
Routing Bandwidth-Guaranteed Paths with
Restoration in Label-Switched Networks ?

Samphel Norden 1

Center for Networking Research, RM 4F-529, Lucent Bell Labs, Holmdel, NJ 07733, USA

Milind M. Buddhikot ∗

Center for Networking Research, RM 4G-508, Lucent Bell Labs, Holmdel, NJ 07733, USA

Marcel Waldvogel 2

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Subhash Suri 3

Engineering I, Room 2111, Computer Science Department, University of California,
Santa Barbara, CA 93106, USA

Abstract

A Network Service Provider (NSP) operating a label-switched networks such as ATM or
Multi-Protocol Label Switching (MPLS) networks, sets up end-to-end bandwidth-guaranteed
Label-Switched Paths (LSPs) to satisfy the connectivity requirements of its client networks.
To make such a service highly available, the NSP may set up one or more backup LSPs for
every active LSP. The backup LSPs are activated when the corresponding active LSP fails.
Accordingly, the problem of LSP routing with and without restoration backup has received
some attention in the recent past.

In this paper, we investigate distributed algorithms for routing of end-to-end LSPs with
backup restoration in the context of label-switched networks. Specifically, we propose a
new concept of the Backup Load Distribution (BLD) matrix that captures partial network
state and eliminates the problems of bandwidth wastage, pessimistic link selection, and
bandwidth release ambiguity. We describe two new, distributed routing algorithms that uti-
lize the BLD matrix and require a bounded amount of run time. We can realize these algo-
rithms in the current Internet architecture using the OSPF extensions for Quality-of-Service
(QoS) routing [1, 2] to exchange the proposed BLD matrix among peer routers/switches.
Our simulation results for realistic sample topologies show an excellent (30–50%) improve-
ment in terms of rejected requests and 30–40% savings in the total bandwidth used for
backup connections. We also show that, although the performance of our routing scheme
is sensitive to the frequency of BLD matrix updates, the performance degradation resulting
due to stale state information is insignificant for typical update periods.

To appear in Computer Networks

1 Introduction

The concept of label switching encompasses optical networking technologies, such as wavelength
switching, and electronic packet-switching technologies, such as ATM and Multi-Protocol Label
Switching (MPLS). A Network Service Provider (NSP) that operates a Label-Switched Network
(LSN) sets up end-to-end Label-Switched Paths (LSPs) to satisfy the connectivity requirements of its
client networks. For these LSPs, the NSP may guarantee certain Quality-of-Service (QoS) attributes
such as fixed bandwidth, delay, or delay jitter. Formally, an LSP request can be characterized by a tu-
ple 〈s, d, q1, q2, . . . , qn〉, where s, d are the source and destination address of the client networks, and
q1, q2, . . . qn are the QoS requirements of the LSP. In practice only one QoS metric, namely the band-
width guarantee, has been used. In this case the LSP request can be represented by a 3-tuple 〈s, d, b〉,
where b is the LSP bandwidth. Each such LSP can be described by a set of labels, l1, l2, . . . , ln, one
per switching hop. Figure 1(a) illustrates this for an MPLS packet-switched network. Here, the labels
(B, C, D) describe the LSP along path (L7, L9, L10) set up to satisfy request 〈R1, R5, b〉.

In MPLS networks, an LSP between s and d is a simplex flow, i.e., packets flow in one direction
from s to d along a constrained routed path [3]. For the reverse traffic flow, an additional simplex LSP
must be computed and routed from d to s. Clearly, the path from s to d can be different from the path
from d to s. Also, the amount of bandwidth reserved on each path can differ. In the Virtual Private
Network (VPN) literature [3], this request model is often referred to as the pipe model. We will refer
to this model and the corresponding constrained path routing as the asymmetric request model. The
algorithms reported in this paper assume this request model.

When uninterrupted network connectivity is necessary, a client may use LSPs from several NSPs to
deal with occasional NSP failures. However, this requires multiple physical connections (ports) to
different NSPs. To avoid this, an NSP may provide an enhanced service with additional guarantees:
for every client request 〈s, d, b〉, the NSP sets up two LSPs between source s and destination d: a
primary LSP that is used under normal circumstances, and a backup LSP that is activated in the event
of disruption of the primary path due to link or switch failures. The mechanism used for detection of
path disruption and switching over to the backup path has two variants:

Protection, whereby on link failure, endpoints automatically switch to a pre-configured backup path;
Restoration, whereby the backup path is only configured on demand when the primary path fails.

? This paper is an expanded and revised version of our IEEE ICNP2001, November 2001, paper.
∗ Corresponding author.

Email addresses: norden@dnrc.bell-labs.com (Samphel Norden),
mbuddhikot@bell-labs.com (Milind M. Buddhikot), mwl@zurich.ibm.com (Marcel Waldvogel),
suri@cs.ucsb.edu (Subhash Suri).
1 Part of the work reported here was undertaken during Samphel Norden’s summer internship at Bell Labs.
2 Marcel Waldvogel was with Washington University in St. Louis during the course of this research
3 Subhash Suri was supported in part by NSF grants ANI 9813723 and CCR-9901958.

2

Request
(R1, R5, b)

R1

R2 R3

R5

L5

L3

L4

R5

R6

L6

R4

L2

L1

L7

L9

L8

L10
L11

A

B

C
D

Path (L7, L9, L10) Î Labels (B,C,D)

Fig. 1. Concept of label switching

Note that in both cases, resources are always allocated on primary and backup paths. However, in the
first case, the backup path is always active and always consumes resources. We focus on the latter
mechanism, whereby backup path restoration is performed to recover from failures.

Restoration routing also comes in two distinct flavors:

End-to-End path restoration, whereby link failures on the primary path cause an end-to-end backup
path to be configured [4, 5];

Local Restoration, wherein each link on the primary path is protected by means of backup paths so
that any link failure is treated locally for fast restoration [6, 7].

In this paper, we focus on the problem of end-to-end restoration routing and do not consider the
problem of local restoration routing.

1.1 Overview of Main Ideas and Contributions

In this section, we present the problem formulation and illustrate the limitations of current mecha-
nisms for backup restoration. All backup restoration mechanisms use the following state information
in order to decide how to route backup paths:

Fu,v: amount of bandwidth used on link (u, v) by all primary paths that use link (u, v).
Gu,v: amount of bandwidth used by all backup paths that contain link (u, v).
Ru,v: residual capacity on the link (u, v) defined as Ru,v = Cu,v − (Fu,v + Gu,v).

Henceforth, we will refer to this scenario as the 3-Variable Partial Information (3VPI).

We describe a simple example of a 4-node topology in Figure 2(a) to illustrate the use of these vari-
ables. Consider two requests r1 = 〈a, b, 1〉 and r2 = 〈a, b, 1〉. Let all links have capacity of 1 unit.
Let us consider primary paths p1 and p2 which use the paths (La,c, Lc,b) and (La,d, Ld,b) respectively.
If we assume that a single link fails at any given time (see Section 2.2 for assumptions of fault mod-
els), p1 and p2, which do not share any links, will not fail simultaneously. This allows their backup
paths b1, b2 to share the same links (La,e, Le,b). In this example, Fa,d = Fa,c = Fc,b = Fd,b = 1 unit,
Ga,e = Ge,b = 1 unit. Also, residual capacity on all links will be 0. Note that if p1 and p2 shared even

3

2

cb= 1

G 1=eb
b

c

p

p
2

d

e

1

a

b1

b

F

(a) Example

1

p1

p
2

b2

Fax =1

xy =2F

Ruv =0

Guv =2

m n

y

v

x

b

a

x y

u v

Primary

Backup

b

u

(b) Limitations

Fig. 2. State Information

a single link, the backup paths for both must be necessarily distinct and there can be no sharing of
backup paths between the two requests.

Now consider routing backup paths with only the knowledge of F , G, and R for each link with a
more detailed example as shown in Figure 2(b). Let us now assume that all links except link Lu,v have
capacity 3 and Lu,v has capacity 2.

Consider two requests r1 = 〈a, y, 1〉 received at node a and r2 = 〈b, y, 1〉 received at node b. The
primary path p1 = (La,x, Lx,y) for r1 and p2 = (Lb,x, Lx,y) for r2 share common link Lx,y. This
implies that the load on La,x and Lb,x due to primary paths is 1 (Fa,x = Fb,x = 1) unit, whereas on
link Lx,y it is 2 units (Fx,y = 2). Furthermore, r1 uses backup path b1 = (La,m, Lm,n, Ln,y) and request
r2 uses backup path b2 = (Lb,u, Lu,v, Lv,y).

