number of
replicas – roughly log(R/rd).

Although some pathological cases do exist (such as linear
traversal of all possible replicas when the cost function de-
grades into a decreasing function of the instance index), they
have almost zero probability of occurring. For example, when
there is only one replica of the document (rd = 1), there is
a probability of 99.9% of taking no more than 13 rounds to
obtain the document.5

5By adding a delayed, logarithmically sweeping upper bound, the worst
case can be reliably bounded at the cost of not considering a few replicas in
the worst case.
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Fig. 3. Probability distributions of the number of rounds required in order
to find the document, for cases where there are rd = 1, 2, 5 replicas of it.
The expected number of rounds needed is also shown as well as the 99.9th
percentile (e.g. when rd = 1, 99.9% of all document searches will find the
document with no more than 13 rounds).

The following descriptions all assume proper operation of
the underlying DHT, such as its ability to route all messages
and its ensuring of document continuity under reconfiguration.
Many DHTs include support for providing reliability. Still,
Section III-F describes RE operation in the presence of faults.

Lemma 3.1: Assume that replicas of a document neither
arrive nor leave the system during a search, that a scalar cost
function cost(h(·, ·)) is defined, and at least one replica exists.
Then AWARE will find the closest one, where closest is defined
according to the cost function.

Proof: The algorithm closely follows binary search: Start
with an initial range covering all possible matches and only
remove those parts that are guaranteed not to contain a match.
In a reliable system, a probe at instance index m either
succeeds, returning the document, or fails because of its
absence. If a probe failed, rule 3 signifies that no replica ≥ m
can exist, and thus the upper end of the range can be lowered to
m−1 without risk of missing an entry. As the range (“potential
instances”) at any time includes at least all actual instances,
the closest of all potential instances must be at least as good
as the closest actual instance. By choosing the closest in-range
(potential) instance for the next probe, it is impossible to miss
the closest actual instance.

Obviously, a cost function providing only estimates is
still valuable, but the quality of the replica returned will be
bounded by the quality of the cost function.

C. Analysis

The analysis gathers insight into the algorithm through a
complete probability distribution for the number of probes and
exact average case and variance results through the use of
generating functions. Alternative powerful techniques, such as
the worst-case analysis methods in [25], [26] may also be
of interest. The following lemma enables us to establish the
probability distribution of the number of probes needed by the
location algorithm.

Lemma 3.2: Let R be the maximum number of replicas,
and let the document being searched for be replicated rd ≥ 1
times. Assume no replicas of it arrive or leave the system
during the search. Let S be the round number where the
document is found. Upon application of the random searching
algorithm, the probability of finding a document after s probes
is given by:

P (S = s) =
rd

R

R−1X
x1=rd

x1−1X
x2=rd

. . .

xs−2−1X
xs−1=rd

1

x1x2 . . . xs−2xs−1
(1)

where s = 1, 2, 3, . . . , R− rd + 1.
Proof: At the ith probe, let the replica number chosen to

be probed be the random variable Xi. A successful document
search happens when Xi ≤ rd.

If s is the first probe such that Xs ≤ rd, then necessarily
Xi > rd for all i < s and,

P (S = s) =P (Xs≤rd ∧ ∀s−1
i=1 Xi > rd)

=P (X1 >rd)P (X2 > rd|X1 >rd) . . .

P (Xs ≤ rd|X1 >rd . . . Xs−1 >rd).

Now, the event {X1 > rd} occurs if and only if X1 = x1 for
some x1 ∈ {rd + 1, . . . , R}. Similarly, for any i = 2, 3, . . .
and conditional on X1 = x1, X2 = x2, . . . Xi−1 = xi−1, the
event {Xi > rd} occurs if and only if Xi = xi for some
xi ∈ {rd + 1, . . . , xi−1 − 1}. Hence,

P (S = s) =

RX
x1=rd+1

1

R

x1X
x2=rd+1

1

x1−1

x2X
x3=rd+1

1

x2−1
. . .

xs−2X
xs−1=rd+1

rd

xs−2−1

rdX
xs=1

1

xs−1−1
.

and thus by elementary manipulation and changing indices
xi − 1←→ xi, (1) results.

We can explicitly obtain the moments of the probability dis-
tribution analytically. To this end, we first obtain the moment
generating function, and then use this to derive the mean and
variance.

Lemma 3.3: The generating function H(z) for P (S = s)
given from (1) is:

H(z) =
zrd!

R!
(z + rd)(z + rd + 1) . . . (z + R− 1) (2)

Proof: Note that (1) can be rewritten:

P (S = s) =
rd

R

X
rd≤x1<x2<...<xs−1≤R−1

1

x1x2 . . . xs−2xs−1

for s = 1, 2, . . . , R− rd + 1.
Let H(z) be the generating function for P (S = s) in

Lemma 3.2, namely,

H(z) =

R−rd+1X
s=1

P (S = s)zs.

