
Pushing XPath Accelerator to its Limits

Christian Grün Alexander Holupirek Marc Kramis
Marc H. Scholl Marcel Waldvogel

Department of Computer and Information Science
University of Konstanz, Germany

<Firstname>.<Lastname>@uni-konstanz.de

ABSTRACT
Two competing encoding concepts are known to scale well
with growing amounts of XML data: XPath Accelerator en-
coding implemented by MonetDB for in-memory documents
and X-Hive’s Persistent DOM for on-disk storage. We iden-
tified two ways to improve XPath Accelerator and present
prototypes for the respective techniques: BaseX boosts in-
memory performance with optimized data and value index
structures while Idefix introduces native block-oriented per-
sistence with logarithmic update behavior for true scalabil-
ity, overcoming main-memory constraints.

An easy-to-use Java-based benchmarking framework was
developed and used to consistently compare these competing
techniques and perform scalability measurements. The es-
tablished XMark benchmark was applied to all four systems
under test. Additional fulltext-sensitive queries against the
well-known DBLP database complement the XMark results.

Not only did the latest version of X-Hive finally surprise
with good scalability and performance numbers. Also, both
BaseX and Idefix hold their promise to push XPath Ac-
celerator to its limits: BaseX efficiently exploits avail-
able main memory to speedup XML queries while Idefix
surpasses main-memory constraints and rivals the on-disk
leadership of X-Hive. The competition between XPath Ac-
celerator and Persistent DOM definitely is relaunched.

1. INTRODUCTION
XML has become the standard for universal exchange of

textual data, but it is also increasingly used as a storage for-
mat for large volumes of data. One popular and successful
approach to store and access XML data is to map docu-
ment nodes to relational encodings. Based on the XPath
Accelerator encoding [11], the integration of the Staircase
Join [12], an optimizing to-algebra translation [4], and an
underlying relational engine that is tuned to exploit vast
main memories, the MonetDB system currently provides un-
rivalled benchmark performance for large XML documents
[3]. This paper describes and evaluates two lines of research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Performance
and Evaluation of Data Management Systems (EXPDB 2006),
June 30, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-463-4 ...$5.00.

aiming at further improvements. We implemented two ex-
perimental prototypes, focusing on current weaknesses of the
MonetDB system: the lack of value-based indexes and the
somewhat less thrilling performance once the system gets
I/O-bound. Separate prototypes have been chosen because
they allow us to apply independent code optimizations.

Evaluation. The widely referenced XMark benchmark [20]
and the well-known DBLP database [16] were chosen for
evaluation to get an insight into both the current limita-
tions and the proposed improvements of XPath Accelera-
tor. BaseX is directly compared to MonetDB [2] as both
are main-memory based and operate on a similar relational
encoding. Idefix is compared to X-Hive [23] as both are
mainly based on secondary storage. The main difference
to Idefix is that X-Hive stores the XML as a Persistent
DOM [13]. Both MonetDB and X-Hive were chosen because
current performance comparisons [3] suggest them to be the
best available solutions for either in-memory or persistent
XML processing. In the course of this work, published re-
sults about MonetDB and X-Hive could be revisited. Both
BaseX and Idefix strive for outperforming their state-of-
the-art competitors.

Contributions. Our main contribution is the evaluation
of our approaches against the state-of-the-art competitors,
using our own benchmarking framework Perfidix. In more
detail: The first prototype, BaseX, pushes in-memory XML
processing to its limits by applying thorough optimizations
and an index-based approach for processing predicates and
nested loops. The second prototype, Idefix, linearly scales
XPath Accelerator beyond current memory limitations by
efficiently placing it on secondary storage and introducing
logarithmic update time1. Finally, the use of our bench-
marking framework Perfidix assures a consistent and re-
producible benchmarking environment.

Outline. The improvements to the XPath Accelerator en-
coding and its implementation are described by introducing
our two prototypes (Section 2). We intensively evaluated
and compared the state-of-the-art competitors in the field
of XML-aware databases against our optimized prototypes
(Section 3). In Section 4, we summarize our findings and
have a look at our future work.

2. PUSHING XPATH ACCELERATOR
Attracted by the approved and generic XPath Accelerator

concept, we were initially driven by two basic questions: how
far can we optimize main-memory structures and algorithms

1The update performance of Idefix was not yet measured
due to the current alpha-level update implementation.

pre par token kind att attVal

0 0 db elem
1 1 address elem id add0
2 2 name elem title Prof.
3 3 Hack Hacklinson text
4 2 street elem
5 3 Alley Road 43 text
6 2 city elem
7 3 0-62996 Chicago text
8 1 address elem id add1
9 2 name elem
10 3 Jack Johnson text
11 2 street elem
12 3 Pick St. 43 text
13 2 city elem
14 3 4-23327 Phoenix text

par kind/token attribute

...0000 0.....0000 nil

...0001 0.....0001 0000...0000

...0010 0.....0010 0001...0001

...0011 1.....0000 nil

...0010 0.....0011 nil

...0011 1.....0001 nil

...0010 0.....0100 nil

...0011 1.....0010 nil

...0001 0.....0001 0000...0010

...0010 0.....0010 nil
...

id text

...0000 Hack Hacklinson

...0001 Alley Road 43

...0010 0-62996 Chicago

...0011 Jack Johnson

...0100 Pick St. 43

...0101 4-23327 Phoenix

id attVal

...0000 add0

...0001 Prof.