When node b computes backup path for r2, it is unaware that r1 does not use Lu,v in its backup path. In
absence of such knowledge of the distribution of the bandwidth on Lx,y, the coarse granularity or the
scalar nature of Fx,y forces node b to backup entire load on Lx,y on Lu,v. This implies that the backup
bandwidth used on Lu,v (Gu,v = 2), even though r1 uses Lm,n for backup and not Lu,v. The inaccurate
nature of such a model will cause the residual capacity on Lu,v to be 0 (Ru,v = 0), even though there
is free shareable capacity of 1 unit on Lu,v that can be used for routing backup paths. This term which
is described in more detail in Section 4.2 refers to the real amount of residual capacity that is not
expressed in the coarse-grain Gu,v parameter. Thus, if a new request r3 needs to be routed from a to y

and uses Lx,y on its primary path, it will not be able to use Lu,v as its backup path since the residual
capacity will appear to be insufficient. This is just one of the drawbacks of using such coarse-grain
parameters. Section 3 discusses this problem, formally termed as Primary-to-Backup Link Wastage,
and other limitation called Bandwidth Release Ambiguity in more detail.

In this paper, we propose the new concept of a Backup Load Distribution (BLD) matrix BM that
captures partial network state, yet exposes sufficient information to minimize bandwidth wastage and
maximize backup path sharing. We describe two new distributed routing algorithms that utilize the
BLD matrix and run in bounded time. The proposed BLD matrix BM can be exchanged among peer
routers using the OSPF extensions for QoS routing [1]. This allows our algorithms to be realized in

4

the existing Internet architecture. Our simulation results for sample network topologies show a 50%
reduction in the number of rejected requests and 30–40% savings in total bandwidth used for backup.
We also evaluate the overhead of communicating the BLD matrix in a distributed implementation and
study the effect of stale state information as the BLD update frequency is changed. We show that
although the performance of routing schemes is sensitive to the frequency of state updates, for prac-
tical and reasonable values of update frequencies the performance degradation is minimal. The BLD
matrix concept, our algorithms, and our simulation experiments apply to any generic label-switching
technology and hence can be used in optical path routing in Wavelength-Division Multiplexing net-
works as wall as Virtual Path Routing in ATM networks.

1.2 Outline of the paper

Section 2 presents background material for the discussions in the paper. Section 3 describes in detail
the limitations of using partial network state information consisting of only three state variables per
link, namely residual bandwidth, bandwidth for primary paths, and bandwidth for backup paths. The
concept of the BLD matrix that eliminates these limitations is introduced in Section 4. In Section 5,
we describe two new algorithms that use the BLD matrix, namely Enhanced Widest Shortest Path
First (E-WSPF), and Enumeration-Based WSPF (ENUM-WSPF). Section 6 describes simulation ex-
periments using realistic network topologies, and finally, Section 7 presents the conclusions.

2 Background

In this section, we will present relevant background material on various aspects of the problem such
as characteristics of routing algorithms, fault model, concept of backup path sharing, and the basics
of the primary path routing algorithm known as Widest Shortest Path First (WSPF) [8].

2.1 Characteristics of Routing Algorithms

The important characteristics of routing algorithms that we need to consider are the following:

Online routing: This property requires that an LSP request can only be routed based on complete
or partial knowledge of the current state of the network. Accepting a current request that generates
a small revenue may potentially block a future request that could have generated a much larger
revenue. In contrast, offline routing is based on a-priori knowledge of all LSP requests, enabling
the revenue maximization by rejection of selected requests. Clearly, during network operation, an
offline routing problem can be solved periodically to optimize the LSP routing and the available
bandwidth, which however exceeds the scope of this paper.

Distributed vs. Centralized implementation: Route computation and management can be performed
either (1) at a centralized route server or (2) in a distributed fashion at each router/switch.

5

R1

R2 R3

R5

L5

L3

L4

R5

R6

L6

R4

L2

L1

L7

L9

L8

L10
L11

Route
Server

Request
(R1, R5, b)

1

2 4
3

Step 1: Request rxed by R1
Step 2: Request forwarded to route server
Step 3: Route server computes route

(R1,, R2, R3, R5) and returns the
route

Step 4: The route is signaled

4

4

(a) Centralized routing using route server

R1

R2 R3

R5

L5

L3

L4

R5

R6

L6

R4

L2

L1

L7

L9

L8

L10
L11

Request
(R1, R5, b)

1

2

2

Step 1: Request rxed by R1
Step 2: Router R1 computes route
 (R1,, R3, R5) and signals the
 path

(b) Distributed routing

Fig. 3. Routing implementation

Routing State
Distributed by OSPF

OSPF Routes
for Best Effort

MPLS
Tunnel Routing

Algo

Fig. 4. Distributed routing algorithm

In the centralized approach (Figure 3(a)), each router forwards the incoming request for a new
LSP to a well-known route server, which then computes and returns the route. In this approach, the
route server has full information on the network state at its disposal for the route computation.

In the distributed implementation model (Figure 3(b)), a router computes routes for a LSP re-
quest based on its “local” view of the network state constructed from link-state updates sent by
network nodes. In this case, the overhead of distributing per-path information whenever new paths
are established or old ones removed can be prohibitively high. Therefore, distributed route compu-
tations are often limited to link-specific state instead of path-specific state, resulting in sub-optimal
performance compared to their centralized counterpart.

For the ease of deployment, it is necessary that any new state information be collected and dis-
seminated using existing routing protocols such as OSPF (Figure 4). The existing OSPF protocol
disseminates topology and link state such as up, down status. The OSPF path-computation algo-
rithm uses this information to construct the route table for forwarding the best-effort traffic. New

6

extensions to OSPF have been proposed to distribute additional link state such as residual link
bandwidth, delay etc. required for QoS routing [2, 8]. The LSP routing algorithms will use such
additional state information to construct MPLS paths and corresponding per-port label-swapping
table.

2.2 Fault Model

In the context of protection or restoration path routing, it is important consider two kinds of failures,
namely, link failures and router failures. A common fault model for link failures assumed in literature
and justified by network measurements [9, 10] is that at any given time only one link in the network
fails. In other words, in the event of a link failure, no other link fails until the failed link has been
restored, and probability of two or more links failing at the same time is very small. In our work, we
use this link-failure model to devise our algorithms.

Modern IP routers still do not support the so-called five-nines (99.999%) or seven-nines (99.99999%)
reliability common in telephony switches. Therefore, router failures may be more frequent than link
failures. An ingenious way to model router failure is based on a technique often used in distributed
system to model node failures: a router can be represented by two nodes connected by a link with
infinite capacity. The router failure is then simulated by a failure of this internal link.

2.3 Backup-Path Sharing

Given the typical fault model of single-link failure, we are guaranteed that in the event of a link failure,
two paths will not fail simultaneously, if they are link disjoint. As a result, backup paths for two link-
disjoint primary paths can share capacities on their backup links because at most one of the backup
paths will be active at any one time. Therefore, if two LSPs, each with a bandwidth requirement of b

units, are routed on link-disjoint paths, their backup can be provided by a single path with capacity
b. Such bandwidth sharing allows one of the two primary paths to use the backup free of cost. This
suggests that backup-path routing can exploit the fault model to maximize backup-path sharing.

The amount of sharing that can be achieved by an online algorithm over a series of N requests depends
on the amount of state information at its disposal. A limited amount of state information can lead to a
pessimistic link selection and increased request rejection.

2.4 Widest Open Shortest Path First

The Widest Shortest Path First (WSPF) algorithm was first proposed by Apostolopoulos et al. [8]
for the routing of bandwidth-guaranteed paths. As our restoration routing schemes use WSPF as an
integral component, we will present it briefly.

The drawback of using the traditional Shortest Path First (SPF) algorithm is that it may yield an

7

C1

C2

C3

C4

CN

CN-1

Min-hop SPF
Tree0

New Req: C3 < b < C4

Fig. 5. WSPF data structures

optimum solution for a single request, but it can lead to high request rejection and low network
utilization over a span of N requests [8, 11, 12]. The WSPF algorithm remedies this problem by
selecting a shortest path with maximum (“widest”) residual capacity on its component links. In order
to minimize the overhead of computing the shortest path and of distributing the state information in a
distributed implementation, Apostolopoulos et al. propose two improvements:

Quantization: Quantize the bandwidth on a link into a fixed set of ranges or bins. When a new LSP
request is received, the request is quantized to a fixed bin and can be satisfied by selecting a path
with links that belong to this or a higher bin.