For ease of notation, we first use G(z), the generating function
for P (S = s+1) rather than H(z), the function for P (S = s).
Consider the function

G(z) =
rd

R
(1 +

1

rd
z)(1 +

1

rd + 1
z) . . . (1 +

1

R− 1
z).



which can be written,

G(z) =
rd!

R!
(rd + z)(rd + 1 + z) . . . (R− 1 + z). (3)

To see that this is the generator function for P (S = s + 1),
one can multiply the terms of G(z) which shows that the
coefficient of zs−1 is

rd

R

∑
rd≤x1<x2<...< xk−1≤R−1

1
x1x2 . . . xk−2xk−1

.

Note that

H(z) =

R−rd+1X
s=1

P (S = s)zs = z

R−rd+1X
s=1

P (S = s)zs−1 = zG(z).

An explicit expression for H(z) is then, using (3), given by
(2).

Lemma 3.4: Given the probability distribution (1), the ex-
pected number of probes required is

E(K) = 1 +
RX

j=rd+1

1

j
(4)

and the variance is:

V ar(K) =

RX
j=rd+1

1

j
−

RX
j=rd+1

1

j2
. (5)

Proof: The mean and variance of probability distribution,
given its generator function H(z), are H ′(0) and H ′′(1) −
H ′(1)− [H ′(1)]2 respectively (e.g. [27]). From (2),

H ′(z) = zG′(z) + G(z) (6)

and

H ′′(z) = zG′′(z) + G′(z) + G′(z) = zG′′(z) + 2G′(z) (7)

Now taking the logarithm of both sides of (3),

log G(z) = log
rd!

R!
+

R−1X
i=rd

log(i + z)

so that

G′(z) = G(z)

R−1X
i=rd

1

z + i
(8)

and

G′′(z) = −G(z)

R−1X
i=rd

1

(z + i)2
+ G′(z)

R−1X
i=rd

1

z + i
. (9)

From (8) and (9) we see that

G′(1) = G(1)

R−1X
i=rd

1

1 + i
(10)

and

G′′(1) = −G(1)

R−1X
i=rd

1

(1 + i)2
+ G′(1)

R−1X
i=rd

1

1 + i
(11)

Now using (3),

G(1) =
rd!

R!
(rd + 1)(rd + 2) . . . R = 1 (12)

Using (6), (10) and (12), H ′(1) = G′(1) + G(1) =∑R−1
i=rd

1
1+i +1, from which (4) results. To obtain the variance,

note that, given (7), (10), and (11),

H ′′(1) = G′′(1) + 2G′(1) = −
RX

j=rd+1

1

j2

24 RX
j=rd+1

1

j

352

+ 2

RX
j=rd+1

1

j
.

(13)
Using (13) and (4) we see that

V ar(S) = −
RX

j=rd+1

1

j2
+

24 RX
j=rd+1

1

j

352

+ 2

RX
j=rd+1

1

j
+

1 +

RX
j=rd+1

1

j
−

241 +

RX
j=rd+1

1

j

352

(14)

from which (5) results.
Lemma 3.5: For large R, and rd fixed, the expected value

is approximately log(R/rd), and the variance approximately

V ar(S) ≈ log(R/rd)− π2

6
+

rdX
j=1

1

j2
. (15)

Proof: Consider a fixed rd and let R→∞. From (4),

E(S) = 1 +

RX
j=rd+1

1

j
≈ 1 + log(R/rd) ≈ log(R/rd).

Using (5) and the fact that
∑∞

j=rd+1
1
j2 = π2

6 we find that

V ar(S) =

RX
j=1

1

j
−

rdX
j=1

1

j
−

RX
j=1

1

j2
+

rdX
j=1

1

j2

≈ log(R/rd)− π2

6
+

rdX
j=1

1

j2

as in (15).
Theorem 3.6: If replicas of a document neither arrive nor

leave the system during a search, AWARE has a probability of
finding the document in s steps according to (1). It thus also
has an expected number of steps and variance as given in (4)
and (5) respectively.

Proof: Nearest replicas are probed successively and
replicas have been uniformly distributed among all possible
replicas by the hash function h(·, ·). Thus, probing the nearest
replica is equivalent to searching the replica space 1, . . . , R
randomly and thus we can directly apply Lemma 3.2.

D. Dynamic Behavior

We now consider the case when the replica situation alters
during a search.

Theorem 3.7: If replicas of a document arrive or leave the
system during a search, AWARE will perform as in Theorem
3.6, but is not guaranteed to return the closest document. It
is guaranteed that the replica chosen for document download
will be at least as close as the closest replica that persisted
during the entire search.