...0010 add1

id att

...0000 id

...0001 title

id tag

...0000 db

...0001 address

...0010 name

...0011 street

...0100 city

XML Document Mapping

TextIndex

Node Table

AttValIndex

TagIndex AttNameIndex

Figure 1: Relational mapping of an XML document (left), internal table representation in BaseX (right)

to efficiently work with the relational encoding? Next, which
data structures are suitable to persistently map the encod-
ing on disk and allow continuous updates? Two different
implementations are the result of our considerations: Ba-
seX creates a compact main-memory representation of rela-
tionally mapped XML documents and offers a general value
index, and Idefix offers a sophisticated native persistent
data structure for extending the XML storage to virtually
unlimited sizes.

2.1 BaseX – Optimized in-memory processing
BaseX was developed to push pure main memory based

XML querying to its limits both in terms of memory con-
sumption and efficient query processing. Main memory is
always limited, compared to the size offered by secondary
storage media, so we aimed at optimizing the main-memory
representation of the XML data to overcome the limita-
tions. Main-memory XQuery processors such as Galax [7] or
Saxon [15] work efficiently on small XML files, but querying
gets troublesome for larger files as the temporary XML rep-
resentations occupy 6 to 8 times the size of the original file
in main memory. MonetDB [2] is designed as a highly effi-
cient relational main memory database, and its Pathfinder/
XQuery extension [3] applies relational operations to process
XML node sets at an amazing speed.

Our first Java prototype can be seen as a hybrid between
relational and native XML processing. It uses a relational,
edge-based pre/parent encoding for XML nodes, but issues
arising from the set-oriented approach, such as the ordered-
ness of XML node sets, can be evaded as all the data can
be processed sequentially, thus simplifying orderedness for
location step traversals. The current implementation can be
used both as a real-time XML query tool and as a query ap-
plication. XPath expressions can be passed on via the com-
mand line. Alternatively, an interactive mode is available
to directly enter queries which are processed locally or by a
BaseX server instance. XML files can be saved as database
files to avoid future parsing of the original documents.

Data structures. The system is mainly built on two sim-
ple yet very effective data structures that guarantee a com-
pact mapping of XML files: an XML node table and a slim
hash index structure. The relational structure is represented
in the node table, storing the pre/parent references of all

XML nodes; the left table of Figure 1 displays a mapping
for the XML snippet shown in Figure 2. The table further
references the token of a node (which is the tag name or
text content) and the node kind (element or text). At-
tribute names and values are stored in a two-dimensional
array; a nil reference is assigned if no attributes are given.
All textual tokens – tags, texts, attribute names and values
– are uniformly stored in a hash structure and referenced
by integers. To optimize CPU processing, the table data is
exclusively encoded with integer values. (see Figure 1, right
tables).

<db>

<address id=’add0’>

<name title=’Prof.’>Hack Hacklinson</name>

<street>Alley Road 43</street>

<city>0-62996 Chicago</city>

</address>

<address id=’add1’>

<name>Jack Johnson</name>

<street>Pick St. 43</street>

<city>4-23327 Phoenix</city>

</address>

</db>

Figure 2: XML snippet, mapped in Figure 1

To save memory, some table values store more than one
attribute. Based on the extensive evaluation of numerous
large XML instances up to 38 GB, we noted that the maxi-
mum values for token references showed out to be constantly
smaller than 32 bit, and as the node kind requires only 1 bit,
the two values are merged into one integer. The remaining
space will be used for additional node information in future.
The attribute name and value references are merged as well,
sharing 10 and 22 bits, respectively. The original values
can be efficiently accessed via CPU-supported bit shifting
operators.

The second data structure, the hash index, is basically
an implementation of a linked list hash structure. Though,
some optimization was done to minimize memory usage and
to allow very quick access to the stored tokens. Similar to
the table structure, the hash index was flattened to work on
simple integer arrays. All arrays are sized by a power of two,

and the bitwise AND operator (&) cuts down the calculated
hash value to the array size. This approach works faster than
conventional modulo (%) operations as the common CPU
operators are directly addressed. Moreover the array size
does not rely on the calculation of prime numbers, and the
index structure can be quickly resized and rehashed during
index generation, leading to a quick document shredding
process.

 ArrayPos 0 1 2 3

 TOKENS nil XML XPath XSLT

 BUCKETS nil nil nil 1

 ENTRIES nil 2 nil 3

 hashValue("XML") " 3

 � ENTRIES [3] " 3
 � TOKENS [3] = "XML" ? " false
 � BUCKETS [3] " 1
 � TOKENS [1] = "XML" ? " true

�

�

�

�

Figure 3: Hash index structure: finding ”XML”

Three arrays suffice to organize all hash information (see
Figure 3). The TOKENS array references the indexed to-
kens. The ENTRIES array references the positions of the
first tokens, and the BUCKET array maps the linked list
to an offset lookup. After a hash value has been calculated
for the input token and trimmed to the array size, the EN-
TRIES array returns the pointer to the TOKENS array.
If the pointer is nil, no token is stored; otherwise the to-
ken is compared to the input. If the comparison fails, the
BUCKET array points to the next TOKENS offset or yields
nil if no more tokens with the same hash value exist.