Pre-computation: For each quantization level or bin, compute an SPF tree from every source edge
router to all destination edge routers.

Figure 5 illustrates these concepts. The SPF tree essentially records the shortest paths from a source
to all egress nodes. Note that every time the residual bandwidth on a link changes a quantization
level, the SPF trees for the old and new levels need to be recomputed. The complexity of the WSPF
pre-computation for k bandwidth levels in a network of n nodes and m links is O(kmn log n) in the
worst case.

A drawback of WSPF is that it does not take the knowledge of the nature of traffic between ingress-
egress pairs into account. New primary-path routing schemes such Minimum Interference Routing
Algorithm (MIRA) [11, 13] and Profile-Based Routing (PBR) [12] attempt to address this limitation
and have reported better performance. Nevertheless, we chose WSPF, as PBR is not well suited to our
distributed approach and we felt the simplicity of WSPF helped us better understand the impact of
changes and would distracted less from the our main focus of primary-backup routing.

3 Limitations of Using 3VPI Partial Network State

In the following, we show that the use of three state variables (RL, FL, GL) per link L leads to two
problems: primary-to-backup link wastage during request admission and bandwidth release ambiguity
during request teardown.

8

LPPrimary i j

LBBackup u v

r1(b1)= 5

r3(b3)= 12
r2(b2)= 10

GLB = 28

Primary-to-Backup Bandwidth Wastage

P1

P3

P2
rnew(bnew)= 33

(a) Primary-to-backup link wastage

Ggf = 10

c

B1

d

b

a

e

g ef

i

k

h

P1 = 10

P2 = 6

B2

r2 = <b, e, 6>

r1 = <a, k, 10>

P1 = 10

P2 = 6

L1

L2 L3 L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

(b) Ambiguity in bandwidth release during request teardown

Fig. 6. Issues with 3VPI

3.1 Primary-to-Backup Link Wastage

We illustrate this concept with an example in Figure 6(a). Consider link LP between nodes i, j.
Three existing primary paths P1, P2, P3 routed for requests r1, r2, r3 with bandwidth requirements
b1 = 5, b2 = 10, b3 = 12 use this link. This results in a load of FLP

= 27 units due to the primary
path. Let us assume that the new request rnew to be routed on LP requires bnew = 33 units of bandwidth.
The backup-path routing tries to evaluate the suitability of link LB between nodes u, v as a member
of the backup path. Let us further assume that only request r1 uses link LB = (u, v) on its backup
path. Also, let the current load on LB induced by backup paths be GLB

= 28 units and the residual
capacity RLB

= 12.

First consider the use of complete network state information. The routing algorithm knows that of the
primary-path load FLP

only the primary path for r1 is backed up on a path that uses link LB . Therefore,
out of GLB

= 28, only 5 units are induced by link LP and an extra 23 units of bandwidth already
reserved are available for backing up the new request. Because RLB

= 12 > ((bnew = 33)−23) = 10,
the complete-information case will allow the selection of link LB in the backup path.

Now consider the partial-information scenario. In contrast, only the absolute FLP
, GLB

, RLB
values

are known, and the algorithm does not know the distribution of FLP
on link LB . This forces a pes-

simistic assumption that in the event of failure of link LP , not b1 = 5 but b1,2,3 = b1 + b2 + b3 = 27
units may have to be backed up on LB . Clearly, the sum of the sharable backup bandwidth and the
residual capacity, (GLB

− b1,2,3) + RLB
= ((28 − 27) + 12) = 13, is less than the new request size

bnew = 33, and therefore, LB will not be selected as a potential link in the backup path. In other words,
lack of additional information can lead to assuming that the subgraph available to route the backup
is disconnected. This will then cause the request to be rejected. We call this phenomena, which re-
sults from pessimistic link selection and leads to reduced bandwidth sharing, and increased request
rejection, as primary-to-backup link wastage.

9

3.2 Ambiguity in Bandwidth Release

Figure 6(b) illustrates an example of backup bandwidth release ambiguity. In this network, router a

receives the first path request r1 = 〈a, k, 10〉 and routes primary path P1 = (L5, L6, L7) and backup
path B1 = (L8, L3, L9). It reserves 10 units of bandwidth on both paths. Router b receives the second
request, r2 = 〈b, e, 6〉 and computes primary path P2 = (L13, L12, L11) and backup path B2 =
(L2, L3, L4). Note that backup paths B1 and B2 share link L3. As P1 and P2 do not fail simultaneously,
r2 concludes that 10 units of backup bandwidth on L3 can be used as free bandwidth for B2 and
therefore does not reserve additional bandwidth on L3 for backup.

When router a tears down request r1, tearing down the primary part (P1) is straightforward, but ter-
minating backup path B1 is problematic. Specifically, router a faces an ambiguity in deciding how
much bandwidth to release on link L3. When B1 was set up, a reserved 10 units, 6 units of which are
now shared by B2. However, as router a has no path-specific knowledge, it does not know that path
B2 shares link L3. In this case, a cannot release the correct amount of bandwidth without additional
knowledge. We call this limitation imposed by using only three state variables for path routing the
bandwidth release ambiguity.

In the following, we show how primary-to-backup bandwidth wastage and bandwidth release ambi-
guity can be averted using limited additional state.

4 Backup-Path Routing using the Backup Load Distribution Matrix

In this section, we describe a new form of state information called the Backup Load Distribution
(BLD) matrix BM based on the concept of backup sharing [4] and illustrate how it can be employed
to achieve superior backup-path sharing.

4.1 The BLD Matrix

Given a network with N links, each router maintains a N ×N BLD matrix BM . If the primary load
Fj on link j is B units, entries BMi,j, 1 ≤ i ≤ N, j 6= i, record which fraction of B is backed up on
link i. Figure 7 illustrates this concept with an example network having eight links and four primary
paths P1, P2, P3, P4 with bandwidth requirements of 10, 8, 12, 6 units. The corresponding backup
paths B1, B2, B3, B4 are also illustrated. Figure 7 also lists four vectors maintained by each network
node:

(1) capacity vector C that records the link capacities,
(2) vector F that records the load induced on each link by primary paths,
(3) vector G that records the load induced on each link by the backup paths, and
(4) vector R that records the residual capacity on each link.

10

L1 L2 L3 L4 L5 L6 L7 L8

F = [10 8 26 8 12]18 610

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0

0

0

0

0

0

0

10

10

10

10

10

10

8

8 26

26

6

8

8

12

12

18

18

6

6

6

B1

B2

B3

B4

3

P1 = 10,P2 = 8, P3 = 12, P4= 6

L1

L2 L3

L7

L4
L5

L6

P1

P3

P41

4

L8

P2

Backup
Links

Capacity C = [50, 50, 150, 150, 50, 50, 50, 150]

Primary Load F = [10, 10, 8, 26, 18, 6, 8, 12], max F = 26

Backup Load G = [26, 26, 6, 10, 10, 0, 0, 10]
Residual Capacity R = [14, 14, 136, 114, 22, 44, 42, 128]

Fig. 7. Example of a BLD matrix BM

Consider link L4. Primary paths P2, P3, P4 use this link, and therefore its primary load is FL4
=

8 + 12 + 6 = 26 units. The corresponding backup paths are B2 = (L1, L2), B3 = (L1, L2), and
B4 = (L1, L2, L3). As the primary paths are not link disjoint, the backup load on the component links
evaluates to GL1

= G1 = 26, GL2
= G2 = 26, GL3

= G3 = 6.

We can now see that out of FL4
= 26 units of primary load on L4, 8 + 12 + 6 = 26 units are backed

up on L1 and L2, whereas six units are backed up on L3. Per the definition of the BLD matrix, this is
recorded as BM1,4 = 26, BM2,4 = 26, BM3,4 = 6.

Note that for row 2, max∀j BM2,j = 26 represents the maximum backup load on link L2 induced by
any link in the network. In general, for any row i, max∀j BMi,j represents the maximum backup load
induced on link i by all other links. Clearly, for any link i, max∀j BMi,j ≤ Gi. Note further that if the
entries in row i are sorted in decreasing order, we can identify links that induce successively smaller
amounts of backup load on link i. This knowledge helps in answering questions such as (a) which
links induce the most backup load on link i, or (b) out of N links, which links induce 50% of backup
load on i.