Proof: The correctness and termination Lemmas (3.1 and
3.2, respectively) still apply under dynamic conditions. The
only difference is that in a dynamic system, the addition of



Listing 4 K-PROBES: Location-unaware parallel probes
1: r ← R;
2: while r ≥ 1 do
3: p← min(k, r); /* Number of probes this turn */
4: P ← (p distinct random indices from [1, r]);
5: ∀i ∈ P : Check for document h(i, d) in parallel;
6: if any request was successful then
7: return document retrieved from closest actual replica;
8: end if
9: r ← min(∀i ∈ P)− 1;

10: end while
11: return nil;

replicas may cause the creation of a replica outside the current
range. The effect is that freshly-added replicas may be better
than the one actually selected for download. (In fact, only
previously probed nodes that claimed non-existence at probe
time but later turned into replica holders can be closer.)

E. Basic Lookup: Location-Unaware, Reliable Case

Not all DHTs support location awareness or can easily be
equipped with a location service. In this case, any replica
(not necessarily close) can be located by choosing probes
differently. Care should be taken not to select a deterministic
method, such as exactly halving the range. This would result in
every request going to the same replica, negating the benefits
of distributed document retrieval.

The recommended way is thus to select the next probe
from the range using a uniformly distributed random process.
This closely follows the location-aware algorithm, resulting in
the same properties, such as efficiency and good distribution
properties, with the notable exception of unknown distance.

If preference should be given to local servers, instead of a
single probe, k probes can be sent in parallel, resembling a
(k + 1)-ary search. While this also may be useful in location-
aware scenarios, the potential benefit seem to mainly lie in the
location-unaware (i.e., random probing) scenarios.

To avoid taxing the system excessively, care should be taken
not to directly issue a request for the entire document, but
merely a probe for its existence, unless the document is known
to be very small. Listing 4 illustrates a basic algorithm for k
parallel probes. For ease of explanation, it assumes that a node
that has replied and indicated having a replica will still have
it in the short interval between probe response and document
request. Section III-F presents a more sophisticated version.

F. Full Lookup

In the above descriptions, we have assumed the existence
of a reliable network transport, which is often not the case.
Therefore, the lookup function needs to be able to handle slow
responses or machines that do not respond at all. Reasons
include overload and outages of network links or nodes.
Therefore, the algorithm needs to be able select a replica with
fewer answers. The lack of an answer (or a “resource status
unknown” reply issued during DHT reconfiguration) cannot
be taken as an indication to shrink the probing range. Only
true negative answers (“I do not have the document”) can be
used to shrink the range.

Listing 5 LOOKUP: Full algorithm; handles unresponsive
nodes and timeouts
1: r ← R;
2: B ← ∅; /* Blacklist of unresponsive nodes */
3: label retry;
4: while r ≥ 1 do
5: b← min(k, |[1, r] \ B|); /* Number of probes */
6: P ← (b distinct indices from [1, r]\B); /* Pick according to distance

metric or randomly */
7: ∀i ∈ P : Send query for document h(i, d);
8: Start timeout with period τ ;
9: while fewer than min(b, q) replies processed this turn do

10: Wait for timeout or next reply;
11: if timeout then
12: B ← B ∪ P;
13: goto retry;
14: end if
15: Y ← instance index of replying node;
16: if reply was positive then
17: if document retrieval successful then
18: return document;
19: end if
20: else
21: r ← min(r, Y − 1); /* Never raise r again */
22: end if
23: end while
24: end while
25: return nil;

Listing 5 describes the full lookup algorithm that also
handles timeouts, unreachable nodes, and nodes ceasing to
be replica holders during the query process. The behavior is
controlled by τ , the per-step timeout period, and q, the number
of query replies that are sufficient before continuing to the next
step.

The algorithm is able to take advantage of locality, but will
also work without that information. (The generalization to use
a sliding window of at most k outstanding messages that have
not yet timed out is straightforward.) It successfully returns a
document if at least one of the replica holders was reachable
(within the timeout constraints) for the entire duration of the
algorithm. In general, this means that if at least one replica’s
holder is reachable, the replica will be found. Of course, with
an increasing number of unreachable nodes, an increasing
effort is required to find this document. Nevertheless, this
property makes RE useful even in harsh environments such
as ad-hoc networks.

IV. MEASUREMENTS

We compared, by simulation, the effect on total time to
obtain a replica, when location information is used to choose
the nearest replica (AWARE algorithm) and when a node is
picked randomly independent of cost (random algorithm). To
obtain realistic delay information, we estimated the delay
distribution from data obtained from [28], which consisted of
RTT probes from 5 locations (3 different ISPs in Switzerland,
one in Japan and one in the United States).