Querying. The integrated XPath parser evaluates basic
XPath queries, including all XPath axes, node tests and
basic predicates (with textual, numeric and positional mat-
ches). Similar to MonetDB, BaseX is built on a step-based
path execution. It has been pointed out that intermediate
context sets can get pretty large whereas the result set is of-
ten small [5]. This observation is particularly obvious when
commonly used and highly selective predicates occur in the
query, such as those pointing, e.g., to single attribute ids.
To speedup predicate queries, we thus chose to introduce a
general value index [17] for all text nodes and attribute val-
ues. The index is applied when exact string comparisons are
found in the query. Moreover, it is also very effective when
nested loops with predicate joins are encountered, reducing
the quadratic to a linear execution time without the need
of additional algorithms. More detailed information can be
found in the evaluation section 3.4.

The value indexes are implemented pretty straightforward.
The existing text and attribute value indexes are extended
by references to the table’s pre values, resulting in an in-
verted list. The correct use of the index is a little bit trick-
ier: as the index returns a node set for the specified pred-
icate, the XPath query has to be inverted and rewritten.
Descendant steps are converted into ancestor steps and vice
versa, and predicates are moved. In the following query

doc("XMark.xml")/site//item[@id = "item0"], item0 is
matched against the attribute value index. The resulting
context set is matched against the item parent, the site

ancestor and doc("XMark.xml") as the initial context node.
The internal query reformulation thus yields index::node()
[@id = "item0"]/parent::item[ancestor::site/parent:

:doc()]. A detailed analysis on rewriting reverse to forward
axes can be found in [19].

The Staircase Join [12] offers three basic concepts to speed
up path traversal: Pruning, Partitioning and Skipping. The
basic ideas behind all three concepts could be modified and
applied on the pre/parent encoding, thus accelerating step
traversals by orders of magnitudes2. Depending on the cur-
rent node set, further speedups are applied. One of them
is described in more detail: the Pruning algorithm, which
is part of the Staircase Join, removes nodes from a con-
text set that would otherwise be parsed several times and
yield duplicate result nodes. For example, if a context node
has descendant context nodes, these can be pruned before
a descendant step is traversed. But in fact pruning is un-
necessary in many cases; prunable descendant nodes never
occur when only child location steps are evaluated. Refer-
ring to the queries in our performance evaluation, none of
the queries actually needs a Pruning of the context set. This
is why we added a flag, stating if Pruning is necessary or not.

Thanks to the optimizations, the main-memory represen-
tation of an XML file occupies from 0.6 to 2.5 the size of the
original document on disk (find examples in Table 1). The
included value index just represents 12 to 18% of the main-
memory data structure, and XML instances up to 13 GB
have been successfully mapped into memory, still allowing
efficient querying of the data.

Document File Size MM Size Factor

Treebank 82 MB 182 MB 2.21
XMark 111 MB 142 MB 1.28
DBLP 283 MB 526 MB 1.86
Swissprot 1.43 GB 2.41 GB 1.69
Wikipedia 4.3 GB 5.75 GB 1.34
XMark 11 GB 10.65 GB 0.97

Table 1: Main-memory consumption of BaseX

2.2 Idefix – Native block storage for XPath
Accelerator

The trigger for evolving a native block storage for XPath
Accelerator was twofold. First, the current reference im-
plementation MonetDB does not scale linearly beyond the
main-memory barrier. As soon as the XML data exceeds the
available RAM, the performance either degrades exponen-
tially due to extensive swapping, or the database enters an
unpredictable state. Second, the latest update functionality
introduced with [4] essentially runs in linear time. Linear
overhead for pre value relabeling is avoided only for page-
local modifications. As soon as a whole page must be added
or removed, the page index must be updated – an operation
which runs in O(n) time.

Idefix aims at efficiently querying and updating large-
scale persistent XML data, e.g., as it would be required

2The Staircase Join demands the storage of an additional
post or size value. This is why no exact equivalence can
be derived for the exclusive pre/parent representation

to map file system metadata to XML. We present a set
of index, tuple, and block structures that allow to update
XPath Accelerator encodings in O(log n) time while push-
ing the amount of available XML data beyond current main-
memory limits. The trade-off is both the logarithmic cost
to lookup a pre value and a potential loss of performance
due to disk-based I/O.

The prototype demonstrating the feasibility of our ideas
is written in Java. A rudimentary storage manager provides
access to a block-oriented 64-bit storage. Idefix currently
supports an in-memory block storage for testing purposes
and a random-access file-based block storage for benchmark-
ing. To bypass the file system cache of the operating system
and gain access to vast amounts of block storage, an iSCSI-
based block storage is in the works. The file system cache
can not exploit the tree-knowledge found in XPath Accel-
erator, still occupies memory and blurs potential scalability
measurements because smaller XML data sets might be fully
cached whereas larger XML data sets might not.

Block allocation is handled similar to XFS [22]. Two B+
Trees [10] support the dynamic allocation of single blocks
or extents (multiple contiguous blocks) close to a requested
address. The storage manager currently implements a sim-
ple LRU block buffer. Recent caching algorithms such as
temporal-spatial caches [14, 9] could be plugged-in if re-
quired.

Index Structures. Idefix employs two well-known block-
based index structures to map 64-bit keys or positions to
tuple addresses consisting of a 48-bit block address and a
16-bit block offset. Keys are immutable, unique, in dense
ascending order, and generated by a persistent sequence as
it is commonly found in database systems. Positions are
volatile in the sense that they might reference different tu-
ples over time due to updates. Note that there currently are
no fulltext, path, or value index structures.

The Positional B+ Tree [21] is a slight modification of a
B+ Tree. B+ Trees store the key range contained in each
child node. In contrast, positional B+ Trees store the num-
ber of leaf values contained in the whole subtree of each
child. This allows to access any element of the index by po-
sition and in logarithmic time. Updates potentially trigger
expensive rebalancing operations.