The primary-to-backup link wastage described earlier is avoided by use of the BLD matrix. For the
example shown in Figure 6(a), BMLB ,LP

would be 5 as only request r1 = 5 that uses Lp is backed up
on LB , thus avoiding the pessimistic assumption that the entire primary load on Lp may be backed up
on LB .

Similarly, the bandwidth release ambiguity can be eliminated using the BLD matrix. In Figure 6(b),
when router a needs to release bandwidth on link L3, it recalls that when the backup for request r1 was
routed using L3, 10 units of bandwidth were reserved. It consults the BM row corresponding to link
L3, where each column lists which fraction of the primary path load F on link Li, i 6= 3, is backed

11

P1 = 10, P2 = 8, P3 = 12, P4= 6

L1

L2 L3

L7

L4
L5

L61

4

L8

Primary

L1

L2

L4

Backup

Fig. 8. Free bandwidth on a link available for backup sharing

up on L3. In our example, BML3,L13
= BML3,L12

= BML3,L11
= 6, and BML3 ,L5

= BML3,L6
=

BML3 ,L7
= 10. In this case, router a concludes that primary paths routed through L13, L12, L11 use

up to 6 units of backup reservation on link L3. Therefore, even though router a reserved 10 units of
backup bandwidth on L3, it releases only

min







BW reserved on L3 on backup for request r1 (a)

(GL3
− maxj /∈(L11,L12,L13) BML3,j) (b)

(1)

which is min(10, (10 − 6)) = 4 units. In general terms, consider a request r with primary path P ,
and B such that amount X was reserved on link j in the backup path when B was routed. Then, the
bandwidth released on link j when request r is removed is given as

min











X

(Gj − maxi/∈P BMj,i) .
(2)

4.2 Freely Shareable Bandwidth

In the following, we introduce the concept of freely shareable bandwidth on a link and show how the
use of the BLD matrix allows its accurate computation. Consider the example network in Figure 7
with associated BLD matrix BM and the F , G, and R vectors. Figure 8 shows a snapshot of this
network in which, in response to a new LSP request rnew, a candidate primary path (L5, L8) has been
routed but not reserved and (L4, L1, L2) is under consideration as a backup-path candidate. We can
see from vector G (Figure 7) that the maximum backup load induced on (L4, L1, L2) is (10, 26, 26).

Let us take a closer look at link L1. From the BLD matrix, we know that the backup load induced by
links in the candidate primary path, namely (L5, L8) on L1, is (BM1,5, BM1,8) = (18, 12). Accord-
ingly, a maximum 18 out of 26 units of backup reserved on L1 will be required for backing up the
primary load on (L5, L8) even before the new request rnew is admitted. In other words, there are 8 extra
units of backup bandwidth reserved for backing up some other links. If the new request requires fewer
than 8 units of bandwidth, then no extra bandwidth needs to be reserved on link L1 in the candidate
backup path. We call these 8 units of bandwidth on link L1 the freely shareable bandwidth.

12

Formally, given a primary path P , the freely shareable (FR) bandwidth available on a candidate
backup link L is defined as

FRL = Gl − max
i∈P

BML,i . (3)

In our example, for backup path (L4, L1, L2), FRL4
= 10, FRL1

= 8, FRL2
= 6, and therefore,

if request size bnew is 6 units or fewer, no bandwidth needs to be reserved on the candidate backup
path. As shown, the BLD matrix BM allows a more accurate computation of freely shareable backup
bandwidth on a link.

4.3 Modeling the Link Cost

The backup-path computation procedure should favor links that have large freely shareable backup
bandwidth. From the perspective of backup routing, every link has two kinds of bandwidth available:

Freely shareable bandwidth (FR), which is completely shareable and requires no extra resource
reservation.

Residual bandwidth (R), i.e., the actual capacity left unused on the link.

If the LSP request size b > FRl, then b − FRl units of bandwidth must be allocated on the link to
account for the worst-case backup load on the link. If the residual bandwidth Rl falls short of b−FRl

(i.e b−FRl > Rl), then the link l cannot be used on the backup path and is called an “infeasible link”.
Given this, the cost of using link l on a backup path consists of two parts: (a) the cost of using the free
bandwidth on the link and (b) the cost of using the residual bandwidth on the link. The per-link cost
is then as follows:

wl =



























CF (FRl), if b ≤ FRl,

CF (FRl) + CR(b − FRl), if FRl < b ≤ FRl + Rl,

∞, if FRl + Rl < b (i.e., l is infeasible),

(4)

where CF and CR are cost metric functions selected in such a way that links with high residual
capacity Rl are preferred. In other words, if Rl1 < Rl2 , then CRl1

> CRl2
. One such function is

CRl
= a(1 − Rl

Rmax
)p, where Rmax = maxl Rl. Similarly, if Fmax = maxl F , then CFl

= c(1 − Fl

Fmax
)q,

satisfies the constraint that if FRl1 < FRl2 , then CFl1
> CFl2

.

For primary-path routing, the “free bandwidth” does not play a role as the bandwidth always has to be
reserved and no sharing is possible. The cost in this case is therefore only the cost incurred in using
the residual bandwidth.

Given this cost function for a link, our routing algorithms attempt to find backup paths with minimum
cost, where the cost of the path is the sum of the costs of the component links.

13

4.4 Implementation Overhead

Whenever a node routes new primary and backup connections, it recomputes the BLD matrix entries.
Frequent addition or deletion of paths changes the matrix entries and requires state exchange between
network nodes. For a network of fixed size, the size of the BLD matrix and therefore the maximum
size of state exchanged between network nodes is fixed and independent of the number of paths.
In other words, the BLD matrix captures only the link state induced by paths but no path-specific
state. If the state exchange is completely distributed and copies of the BLD matrix at different nodes
are inconsistent, two or more nodes may end up selecting paths consisting of links that do not have
sufficient capacity to accommodate their requests. In this case, the reservation attempt of some of the
nodes will fail and their requests will be rejected. The BLD matrix entries will be consistent again
after subsequent state updates have been processed.

Consider the scenario of a distributed global exchange of the BLD matrix among all routers in the
networks: If there are M routers and N links, the BLD matrix is N 2 in size. A naive exchange of the
BM among M routers will require the exchange of M(M − 1)N 2 entries. However, note that when
a router routes a primary path P of length l links with a backup path B of j links, only the BM

entries corresponding to l links in path P change. Therefore, instead of N 2 entries, only entries in l

columns can change, at most lN values. In most cases, this can be even simplified to lk, as l, k � N ,
the update overhead is reduced to ≈ M(M − 1)lk. Also, it is sufficient to send updates only to the
immediate neighbors instead of to all M−1 other nodes. If the out-degree of network nodes is limited
to a maximum of p nodes, then total BLD-matrix-exchange cost is bounded by Mplk. As p � M ,
the reduction is significant. In addition, to reduce the frequency of the updates, we can send an update
only when there is a significant change to the column-vector entries. In practice, to reduce the size of
the updates, we can compress the column vector by only sending entries with non-zero values along
with a preamble indicating the links to be updated. Note that, as for other link-state information, we
can also adopt the existing policy of triggered updates.

An alternative centralized scheme that can minimize the BLD-matrix-distribution overhead and re-
sulting inconsistencies uses repository nodes. The routers dynamically elect one or more among them-
selves to act as repositories for the BLD matrix state and to serve it to other network nodes. In the
event of BLD matrix changes, each node registers its changes with the repository nodes and is also
notified of changes made by others. The routers can periodically or upon the arrival of a path setup or
teardown request, query and download the BLD matrix.

In the distributed exchange scheme, the well-known link-state routing protocol OSPF [8, 14] can
be used to propagate BLD matrix entries. The changes to OSPF are not discussed here, as they are
analogous to the descriptions in [2, 8], to which the reader is referred for further details.

5 Routing Algorithms

In this section, we will describe two types of algorithms:

14

Two-step algorithm: This algorithm first computes a primary path using one of the many available
algorithms such as MIRA [11], PBR [12], or WSPF [8]. For this candidate primary path, the algo-
rithm then computes a least-cost backup path.

Iterative or enumeration-based algorithm: This algorithm enumerates pairs of candidate primary
and backup paths, and picks the pair with smallest joint cost. It uses the WSPF heuristic and asso-
ciated data structures, and therefore is less generic.