All results are obtained from the average of 500 simulation
runs, including error bounds at 95% confidence. We show
sample confidence intervals whenever they do not detract
from visibility. In all cases, the intervals were verified to be
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Fig. 4. (a) The average number of probing rounds needed as a function of the maximum number of replicas R (for rd = 5 replicas of the document) when
using the AWARE and random algorithms both agree with the expected value from (4). (b) Using AWARE, the average time to obtain the document does not,
in general, increase as a function of R. (c) The average number of probing rounds needed as a function of the number of replicas rd that exist (for R = 250
maximum replicas) when using the AWARE and random algorithms both agree with the expected value from (4). (d) Using AWARE, the average time to obtain
the document decreases significantly per additional replica when for relatively few replicas, but the benefit is minimal after a small critical mass.

in agreement with the general conclusions. The results are
illustrated in Figure 4. The experimental results agree with
the derivations in Section III-B, and show that AWARE is far
quicker at retrieving the document than just location unaware
probing.

Interestingly (Figure 4(b)), the average time to obtain the
document does not, in general, increase as the maximum
number of replicas R increases. This confirms the assertion
that even choosing R to be large has little negative influence
on the speed of retrieving a document. In addition, the relative
decrease in search time and number of rounds by adding
further replicas (i.e. increasing rd) is small after the initial
boost of adding a few replicas (Figure 4(d)). This property of
an initial boost is related to the oft remarked “power of two
choices” [29].

V. APPLICATIONS

RE opens up new possibilities for applications that require
high-performance access to dynamically replicated and up-to-
date information content. It enables a wide variety of appli-
cations, ranging from a uniform paradigm for web serving/
web mirroring/content distribution/web caching to distributed
storage or collaboration in ad-hoc wireless networks. The latter
environment differs significantly from wired networks in terms
of link and node reliability as well as latency and transmission
costs. Reliable location of a close-by replica is thus of key
importance. Constant probing by replica holders to ascertain
whether they still are up to date would also incur unacceptable
loads on the ad-hoc network.

RE, is well suited for many applications and those with
specific requirements can use RE in combination with more

traditional approaches such as caching, redirection, centralized
directories, or distributed computation, as described below.

Caching: Even though RE often eliminates the need
for caching, there may be instances where additional caches
can be useful, including disconnected operation. In fact, RE
improves the scalability of replication, compared with a single
original document, because verifying whether cache contents
are still current (or installing an update callback with a replica
holder) imposes additional load on the replica holder. Having
more up-to-date replica holders available will significantly
reduce the per-replica-holder load.

Redirection: When a particular replica holder is over-
loaded, it may return a list of pointers to known caches or
other nearby replicas (or replica holders) instead of incurring
additional load by returning the document.

Directory Backup: RE may also serve as a distributed
backup solution to centralized replication directories. If the
directory places at least some replicas per document according
to the RE rules, the system will continue to work even if the
directory service becomes unavailable. The directory server
may have placed some of the replicas at strategic locations
independent of the RE rules to obtain better performance or
physical security according to specialized rules. These replicas
will not be used during the outage of the directory server, but
all others will continue to work as if nothing happened: the
perfect failsafe solution.

Distributed Computation: The resources addressed
through DHT and RE need not necessarily be data blocks, but
they can also be programs. RE can thus be used as a platform
for distributed computation.



VI. SUMMARY AND CONCLUSIONS

Distributed storage systems based on DHTs promise the
provision of reliable and resilient access to data, a key element
of which is a powerful replica management system. We have
identified a catalog of criteria that can be used to classify
these systems and then described a novel method, replica
enumeration, that fulfills all of the criteria identified with the
exception of location variability (Table I).

In summary, RE is a fully distributed approach that re-
quires neither state nor control information, while providing
a very efficient lookup performance. Its power and versatility
make RE very useful in a wide range of systems, ranging
from server-farm load balancing over a distributed backup
solution for centralized directory systems to scalable globally
distributed storage systems.

Our simulations show that even locality-unaware (random
probing) systems perform well and that the expected number
of probing rounds is of logarithmic order This indicates that
it scales well with the maximum number of replicas, R, and
that there is already a significant performance improvement
for popular documents (i.e., replicated on more than one node)
with only a few replicas.

Using locality information considerably improves on the
document retrieval delay. The expected time to locate a
document is, to all and intents and purposes, independent of
R and very small: only a couple of typical Internet round-trip
times.

The next steps include examining further applications,
derivation of hash functions with locality properties, evalu-
ation of approaches to improve the load-balancing properties
without additional latency, and extension of the quantitative
analysis to the location-unaware and K-PROBE cases.
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