The Trie [6] is a dense distribution of unique keys as they
are frequently occurring in Idefix. This specific key distri-
bution allows for an index structure that does not require
rebalancing. A set of hierarchical arrays can efficiently be
queried and updated in logarithmic time because the array
(i.e., block) offset of each level can be precomputed.

A third index structure appearing in Idefix, the Hash
Map, is only held in main memory to speed up certain op-
erations and can be reconstructed from a trie-based index
structure at any time.

Tuple Structures. Figure 4 shows the core tuple and in-
dex structures of Idefix. XPath Accelerator is persistently
stored in the node list. Each XML node is stored as a node
tuple (see Table 2) at the node-list-position equal to the pre

value. Names and values are offloaded from the node list and
separately stored as name tuples (Figure 3) in the name map
and value tuples (Figure 4) in the value map respectively.

The offloading of strings has four advantages. First, a
very tight packaging of the frequently accessed node list re-
sults in fewer I/Os. Second, the name map can be kept in
memory due to its small size even for very large XML data

Node ListName Map Value Map

P

T

T

P
Positional
B+Tree

Hash
MapTrieT

T

H

H

Figure 4: Core tuple & index structures of Idefix

[18], leading to constant-time name-to-reference resolution.
Third, filtering of node tuples according to a name can be
reduced to a fast reference (integer) comparison. Fourth, the
reference is usually much smaller than the string. A disad-
vantage is the additional cost of retrieving a value due to the
additional mapping and potentially distant block address of
the value tuple.

The ancestor axis is supported by an immediate reference
to the parent element. The Staircase Join will therefore
have to mix keyed and positional access. Since the absolute
position is lost after a keyed access, the Staircase Join must
always work with relative positions3. The attribute count
is stored to quickly skip attributes if they are not required
for evaluation. Nevertheless, attribute nodes are kept close
to the corresponding element nodes to streamline attribute-
related evaluations.

Field Bytes D E A T

kind 1 x x x x
key 1..9 x x - -
parentKey 1..9 x x - -
size 8 x x 0 0
level 1 x x x x
attributeCount 1 - x - -
nameReference 1..5 x x x -
valueReference 8 - - x x

Table 2: Node tuple stored in node list. The follow-
ing kinds are currently stored (denoted with ’x’) for
an XML node: (D)ocument, (E)lement, (A)ttribute,
and (T)ext. Variable-length encodings are denoted
with ’..’. ’0’ is a constant unstored zero. ’-’ means
not stored.

Node Tuple (Table 2). A node tuple can be accessed both
by position and by key. Positional access is provided by a
positional B+ Tree. Note that a positional B+ Tree does
not suffer from the linear-time relabeling of pre values re-
quired after an update and hence offers logarithmic update
behavior. Positional access is required for the Staircase Join
that basically operates on pre values, i.e., positions. Keyed
access is provided by a trie. It is required to support future

3A reverse access path to find the absolute position will be
investigated.

Field Bytes Description

count 8 # of occurrences
name .. UTF-8-encoded String

Table 3: Name tuple stored in name map

Field Bytes Description

value .. UTF-8-encoded String

Table 4: Value tuple stored in value map

index structures (such as a fulltext index) that reference
specific node tuples and must not lose their context after an
update.

Name Tuple (Table 3). A name tuple is accessed both by
name and by a key stored with the node tuple. The (reverse)
mapping between name and key is achieved by a hash map.
This access path is required to maintain the counter (i.e.,
the number of occurrences of the name in the stored XML
data) assigned to each name and to efficiently filter node
tuples by their name. The mapping between key and name
tuple is done by a trie and required whenever the name of a
node tuple must be resolved.

Value Tuple (Table 4). A value tuple is accessed by a key
stored with the node tuple. The mapping between key and
value tuple is done by a trie and required whenever the value
of a node tuple must be resolved.

Block Structures. Figure 5 shows the node, name, and
value block layouts. The first block shows a name or value
block containing two name or value tuples. The next three
blocks show an empty node block that is updated by adding
two new node tuples and finally has the first node tuple
removed.

Node Block. Node tuples must be locatable through two
different access paths. A keyed access will always yield a
node block address with an immediate node block offset
where the node tuple is stored. A positional access, in con-
trast, will return a node block address with a position rel-
ative to the block node. This position is locally resolved to
an immediate node block offset with the help of an intra-
node-block directory. This directory is always kept ordered
by the pre axis and grows bottom-up according to the num-
ber of node tuples in this node block. New node tuples
are appended to the last allocated node block if it still has
enough contiguous space between the directory and the last
inserted node tuple. If it is full, a new node block is allo-
cated. The insertion or deletion of one node tuple affects
both the positional B+ Tree as well as the trie. Due to up-
dates, a node block containing node tuples might be split or
merged with another node block. This operation has an up-
per bound of O(2m log n), which yields O(log n); m is the
number of affected node tuples. Defragmentation of node
blocks from which node tuples are deleted is postponed to
the next merge or split operation.

Name Block. Name tuples are written to disk like to a
content-addressable storage, i.e., each name is only stored
once. If a name is added, the hash map is looked up for
a key associated with it. If it is found, the name tuple is
located and the counter increased. The trie therefore maps
the key to the name block address and an immediate name

block offset where the name tuple is stored. If the name has
not been stored before, the name tuple is appended to the
last allocated name block if it fits. As soon as the last name
block is full, a new name block is allocated. A modified
name is treated like a new name. Deleting a name results in
a decrease of the counter. Name tuples with zero occurrence
remain accessible to support versioning. A garbage collector
could free unreferenced names from time to time if required.