Both algorithms use F, G, R variables per link and the BLD matrix, and run in a bounded amount of
time. Note that both our algorithms can be deployed alongside OSPF for best-effort traffic and WSPF
for primary-path QoS routing.

5.1 Generic Two-Step Algorithm

The basic pseudo-code for this algorithm that can be implemented in a route server or in a distributed
fashion at each switch is as shown in the algorithm in Table 1.

The first step in this algorithm (line 10) computes the primary path P using an algorithm such as
MIRA, PBR, or WSPF. If this step fails, the request is rejected (line 12). Because the backup and
primary paths must be link disjoint, all links in P are removed from the graph on which the backup
path is routed (line 15). Using the BLD matrix and Eq. 3, the algorithm then computes the FRl on
each link in the graph for the candidate primary path. Next, the algorithm removes all infeasible links
from the graph and computes new graph G′ (line 16). Using the cost metric defined in Eq. 4, it assigns
a cost wl to each link l and computes the backup path using the shortest-path algorithm on graph
G′ (lines 17, 18). If no path is found, the path request is rejected (line 19). Otherwise, an attempt is
made to reserve the resources for the primary and backup paths using protocols such as RSVP [15]
or LDP [16]. If reservation succeeds, the algorithm updates the path-related link-state variables and
corresponding BM entries. It then sends state-change packets to the appropriate neighbors (line 24).
If the reservation fails, the request is rejected.

We evaluated a specific instantiation of this generic algorithm using the WSPF algorithm for primary-
path computation. We call this algorithm the Enhanced Widest Shortest Path First (EWSPF). The
pseudo-code for the exact algorithm that uses the pre-computed WSPF data structures is illustrated in
Table 2.

Steps 15, 16, and 17 in Table 1 require O(m) time. Step 10 involves computation of a shortest path
using Dijkstra’s algorithm, taking O(m log n) time. Therefore, the worst case complexity of this al-
gorithm is O(km + m log n) = O(m log n), where n is the number of nodes and m is the number of
links or edges in the network graph. Recall that k is the number of different bandwidth levels and is
generally a small constant number.

15

Table 1
Generic two-step algorithm

00: var
01: T: Tree; (* Tree data structure *)
02: G, G’: NetworkGraph; (* Network Graph data structure *)
03: P, B: Path; (* Path data structure *)
04: req: Request3Tuple; (* 3-tuple: (src, dst, bw) *)
05: cost: Integer;
06: procedure GenericTwoStep(s, d: node; b: integer);
07: begin
08: req.src := s; req.dst := d, req.bw := b;
09: (* Primary path computation *)
10: GetPrimaryPath(G, req, P); (* Procedure uses preferred *)

(* primary path routing scheme*)
11: if P = NIL then begin
12: writeln(‘‘No Primary Path found’’);
13: exit;
14: end;

(* Backup path computation *)
15: G’ := RemoveLinks(G, P); (* Remove primary path links from G. *)

(* G’ contains the resulting graph *)
16: RemoveInfeasibleLinks(G’, BLD, P); (* Remove links with *)

(* insufficient bandwidth from G’ *)
17: AssignCostW(G’, BLD, P); (* Procedure to compute w_l induced)

(* by path prm on all links *)
18: B := SPFBackUpPath(G’); (* Procedure to compute backup *)

(* using shortest-path-first*)
19: if B = NIL then begin
20: writeln(‘‘No backup path found, Request Rejected’’);
21: exit;
22: end;
23: UpdateNetworkState(G, prm, bkp); (* Change the network state *)

(* after new paths are routed*)
24: end;

5.2 Enumeration-Based Algorithm (ENUM-WSPF)

This algorithm enumerates candidate pairs of primary and backup paths using pre-computed data
structures in the WSPF implementation and therefore is called ENUM-WSPF. The basic idea in this
algorithm is the following: Given a path request 〈s, d, b〉, find the bandwidth bin the request is quan-
tized to (line 9 in Figure 5). Using the SPF trees stored in the bin bin, find the shortest path from s to
d (lines 11 and 12). Treat this path as a hypothetical backup path and find a primary path that induces
the least cost wl on this path by searching the SPF trees in all other bins. The search is accomplished
by the inner for loop (lines 14–27). When searching for the primary path, it is likely that, once links
for the backup path have been removed, the tree at a given bin may be disconnected for the required s

and d pair (line 18). In this case, a more expensive shortest path computation is done on the original
graph (lines 19 and 20). Using the BLD matrix, Eq.s 3 and 4, and the cost of primary path, the joint

16

Table 2
Enhanced WSPF
00: var
01 T: Tree; (* Tree data structure *)
02: G, G’: NetworkGraph; (* Network Graph data structure *)
03: P, B, BestP, BestB: Path;(* Path data structure *)
04: req: Request3Tuple; (* 3-tuple: (src, dst, bw) *)
05: bin, cost, mincost: integer;
06: procedure EnhancedWSPF(s, d: node; b: integer);
07: begin
08: req.src := s; req.dst := d; req.bw := b; mincost := ∞;
09: bin := Quantize(b); (* Quantize size to find bin *)

(* this request corresponds to *)
10: for lvl := bin to k do (* Search this and larger-sized bins *)
11: (* Do primary path computation *)
12: T := GetSPFTree(lvl, s); (* SPF tree rooted at s at level lvl *)
13: P := GetPrimaryPath(T, d);(* Get path to d from s in T *)
14: if P = NIL then continue;(* No luck, try next *)
15: G’ := RemoveLinks(G, P); (* Remove primary path links *)
16: (* Do Backup path computation *)
17: AssignCostW(G’, BLD, P); (* Assign wl induced by P on all *)
18: (* links l. Use BLD matrix *)
19: B := SPF(G’, s, d); (* Run SPF on G′ to get backup path B *)
20: if B = NIL then continue;
21: cost := JointCost(P, B); (* Joint cost of both paths *)
22: if mincost > cost then
23: begin
24: BestP := P; (* Current best primary path *)
25: BestB := B; (* Current best backup path *)
26: end;
27: end;
28: UpdateLinkState(G, P, B); (* Update residual bandwidth rl *)
29: (* forward and backward load *)
30: UpdateBLDMatrix(G, BLD); (* Update BLD matrix *)
31: SendOSPFUpdates(); (* Send OSPF updates if required *)
32: end;

cost of the (P, B) pair is computed (lines 22 and 23) and compared to the current best pair (lines
24–27). At the end of the inner for loop (line 28), the best primary path for the backup path from bin
is selected. The process is then repeated for every higher bin (bin ≤ lvl ≤ k) (outer for loop, lines
10–29). Clearly, this approach enumerates pairs of primary and backup paths and selects the pair with
least joint cost.

The complexity of this algorithm is (kmn log n) for pre-computation and O(k2) for the cost compar-
ison.

17

Table 3
ENUM-WSPF
00: var
01 T: Tree; (* Tree data structure *)
02: G, G’: NetworkGraph; (* Network Graph data structure *)
03: P, B, BestP, BestP: Path;(* Path data structure *)
04: req: Request3Tuple; (* 3-tuple: (src,dst,bw) *)
05: bin, cost, mincost: integer;
06: procedure ENUM_WSPF(s, d: node; b: integer);
07: begin
08: req.src := s; req.dst := d; req.bw := b; mincost := ∞;
09: bin := Quantize(b); (* Quantize size to find bin *)

(* this request corresponds to *)
10: for lvl := bin to k do begin
11: T := GetSPFTree(lvl, s); (* SPF tree rooted at s in T *)
12: B := GetPath(T, d); (* Candidate backup path in T *)
13: if B = NIL then continue; (* None possible, try next *)
14: for j := 1 to min(k, lvl-1) do begin
15: T := GetSPFTree(j, s); (* SPF tree rooted at s in level j *)
16: T’ := RemoveLinks(T, B);(* Remove links on backup path from T*)
17: P := GetPrimaryPath(T’, d);(* primary path in T’*)
18: if P = NIL then begin (* Oops! T’ is disconnected. *)
19: G’ := RemoveLinks(G, B);(* Remove backup path links from G*)
20: P := SPF(G’); (* Find alternate shortest path *)

(* as primary path in G′ *)
21: end;
22: AssignCostW(B, BLD, P);(* Cost induced by prm on bkp*)
23: cost := JointCost(P,B);(* Joint cost of primary and backup*)
24: if mincost > cost then begin
25: BestP := P; (* Current best primary path*)
26: BestB := B; (* Current best backup path*)
27: end;
28: end;
29: end;
30: end;

6 Simulation Results

In this section, we describe simulations that characterize the benefits of our proposed schemes. We
conducted two sets of experiments:

Experiment Set I (EXPTSET-I) compares three different schemes: EWSPF, ENUM-WSPF, and sim-
ple Shortest Path First (SPF). We simulated two different SPF schemes: SPF-HOP uses min-hop-
count as path metric, whereas SPF-RES uses link costs based on the residual capacity and computes
the lowest-cost path. Both SPF schemes compute two independent paths (one used as the primary
and other as the backup) and do not attempt to share backup paths.

Experiment Set II (EXPTSET-II) compares our EWSPF scheme with Kodialam et al.’s scheme us-
ing data sets used for [4].

18

Table 4
Simulation parameters for EXPTSET-I

Property Values

Request (REQ) arrival Poisson at every router

Mean Call holding time (HT) 100 time units, exponentially distributed

REQ Volume (RV) 50,000 to 300,000

Simulation time (STT) Fixed 50,000 units

Maximum LSP Req. size (LF) 2.5%, 10% of the link capacity

Mean REQ inter-arrival time Computed using RV and STT

Destination node selection Randomly distributed

6.1 Simulator Details

We developed a discrete event simulator in C++ to conduct a detailed simulation study. We simulated
only certain aspects of the control path in the network and did not model the data path. Specifically, in
the control path, we simulated the arrival and departure of path requests and dissemination of network
state information. We did not simulate any of the following:

(1) actual data traffic such as TCP/UDP/IP packet flows on the routed primary path LSPs,
(2) the link fault events in response to which backup paths are activated,
(3) signaling protocols that detect and propagate link faults,
(4) or any other operational aspects irrelevant to routing protocol algorithm.

Therefore, our simulator captures the network state using network topology, routed primary, backup
paths, per-link F, G, R variables and BLD matrix.

In the following, we describe the network topologies, traffic parameters, and performance metrics
used.

LSP Request Load. Table 4 shows the parameters used to run the experiments in EXPTSET-I. We
ran the experiments in EXPTSET-I by generating a given volume of requests (50,000 to 300,000)
within a fixed simulation time (50,000 time units), effectively varying the LSP request load on the
network. LSP requests at each router were modeled as Poisson arrivals, and the mean inter-arrival
time was computed based on the total request volume during the simulation time. The call-holding
time was exponentially distributed with a mean of 100 time units. The requests were torn down after
the appropriate holding time, releasing resources for other new arrivals. The request bandwidth was
varied using a uniform random variable with a maximum request size at 10% of the link capacity.
We did not simulate the BLD and other state exchanges between the network nodes and therefore,
did not measure effects of inconsistent state at the nodes. Note that in reality, the request load at
various nodes may not be random and certain node pairs may see disproportionate share of requests.
However, no real-life call traffic datasets are currently available in the public domain and no well

19

San Diego

San Francisco

Seattle

Los Angeles Phoenix

Denver

Dallas

Houston
Miami

Atlanta

St. Louis

Chicago
Detroit

Cleveland

DC

Philadelphia
NY

Boston

Minneapolis

Pittsburgh

(a) Metropolitan Topology

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

S1

D2 D4

D1

S3

S4S2
D3

(b) 15-node test topology from [4]

Fig. 9. Experiment Topologies

known methodology exists to generate them synthetically. Given this, we chose to use the LSP request
load described earlier.

For the experiments in EXPTSET-II, Kodialam et al. supplied a modified version of the datasets they
had used in their paper [4]. Their dataset contains 5 runs each with 100 demands. All demands have
infinite call duration: once they are admitted, they do not terminate. The drawbacks of this dataset
are (1) the number of demands in the dataset is too small and does not capture the statistical range
required to achieve better averaging of performance metrics; (b) also, unlike the dataset in EXPTSET-
I, the infinite connection-holding time used in this dataset does not resemble real network conditions,
where connections are set up and torn down.

Network Topologies. For EXPTSET-I, we used the topology shown in Figure 9(a) in two config-
urations. The topology represents the Delaunay triangulation for the 20 largest metropolitan areas in
the continental USA. The Delaunay triangulation has the feature that while it minimizes the number
of parallel paths between a pair of nodes, it also provides redundant paths for failsafe routing when a
link goes down, thus always allowing an alternate path [17, 18]. All routers were randomly selected
as potential sources and destinations.

Homogeneous: In this case, all links in the network are of the same capacity (OC-48) and all routers
are identical.

Heterogeneous: Here, we simulated a network consisting of a core with fast links that connects with
slower links to an access network. Here, the thick links are OC-48 and the thin links are OC-12.

For the experiment set II (EXPTSET-II), to compare our EWSP scheme with Kodialam et al.’s scheme
[4], we obtained the network topology (Figure 9(b)) they used in their paper.

Quantizing the Link Bandwidth for WSPF. We used the two bandwidth quantization schemes
(Figure 5) in EWSPF and ENUM-WSPF schemes:

20

(1) Exponential quantization (EXP) used three bandwidth levels of 0.01, 0.1, and 1.0 times the
maximum requested bandwidth.

(2) Uniform quantization (UNIFORM) used a more linear set of six levels, which allows to distin-
guish between 0.05, 0.1, 0.3, 0.5, 0.7, and 1.0 times the maximum requested bandwidth.

6.2 Performance Metrics

We used following performance metrics to compare the various algorithms.

Fraction Rejected (FR) is the fraction of requests that were dropped.
Total Bandwidth Saved Fraction (TBSF) is the fraction of total bandwidth saved when compared

with SPF-RES. It is defined as

TBSF =
TotalBWnew scheme − TotalBWSPF

TotalBWSPF
(5)

Backup Bandwidth Saved Fraction (BBSF) reflects the fraction of backup bandwidth saved for a
given backup path by the new scheme compared to the one used by SPF algorithms. It is defined as

BBSF =
BackupBWSPF − BackBWnew scheme

BackBWSPF
(6)

Note that this metric is different from TBSF which compares EWSPF and ENUM-WSPF with SPF.
For a given scheme that picks a particular backup path, we hypothetically compute the gain realized
by of using the shared bandwidth over using an SPF-like scheme that reserves the entire bandwidth
even on the backup path. This metric thus is suitable for comparing EWSPF and ENUM-WSPF.

In EXPTSET-I, we measured both metrics, whereas in EXPTSET-II we measured only the FR metric,
as values for other metrics were not available from Kodialam et al. [4].

Note that one high-level performance metric that is of interest to the designer of an LSP network is
the path restoration latency which corresponds to the amount time elapsed from the instance the link
fault is detected to the instance the backup path is restored. However, this latency depends on several
factors such as design of the signaling protocol for fault detection and propagation, how the control
packets are handled in the network, and network load. The amount of time spent in backup path route
computation is a small part of the total restoration latency. Since we model neither data path nor
faults, we also do not measure path restoration latency metric. By precomputing backup paths and
preassigning labels, no such computation is required at fault time and the backup path can be used
immediately by the source.

6.3 Experiment Set I (EXPTSET-I)

Each simulation data point was the result of 10 runs with different seed values. The confidence interval
was 95%.

21

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

SPF-HOP
SPF-RES

(a) Fraction rejected

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

(b) TBSF

Fig. 10. Performance: Homogeneous Topology

Homogeneous Case. Figure 10 illustrates the FR and TBSF performance metrics for the four rout-
ing schemes, namely EWSPF, ENUM-WSPF, SPF-HOP, and SPF-RES.

Fraction Rejected: As expected, the FR increases as the load or RV increase. EWSPF and ENUM-
WSPF are significantly better than SPF-HOP and SPF-RES, with up to 66% gain for 150,000 re-
quests. As the load (volume) increases, EWSPF performs better than ENUM-WSPF. At 300,000 re-
quests, EWSPF provides a 20% improvement over ENUM-WSPF and a 50% gain on SPF. ENUM-
WSPF performs slightly worse than EWSPF because it uses the pre-computed trees for both pri-
mary and backup paths, whereas EWSPF uses the pre-computed trees only for the primary path and
recalculates the link weights for the backup path. ENUM-WSPF trades off additional SPF compu-
tation and attempts to use the existing trees as much as possible. The main problem with using
existing pre-computed information is that the same tree may appear in several bandwidth levels,
nullifying the enumeration process and forcing ENUM-WSPF to resort to the shortest path using
residual capacity. Hence the performance of ENUM-WSPF, which is still significantly better than
SPF-RES, will tend to that of SPF-RES, especially at higher loads. In the remainder of the discus-
sion, we will compare both EWSPF and ENUM-WSPF with SPF-RES, which performs slightly
better than SPF-HOP.