Value Block. Value tuples are written to disk in a log-
structured fashion. If a new value tuple fits into the last
allocated value block, it is appended there. If the last value
block is full, a new value block is allocated. The trie maps
the new key to this value block address and the immedi-
ate value block offset where the value tuple was written.
The XML shredder assures that a value tuple is not bigger
than a single value block by splitting larger text nodes into
multiple smaller text nodes. This internal fragmentation of
text nodes is not visible to the upper layers in order not to
break the XPath or XQuery Data Model. A modified value
is treated like a new value. Deleted values again remain
accessible to support versioning.

API. Idefix currently offers a low-level API based on a
cursor pointing to a node tuple. The cursor can be moved to
an absolute or relative position as well as to a given key. The
cursor can retrieve all fields after locating the appropriate
node tuple. Name or value strings are lazily fetched from
the name and value map. New node tuples can be appended
to the end of the node list.

On a higher level, a rudimentary API allows to execute
a Staircase Join for a given context set on the descendant
axis including simple predicate evaluation. The resulting
context set consisting of ordered pre values can either be
passed to the next Staircase Join to implement a simple
XPath evaluation or materialized by fetching all fields of
each context node with the cursor.

3. PERFORMANCE EVALUATION

3.1 Perfidix – Evaluation framework
We used our own Java-based benchmarking framework

Perfidix to guarantee and facilitate a consistent evaluation
of all tested systems. The framework was initially inspired
by the unit testing tool JUnit [8]; it allows to repeatedly
measure execution times and other events of interest (e.g.,
cache hits). The results are aggregated, and average, min-
imum, maximum, and confidence intervals are collected for
each run of the benchmark.

A sample output for the Idefix 11MB XMark benchmark
is shown in Table 5. The whole benchmark was implemented
in one Java class and each Query as a Java method. Per-
fidix was configured to run the benchmark 5 times and only

0 2 1

Name/Value
Block Node Block 'Node Block Node Block ''

Figure 5: Name/Value & Node block layout

Method Unit Sum Min Max Avg StdDev Conf95 Runs

Query 1 ms 248 12 172 49.60 61.37 [00.00, 103.40] 5
Query 2 ms 312 49 103 62.40 20.37 [44.54, 80.26] 5
. .
Query 20 ms 215 41 48
Summary ms 17595 3228 4317

Table 5: Sample output for Idefix 11MB XMark benchmark run by Perfidix.

measure execution times of each method.

3.2 Test Data Sets
Our tests are based on the scalable XMark Benchmark [20]

and the XML version of the DBLP database [16]4. We for-
mulated six mainly content-oriented XPath queries for the
DBLP data, yielding small result sets (see Table 8), and im-
plemented the predefined XMark queries in our prototypes.
Detailed information on the queries can be found in [20].
Single queries will be described in more detail whenever it
seems helpful to understand the test results.

3.3 Process of measurement
Instead of splitting up query processing into single exe-

cution steps, our test results represent the systems’ overall
query execution times, including the compilation of queries
and the result serialization into a file. As all four systems
use different strategies for parsing and evaluating queries, a
splitting of the execution time would have led to inconsis-
tent results. Table 6 lists the methodology of execution time
measurements for each system.

System Compile Execute Serialize

MonetDB x x x
BaseX hard-coded x x
X-Hive x x x
Idefix hard-coded x x

Table 6: Methodology of execution time measure-
ments. ’x’ means included in overall execution time.

The hard-coded query execution plans of BaseX and Ide-
fix do not allow to include the time for parsing, compiling
and optimizing the queries, but we intend to extend the
MonetDB engine to produce query execution plans for Ba-
seX and Idefix. Meanwhile, the hard-coded query exe-
cution plans are carefully implemented based on the API
of each prototype to follow automated patterns and avoid
”smart” optimizations that can not easily be detected and
translated by a query compiler.

To get better insight into the general performance of each
system, we run each query several times and evaluated the
average execution time. As especially small XML docu-
ments are exposed to system- and cache-specific deviations,
we used different number of runs for each XML instance.
The number of executions is listed in Table 7.

Queries were excluded from the test when the execution
time was expected to take more than 24 hours (1GB XMark
Query 8, 9, 11 and 12 for X-Hive) or yielded error messages
(11GB XMark Query 11 and 12 for MonetDB). All test runs

4State: 2005/12/12, 283 MB

Document Size No. Runs

XMark 110 KB 100
XMark 1 MB 50
XMark 11 MB 10
XMark 111 MB 5
XMark 1 GB 5
XMark 11 GB 1
XMark 22 GB 1
DBLP 283 MB 5

Table 7: Query execution times

were independently repeated several times with a cold cache;
this was especially important for the 11GB XMark instance
which was only tested once at a time.

All tests were performed on a 64-bit system with a 2.2
GHz Opteron processor, 16 GB RAM and SuSE Linux Pro-
fessional 10.0 with kernel version 2.6.13-15.8-smp as oper-
ating system. Two separate discs were used in our setup
(each formatted with ext2). The first contained the system
data (OS and the test candidates), the second the XMark
and DBLP input data and the internal representations of
the shredded documents for each system. The query results
were written to the second disc. We used MonetDB 4.10.2
and X-Hive 7.2.2 for testing.