TBSF vs. RV: In terms of the overall bandwidth saved compared with SPF-RES, we see that EWSPF
saves 33% and ENUM-WSPF saves around 18%. The gain decreases with increasing load as links
are saturated and therefore finding free shareable bandwidth becomes increasingly difficult as the
number of requests increases.

BBSF: As shown in Figure 11, we see that EWSPF provides a better use of the shared bandwidth
over the paths it chooses than ENUM-WSPF does. Effectively, EWSPF saves between 60–80%,
whereas ENUM-WSPF saves 40–60%.

Heterogeneous Case.

FR vs. RV: Figure 12 shows FR vs. RV for LF values of 2.5% and 10% of the OC-48 links. As
we have the access links at OC-12, an LF of 10% of OC-48 will result in some requests that are

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300
B

ac
ku

p
B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

SPF

Fig. 11. Performance: BBSF vs. RV (homogeneous configuration)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000’s (HT=100,LF=0.1)

EWSPF
ENUM

SPF-RES

(a) FR for LF = 0.025

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000’s (HT=100,LF=0.025)

EWSPF
ENUM

SPF-RES

(b) FR for LF = 0.10

Fig. 12. Fraction rejected performance for heterogeneous configuration

nearly half of the total access link bandwidth. This causes the access links to become saturated very
quickly, and leads to higher rejection probabilities for all schemes. The gains of EWSPF/ENUM-
WSPF are also less than those of SPF-RES at the higher LF because of the early saturation leading
to the dropping of requests.

TBSF vs. RV: We found that gains of EWSPF/ENUM-WSPF are sensitive to LF: the respective are
smaller for the higher LF experiment. From Figure 13, we see that EWSPF provides around 28%
gain and ENUM-WSPF provides 13% gain for a volume of 150,000 requests. However, once the LF
is reduced to 2.5% 4 the gains for EWSPF and ENUM-WSPF improve to 35% and 20% respectively
for the same request volume.

BBSF vs. RV: From Figure 14, we see EWSPF saving around 75% and ENUM-WSPF saving 45%
at an LF of 10%. The corresponding gains in Figure 14 for an LF of 2.5% are between 60–70% for
EWSPF and between 35–50% for ENUM-WSPF. The variation is less at the higher LF value since
the links are saturated very early irrespective of the request volume, whereas with a smaller LF, the
links take more time and accept more requests before being saturated leading to a larger variation.

4 Graph for LF=2.5% not shown

23

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000’s (HT=100,LF=0.025)

EWSPF
ENUM

(a) TBSF for LF=0.025

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000’s (HT=100,LF=0.1)

EWSPF
ENUM

(b) TBSF for LF=0.10

Fig. 13. TBSF for heterogeneous case for different LF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300

B
ac

ku
p

B
an

dw
id

th
 S

av
ed

 F
ra

ct
io

n

Request Volume in 1000’s (HT=100,LF=0.025)

EWSPF
ENUM

SPF_RES

Fig. 14. Backup bandwidth saved for heterogenous case (where LF = 2.5%)

6.4 EXPTSET-II: Comparison with the scheme of Kodialam et al. [4]

From the results of EXPTSET-I, we see that EWSP performs well in all the cases we considered and
is very simple to implement. Therefore, we selected EWSPF as a candidate algorithm to compare
with the algorithm by Kodialam et al. We modified our simulator to handle the dataset described
in Section 6.1. Kodialam et al.’s scheme models the backup path routing as a linear programming
problem that uses only three variables, F, G, R. They develop a dual-based algorithm that solves the
primal linear program to obtain an upper bound, UB, and it’s dual problem to obtain a lower bound,
LB. Iteratively running the algorithm reduces (UB-LB) difference and brings the solutions closer to
the optimum. Each iteration involves solving many shortest path problems and a large number of
iterations, ranging from 100 to 500, may be required to obtain a satisfactory convergence. We call this
scheme Linear Programming Approach (LPA) for the remainder of this discussion.

We performed two kinds of experiments:

(1) Links have infinite capacity and no request is rejected.
(2) Links have finite capacity and requests are dropped.

24

Table 5
Comparison of EWSP with LPA

Scheme Total BW (Exp. 1) Request Rejection Fraction (Exp. 2)

EWSP 2722 0.062

LPA 2736 0.064

For the former set, we measured the total bandwidth that is reserved by the schemes for all requests.
For the latter, we measured the rejection fraction. Our results are summarized in Table 5.

We can see that our scheme realized an improvement in the rejection fraction over LPA. The savings
accrue from the use of BLDM to reduce the primary-to-backup link wastage described in Section 3.
However, we also noticed a significant standard deviation in the five runs (each with 100 demands).
We believe that the limited size of the datasets is the reason for these large deviations, as well as for the
relatively small performance gains. Our scheme is very simple as it involves only two shortest-path
computations, unlike LPA, which requires tens to hundreds of shortest-path calculations. Moreover,
our scheme is easy to deploy because it is directly based on link-state protocols.

6.5 Experiments using Periodic Updates

We performed experiments to determine the impact of the frequency of BLD matrix updates on rout-
ing inaccuracies. Specifically, we simulated BLD matrix distribution via column vector updates per-
formed periodically with a frequency of once every 0.30 time units. We assume that the updates are
effectively distributed across the entire network. In the following figures, we study the performance
of two algorithms, EWSPF and basic SPF. We performed experiments on the homogeneous and het-
erogeneous topologies described earlier. Each request was uniformly distributed on up to 10% of the
link bandwidth on the homogeneous configuration and 2.5% for the heterogeneous configuration (to
avoid near-immediate saturation of the access links). We denote by EWSPF(UPD) and SPF(UPD) the
EWSPF and SPF versions with BLDM updates, respectively.

Figure 15(a) shows the rejection fraction for the EWSPF and SPF algorithms with and without updates
(centralized approach). It is interesting that the performance of the model with updates is quite close
to the centralized versions. We note that this is a homogeneous topology without much variation in
the routes as all links have the same capacity. Figure 15(b) shows the impact on the more realistic
heterogeneous topology, and we see the impact of stale link-state updates on the EWSPF and SPF
versions, which perform significantly worse than their centralized counterparts. Note also that the
chart is on a logarithmic scale.

Figure 16(a) shows the fraction of total bandwidth saved for the EWSPF protocols (centralized and
update-based models) over the corresponding SPF versions. The EWSPF version provides increased
savings in bandwidth than the version with updates, as expected due to the stale link information that
guides the EWSPF(UPD) version. It is interesting to note that the performance gap between the two
does not change for the heterogeneous topology in Figure 16(a). At higher loads (250,000 requests),
the savings of the update version is almost identical to the centralized scheme. Although the rejection
fraction results are significantly worse for EWSPF(UPD) than for EWSPF, the overall bandwidth

25

50 k 100 k 150 k 200 k 250 k 300 k

Number of requests (HT=100, LF=0.1, Homogenous topology)

1e−06

1e−05

0.0001

0.001

0.01

0.1
F

ra
ct

io
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF_UP
SPF
EWSPF_UP
EWSPF

(a) Homogeneous configuration

50 k 100 k 150 k 200 k 250 k 300 k

Number of requests (HT=100, LF=0.1, Heterogenous topology)

0.001

0.010

0.100

1.000

Fr
ac

tio
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF_UP
SPF
EWSPF_UP
EWSPF

(b) Heterogeneous configuration

Fig. 15. Rejection fraction (BM update model; note the log scales)

50 k 100 k 150 k 200 k 250 k 300 k

Request Volume

0.1

0.2

0.3

0.4

0.5

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(T
B

SF
)

EWSPF (LF=0.1, Homo)
EWSPF_UP (LF=0.1, Homo)
EWSPF_UP (LF=0.025, Hetero)
EWSPF (LF=0.025, Hetero)

(a) TBSF

50 k 100 k 150 k 200 k 250 k 300 k

Request Volume

0.5

0.55

0.6

0.65

0.7

0.75

0.8

B
ac

ku
p

B
an

dw
id

th
 S

av
ed

 F
ra

ct
io

n
(B

B
SF

)

EWSPF_UP (LF=0.1, Homo)
EWSPF_UP (LF=0.025, Hetero)

(b) BBSF

Fig. 16. Performance of different configurations (BM update model)

saved is still close to that in the centralized model.