We compare the in-memory BaseX with MonetDB to
analyse the impact of the optimizations applied with Ba-
seX. Then we compare the disk-based Idefix with X-Hive
to confront natively persistent XPath Accelerator to Persis-
tent DOM. Finally, we compare Idefix with MonetDB to
verify our assumptions about the difference of an in-memory
and a disk-based system. The comparison of Idefix and Ba-
seX is not explicitly mentioned but can be deduced from the
presented figures and analysis.

3.4 Performance Analysis
Figure 6 gives an overview on the scalability of each sys-

tem and the average execution times of all XMark queries
and XML instances. First observations can be derived here:
MonetDB and BaseX can both parse XML instances up
to 11 GB whereas Idefix and X-Hive could easily read and
parse the 22 GB instance. The execution times for the 11GB
document increase for Idefix and MonetDB as some queries
generate a heavy memory load and fragmentation. The most
obvious deviations in query execution time can be noted for
the Queries 8 to 12, which all contain nested loops; details
on the figures are following.

An aggregation of the 20 XMark queries is shown in Fig-
ure 7, summarizing the logarithmic values of all XMark
query averages. All systems seem to generally scale lin-
early on the tested queries. MonetDB consumes an aver-
age time of 38 ms to answer a query, mainly because in-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

BaseX 110KB - 11GB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

MonetDB/XQuery 110KB - 11GB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

Idefix 110KB - 22GB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

X-Hive 110KB - 22GB

Figure 6: Scalability of the tested systems (x-axis: XMark query number, y-axis: time in sec)

 0

 20

 40

 60

 80

 100

 120

11GB1GB111MB11MB1MB110KB

BaseX
X-Hive

MonetDB
Idefix

Figure 7: Logarithmic Aggregation of all XMark
queries (y-Axis:

P20
i=1 log(avgi) in ms)

put queries are first compiled into an internal representation
and then transformed into the MonetDB-specific MIL lan-
guage. Though, the elaborated compilation process pays off
for complex queries and larger document sizes.

BaseX and MonetDB – XMark. Obviously, BaseX
yields best results for Query 1, in which an exact attribute
match is requested. The general value index guarantees
query times less than 10 ms, even for the 11 GB docu-
ment. MonetDB is especially good at answering Query 6,
requesting the number of descendant steps of a specific tag
name. MonetDB seems to allow a simple counter lookup,
thus avoiding a full step traversal.

The top of Figure 8 relates the query times for MonetDB
and BaseX and the XMark query instances 111MB, 1GB,

and 11GB. For the 111MB instance, BaseX shows slightly
better execution times than MonetDB on average which is
partially due to the fast query compilation and serialization.
The most distinct deviation can be observed for Query 3 in
which the evaluation time of position predicates is focused.
Results for Query 8 and 9 are similar for both systems, al-
though the underlying algorithms are completely different.
While MonetDB uses loop-lifting to dissolve nested loops [3],
BaseX applies the integrated value index, shrinking the
predicate join to linear complexity. The respective results
for the 1 GB and 11 GB instance underline the efficiency of
both strategies.

The Queries 13 to 20 yield quite comparable results for
MonetDB and BaseX. This can be explained by the some-
what similar architecture of both systems. The most ex-
pensive Queries are 11 and 12, which both contain a nested
loop and an arithmetic predicate, comparing double values.
To avoid repeated string-to-double conversions, we chose to
extract all double values before the predicate is actually pro-
cessed. This approach might still be rethought and general-
ized if a complete XQuery parser is to be implemented.

Idefix and X-Hive – XMark. Both Idefix and X-Hive
store the XML data on disk and consume only a limited
amount of memory for the buffer. They differ however in
the handling of query results. Idefix materializes all in-
termediate query results in main memory and only writes
them to disk after successfully executing the query. This
results in the extensive alluded memory consumption and
fragmentation for XML instances bigger than 1GB. X-Hive
immediately writes the results to disk.

We expected the systems to show query execution times
in the same order of magnitude as both are essentially disk

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16 18 20

111MB BaseX
111MB MonetDB

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

1GB BaseX
1GB MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

11GB BaseX
11GB MonetDB

 0.0001

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16 18 20

111MB IDEFIX
111MB MonetDB

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

1GB IDEFIX
1GB MonetDB

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

11GB IDEFIX
11GB MonetDB

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

111MB IDEFIX
111MB X-Hive

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

1GB IDEFIX
1GB X-Hive

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

11GB IDEFIX
11GB X-Hive

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

22GB IDEFIX
22GB X-Hive

Figure 8: Comparison of the candidates (x-axis: XMark Query number, y-axis: time in sec)

No Query Hits

1 /dblp/article[author/text() = ’Alan M. Turing’] 5
2 //inproceedings[author/text() = ’Jim Gray’]/title 52
3 //article[author/text() = ’Donald D. Chamberlin’][contains(title, ’XQuery’)] 1
4 /dblp/*[contains(title, ’XPath’)] 113
5 /dblp/*[year/text() < 1940]/title 55
6 /dblp//inproceedings[contains(@key, ’/edbt/’)][year/text() = 2004] 62

Table 8: DBLP queries

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6

BaseX
BaseX without index

MonetDB
IDEFIX
X-Hive

Figure 9: DBLP Execution Times (x-axis: DBLP
Query number, y-axis: time in sec)

bound. The effects of block allocation, buffer management,
and the maturity of the implementation (optimizations) as
well as the different materialization strategy were assumed
to have a minor impact. Idefix was expected to have a small
constant advantage because the queries are not compiled and
a disadvantage because it currently is fully synchronous, i.e.,
disk and CPU intensive phases do not overlap and hence
waste resources. Both systems are equal with respect to
value or fulltext indexes: while Idefix does currently not
support them, X-Hive was configured not to create them.