Figure 16(b) shows the fraction of backup bandwidth saved for the homogeneous and heterogeneous
topologies. The performance of the EWSPF(UPD) scheme is almost similar to that of the centralized
EWSPF scheme shown earlier.

Finally, we show the impact of the update period on the rejection fraction for the SPF and EWSPF
protocols for the heterogeneous topology. This was evaluated at a specific request volume of 100,000
requests. As the update period increases, the probability of using stale link state also increases. Recall
that the mean call duration is 100 time units. As we progress from 10-time-unit period to a 200-time-
unit update period, we see a significant drop in performance (up to a factor of 2.5 for SPF and a factor

26

0 50 100 150 200

BLDM update frequency (REQ= 100k, LF=0.1, Heterogenous)

0.000

0.010

0.020

0.030

0.040

0.050

Fr
ac

tio
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF
EWSPF

Fig. 17. Impact of update period on rejection fraction for EWSPF (BM update model)

of 1.25 for EWSPF). However, with EWSPF the deterioration of performance is much slower and for
small update periods performance is quite acceptable.

7 Conclusions

In this paper we addressed the problem of distributed routing of bandwidth-guaranteed paths in
generic label-switched networks with restoration. We showed that approaches to this problem that
use only three variables per link l, namely: F , the load induced by the primary paths, G, the load
induced by the backup paths, and R, the residual bandwidth, suffer from pessimistic link selection
during backup routing and ambiguity in the decision on the amount of bandwidth to release dur-
ing path termination. We proposed a new form of state information called Backup Load Distribution
(BLD) matrix BM that captures the distribution of primary load backed up on other links in the net-
work for each link. For a fixed-sized network, this matrix is of constant size and the overhead incurred
in disseminating it does not grow with the number of active paths.

We proposed two new algorithms: Enhanced Widest Shortest Path First (EWSPF) and Enumeration
Widest Shortest Path First (ENUM-WSPF) that use this BLD matrix. Both use pre-computation in
conjunction with the Widest Shortest Path First (WSPF) algorithm and run in bounded time. Also,
they can be used for any label-switching networks, such as wavelength-switching optical networks as
well as packet networks such as MPLS or ATM networks.

Our simulation results for sample topologies show 30–50% reduction in rejected requests and 30–40%
savings in total bandwidth used for backup connections. We also show that although the performance
of our routing schemes is sensitive to the frequency of BLD matrix updates, performance degradation
resulting from stale state information is insignificant for the practical range of update periods.

27

References

[1] George Apostolopoulos, Roch Guérin, Sanjay Kamat, and Satish K. Tripathi. Quality of service routing: A
performance perspective. In Proceedings of ACM SIGCOMM, Vancouver, BC, Canada, September 1998.

[2] George Apostolopoulos, Roch Guérin, Sanjay Kamat, Ariel Orda, Tony Przygienda, and Doug Williams.
QoS routing mechanisms and OSPF extensions. RFC 2676, Internet Engineering Task Force, August 1999.

[3] Bruce S. Davie and Yakhov Rekhter. MPLS Technology and Applications. Morgan Kaufmann, San
Francisco, CA, USA, 2000.

[4] Murali Kodialam and T. V. Lakshman. Dynamic routing of bandwidth guaranteed paths with restoration.
In Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, 2000.

[5] Samphel Norden, Milind M. Buddhikot, Marcel Waldvogel, and Subhash Suri. Routing bandwidth
guaranteed paths with restoration in label switched networks. In Proceedings of IEEE International
Conference on Network Protocols (ICNP 2001), pages 71–79, Riverside, CA, USA, November 2001.

[6] M. Kodialam and T.V. Lakshman. Dynamic routing of locally restorable bandwidth guaranteed tunnels us
ing aggregated link usage information. In Proceedings of IEEE INFOCOM, pages 884–893, 2001.

[7] Li Li, Milind M. Buddhikot, Chandra Chekuri, and Katherine Guo. Routing bandwidth guaranteed paths
with local restoration in label switched networks. In Proceedings of IEEE International Conference on
Network Protocols (ICNP ’02), pages 110–120, Paris, France, November 2002.

[8] George Apostolopoulos, Roch Guérin, and Sanjay Kamat. Implementation and performance measurements
of QoS routing extensions to OSPF. In Proceedings of IEEE INFOCOM, pages 680–688, 1999.

[9] Tsong-Ho Wu. Fiber Network Service Survivability. Artech House, Inc., Norwood, MA, USA, 1992.

[10] Dongyun Zhou and Suresh Subramaniam. Survivability in optical networks. IEEE Network, 14(6):16–23,
November/December 2000.

[11] Murali Kodialam and T. V. Lakshman. Minimum interference routing with applications to MPLS traffic
engineering. In Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[12] Subhash Suri, Marcel Waldvogel, Daniel Bauer, and Priyank Ramesh Warkhede. Profile-based routing and
traffic engineering. Computer Communications, 26(4):351–365, March 2003.

[13] Daniel Bauer. A new minimum-interference routing algorithm based on flow maximization. IEE
Electronics Letters, 38(8):364–365, April 2002.

[14] John Moy. OSPF version 2. RFC 2328, Internet Engineering Task Force, April 1998.

[15] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony Li, Vijay Srinivasan, and George Swallow. RSVP-
TE: Extensions to RSVP for LSP tunnels. RFC 3209, Internet Engineering Task Force, December 2001.

[16] Eric C. Rosen, Arun Viswanathan, and Ross Callon. Multiprotocol label switching architecture. RFC
3031, Internet Engineering Task Force, January 2001.

[17] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer, Berlin/Heidelberg, Germany, 1997.

[18] Hongzhou Ma, Inderjeet Sing, and Jonathan S. Turner. Constraint based design of ATM networks,
an experimental study. Technical Report WUCS-97-15, Department of Computer Science, Washington
University in St. Louis, St. Louis, MO, USA, 1997.

28

Author Biographies

Samphel Norden received the B.S. (1997) from the Indian Institute of Technology, Madras, and
the M.S. (1999) and Doctor of Science (D.Sc.) (2002) degrees in computer science from Washing-
ton University in St. Louis. He is currently a Member of Technical Staff (MTS) in the Center for
Networking Research in Lucent Bell Laboratories. His research interests include mobile networking,
denial-of-service detection and prevention, inter-domain QoS routing, overlay networks and wireless
security.

Milind M. Buddhikot is a Member of Technical Staff in the Center for Networking Research at
Lucent Bell Labs. His current research interests are in the areas of systems and protocols for public
wireless networks, MPLS path routing, and multimedia messaging and stream caching. Milind holds a
Doctor of Science (D.Sc.) in computer science (July 1998) from Washington University in St. Louis,
and a Master of Technology (M.Tech.) in communication engineering (December 1988) from the
Indian Institute of Technology (I.I.T.), Bombay. He has authored over 26 research papers and 9 patent
submissions in design of multimedia systems and protocols, layer-4 packet classification, MPLS path
routing and integrated public wireless networks. He served as a co-guest-editor of IEEE Network
magazine’s March 2001 Special issue on “Fast IP Packet Forwarding and Classification for Next
Generation Internet Services”. Currently, Milind serves as an Editor for the IEEE/ACM Transactions
on Networking.

Marcel Waldvogel joined IBM Research, Zurich Research Laboratory in 2001 after holding faculty
position at Washington University in St. Louis. He graduated from the Swiss Federal Institute of
Technology (ETH Zurich), where he received a Diploma degree in computer science and a Ph.D.
in electrical engineering. He is a member of the ACM and a senior member of the IEEE and has
published over 40 papers on high-speed networking, multimedia communications, network security,
overlays, and distributed storage networks.

Subhash Suri is a Professor of Computer Science at the University of California, Santa Barbara.
Prior to joining UCSB, he was an Associate Professor at Washington University (1994–2000) and a
Member of Technical Staff at Bellcore (1987–1994). He received a Ph.D. in computer science from
the Johns Hopkins University in 1987. Professor Suri has published over 80 research papers in de-
sign and analysis of algorithms, Internet commerce, computational geometry, computer networking,
combinatorial optimization, and graph theory. He serves on the editorial board of Computational
Geometry, and has served on numerous panels and symposium program committees. He has been
awarded several research grants from the National Science Foundation.

29