In Figure 8 (111MB and 1GB Idefix and X-Hive), our
expectations are only partially confirmed. With Query 7,
Idefix can take advantage of the name occurrence counter
(comparable to a reduced variant of the MonetDB path sum-
mary) and quickly calculates the count of a specific element
name. Note that this would take longer if the count would
be applied on a subtree, starting at a higher level. Queries
8 to 12 also clearly deviate. Here, the execution time of the
query is no longer simply disk-bound but dependent on the
decision of the query compiler and execution plan. Idefix
uses a hash-based join by default whereas X-Hive probably
executes a cross-join or another unapt join variant. Note
that Idefix does not estimate the sizes of the sets to join
but just picks the one first mentioned in the query.

The memory allocation and fragmentation resulting from
the full in-memory materialization of intermediate results
with Idefix has an unexpected though major impact on the
overall performance which is also aggravated by the garbage
collection of Java. The linear scalability beyond 1GB is
therefore slightly impaired. An immediate lesson learned is
to switch to the same serialization strategy as it is employed
with X-Hive.

Idefix and MonetDB – XMark. We consider Mon-
etDB to be the reference XMark benchmark in-memory im-

plementation. We expected Idefix to perform an order
of magnitude slower because it is disk-bound. The results
confirm the expectations and only step out of line for the
Queries 7 (see discussion of Idefix and X-Hive) and 10 to
12. In Figure 8 the plots for 111MB, 1GB, and 11GB for
Idefix and MonetDB consistently show a surprising result
for the queries 10 to 12 where MonetDB performs worse than
Idefix. The same argument, i.e., the query execution plan,
applies as with X-Hive. The main-memory consumption and
fragmentation of MonetDB to materialize intermediate re-
sults is a supporting argument.

BaseX – DBLP. The query performance for BaseX was
measured twice, with the value index included and excluded.
The results for BaseX and the Query 4 and 5 are similar
for all tests as the contains() function demands a full text
browsing for all context nodes. The index version of Ba-
seX wins by orders of magnitude for the remaining queries
as the specified predicate text contents and attribute val-
ues can directly be accessed by the index. The creation of
large intermediate result sets can thus be avoided, and path
traversal is reduced to a relatively small set of context nodes.

Idefix – DBLP. Figure 9 summarizes the average exe-
cution times for the queries on the DBLP document. The
lack of a value and fulltext index forces Idefix to scan large
parts of its value map to find the requested XML node. This
holds for all six queries and results in near-constant query
execution time for all DBLP Queries.

4. CONCLUSION AND FUTURE WORK
In this paper we presented two improvements backed with

their corresponding prototypes to tackle identified short-
comings with XPath Accelerator. The performance and
scalability of these two prototypes were measured and com-
pared to state-of-the-art implementations with a new bench-
marking framework.

The current prototype of BaseX outperforms MonetDB.
The tighter in-memory packaging of data as well as the value
index structure stand the test. Though, the presented eval-
uation times are still subject to change as soon as a more
elaborated query compilation is performed. Idefix can ef-
ficiently evaluate XML instances beyond the main-memory
barrier. The cost of making XPath Accelerator persistent
is paid-off for larger XML data sets. Idefix introduces log-
arithmic overhead to locate a node tuple by position or by
key. This overhead is negligible compared to the overhead
resulting from disk I/O and largely compensated by caches.
We regard our paradigm shift away from constant time array
lookups, as found in in-memory XPath Accelerator imple-
mentations, a good trade-off with disk-based implementa-
tions because it allows superior update behavior and scala-
bility.

The Persistent DOM concept as implemented with X-Hive
shows a scalability and query performance comparable to
XPath Accelerator. This is a surprising result since for-
mer versions of X-Hive did not even scale beyond the 1GB
XMark document [3].

Future Work. BaseX still lacks features such as the
support of several documents, namespaces or the storage of
some specific XML data, including comments or process-
ing instructions. Node information of this kind will lead to
an extension of the existing data structure. Moreover no
schema information is evaluated yet, and some effort has
still to be invested in implementing or integrating a com-
plete XPath and XQuery implementation.

However, the code framework was carefully designed to
meet the requirements of the XPath and XQuery specifica-
tions. A major focus will next be set on further indexing
issues, supporting range, partial and approximate searches.
Besides, some effort will be put on fulltext-search capabil-
ities, expanding the prototype to support flexible fulltext
operations as proposed by the W3C [1].

Idefix. The update functionality will next be fully imple-
mented and benchmarked. In the near future, we intend to
add a fulltext index as well as an XQuery-to-algebra com-
piler based on the engine of MonetDB. Further work will
explore pre-fetching, caching, pipelining, and schema-aware
techniques to exploit the Staircase Join-inherent knowledge
about the XML data to minimize disk touches while maxi-
mizing CPU utilization. Another domain will be the distri-
bution of XPath Accelerator across multiple nodes to further
increase the performance and scalability.

Perfidix. Initially developed as a simple benchmarking
framework to avoid error-prone repetitive manual tasks, Per-
fidix will be integrated into a development environment
as well as enriched with a chart generator. The achieved
progress can then constantly be tracked while the code is
being optimized or new concepts and ideas are introduced.

Finally, we will investigate how BaseX and Idefix can
be conceptionally merged to streamline our research efforts
and profit from both improvements.

5. ACKNOWLEDGMENTS
We would like to thank Daniel Butnaru, Xuan Moc, and

Alexander Onea contributing many hours of coding to bring
the prototypes and Perfidix up and running. Moreover we
thank our anonymous reviewers for useful comments and
suggestions. Alexander Holupirek is supported by the DFG
Research Training Group GK-1042 Explorative Analysis and
Visualization of Large Information Spaces.

6. REFERENCES
[1] S. Amer-Yahia, C. Botev, et al. XQuery 1.0 and

XPath 2.0 Full-Text. Technical report, World Wide
Web Consortium, May 2006.

[2] P. Boncz. Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications. PhD thesis,
Universiteit van Amsterdam, Amsterdam, The
Netherlands, May 2002.

[3] P. Boncz, T. Grust, et al. MonetDB/XQuery: A Fast
XQuery Processor Powered by a Relational Engine. In
Proc. of ACM SIGMOD/PODS Int’l Conference on
Management of Data/Principles of Database Systems,
Chicago, IL, USA, June 2006.

[4] P. Boncz, S. Manegold, and J. Rittinger. Updating the
Pre/Post Plane in MonetDB/XQuery. In Proceedings
of 2nd International Workshop on XQuery
Implementation, Experience and Perspectives
(XIME-P), Baltimore, Maryland, USA, June 2005.

[5] N. Bruno, N. Koudas, et al. Holistic Twig Joins:
Optimal XML Pattern Matching. In Proc. of ACM
SIGMOD/PODS Int’l Conference on Management of
Data/Principles of Database Systems, pages 310–321,
Madison, Wisconsin, USA, June 2002.

[6] R. de la Briandais. File Searching Using Variable
Length Keys. In Proceedings of Western Joint
Computing Conference, pages 295–298, 1959.

[7] M. Fernández, J. Siméon, et al. Implementing XQuery
1.0: The Galax Experience. In Proc. of Int’l
Conference on Very Large Data Bases (VLDB), pages
1077–1080, Berlin, Germany, Sept. 2003.

[8] E. Gamma and K. Beck. JUnit – A Regression Testing
Framework. http://www.junit.org/.

[9] B. S. Gill and D. S. Modha. WOW: Wise Ordering for
Writes - Combining Spatial and Temporal Locality in
Non-Volatile Caches. In Proc. of USENIX Conference
on File and Storage Technologies (FAST), San
Francisco, CA, USA, Dec. 2005.

[10] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[11] T. Grust. Accelerating XPath Location Steps. In Proc.
of ACM SIGMOD/PODS Int’l Conference on
Management of Data/Principles of Database Systems,
pages 109–120, Madison, Wisconsin, USA, June 2002.

[12] T. Grust, M. v. Keulen, and J. Teubner. Staircase
Join: Teach a Relational DBMS to Watch its (Axis)
Steps. In Proc. of Int’l Conference on Very Large Data
Bases (VLDB), pages 524–525, Berlin, Germany, Sept.
2003.

[13] G. Huck, I. Macherius, and P. Fankhauser. PDOM:
Lightweight Persistency Support for the Document
Object Model. German National Research Center for
Information Technology, Integrated Publication and
Information Systems Institute, 1999.

[14] S. Jiang, X. Ding, et al. DULO: An Effective Buffer
Cache Management Scheme to Exploit Both Temporal
and Spatial Localities. In Proc. of USENIX
Conference on File and Storage Technologies (FAST),
San Francisco, CA, USA, Dec. 2005.

[15] M. Kay. SAXON – The XSLT and XQuery Processor.
http://saxon.sourceforge.net/.

[16] M. Ley. DBLP – Digital Bibliography & Library
Project.
http://www.informatik.uni-trier.de/∼ley/db/.

[17] J. McHugh and J. Widom. Query Optimization for
XML. In Proc. of Int’l Conference on Very Large Data
Bases (VLDB), pages 315–326, Edinburgh, Scotland,
UK, Sept. 1999.

[18] M. Nicola and B. v. d. Linden. Native XML Support
in DB2 Universal Database. In Proc. of Int’l
Conference on Very Large Data Bases (VLDB), pages
1164–1174, Trondheim, Norway, Aug. 2005.

[19] D. Olteanu, H. Meuss, et al. XPath: Looking Forward.
In EDBT Workshops, pages 109–127, Prague, Czech
Republic, Mar. 2002.

http://www.junit.org/
http://saxon.sourceforge.net/
http://www.informatik.uni-trier.de/~ley/db/

[20] A. R. Schmidt, F. Waas, et al. XMark: A Benchmark
for XML Data Management. In Proc. of Int’l
Conference on Very Large Data Bases (VLDB), pages
974–985, Hong Kong, China, Aug. 2002.

[21] S. Tatham. Counted B-Trees.
http://www.chiark.greenend.org.uk/∼sgtatham.

[22] R. Y. Wang and T. E. Anderson. xFS: A Wide Area
Mass Storage File System. Technical Report
UCB/CSD-93-783, EECS Department, University of
California, Berkeley, 1993.

[23] X-Hive Corporation. X-Hive DB Version 7.2.2.
http://www.xhive.com/.

http://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
http://www.xhive.com/

	Introduction
	Pushing XPath Accelerator
	BaseX -- Optimized in-memory processing
	Idefix -- Native block storage for XPath Accelerator

	Performance Evaluation
	Perfidix -- Evaluation framework
	Test Data Sets
	Process of measurement
	Performance Analysis

	Conclusion and Future Work
	Acknowledgments
	References

