
Bringing Efficient Advanced Queries

to Distributed Hash Tables

Daniel Bauer Paul Hurley Roman Pletka Marcel Waldvogel

IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

{dnb,pah,rap,mwl}@zurich.ibm.com

Abstract

Interest in distributed storage is fueled by demand
for reliability and resilience combined with ubiquitous
availability. Peer-to-peer (P2P) storage networks are
known for their decentralized control, self-organization,
and adaptation. Advanced searching for documents and
resources remains an open problem. The flooding ap-
proach favored by some P2P networks is ineffiencient in
resource usage, but more scalable and resource-efficient
solutions based on Distributed Hash Tables (DHT) lack
in query expressiveness and flexibility. In this paper, we
address this issue and introduce new efficient, scalable,
and completely distributed methods that strive to keep re-
source consumption by queries and index information as
low as possible. We describe how to improve the handling
of multiple subqueries combined through boolean set oper-
ators. The need for these operators is intensified by appli-
cations to go beyond simple exact keyword matches. We
discuss, optimize, and analyze appropriate extensions to
support range and prefix matching in DHTs.

1. Introduction

Interest in distributed storage is fueled by de-
mand for reliability and resilience combined with
ubiquitous availability. Peer-to-peer (P2P) stor-
age networks are favored for their decentralized con-
trol, self-organization, and adaptation.

A key function of such a network is the location
of resources. Location comes in two distinct flavors: a
lookup by resource ID or a query for resources match-
ing certain properties. For lookup functionality, Dis-
tributed Hash Tables (DHT) are generally considered
to provide the most efficient solution. However, for gen-
eral queries, message flooding is still be relied upon,
which attains flexibility at the expense of inefficient re-
source use. We show how to perform many important

classes of queries efficiently in DHTs, thereby circum-
venting the need for flooding.

The many forms DHTs come in include space di-
vision [16, 23], interval routing/skip lists [9, 13, 19], or
tree-like structures [1, 15, 18, 25]. They all have a com-
mon interface, which resembles a hash table, with sup-
port for get, put, and remove of elements addressed
by a unique, exact key.

1.1. Basic Search Methods

In current highly distributed databases and peer-
to-peer storage systems, three basic methods exist to
search for a resource. The first directs a search query to
a centralized directory. It is evaluated there, the data
blocks that correspond to the search query are deter-
mined, and the result of the query transmitted back to
the requestor. A disadvantage is that there are no alter-
natives to avoid or compensate for failures, as there is a
single point of failure – the centralized directory. There
are also scalability issues, as every request will need
to be handled centrally. On the positive side, this ap-
proach does allow for very powerful and flexible queries.

The second method uses an identifier-only (ID-only)
access, which can be carried out with the help of a
DHT. Drawbacks include that the ID needs to be
known and that no queries other than a request for
a resource with a particular ID are possible.

The third method is to use a flooding query. A ben-
efit of this approach is that all kinds of methods of
matching queries can be implemented. Unfortunately,
flooding is extremely expensive in terms of both net-
work bandwidth and computation at nodes.

1.2. Alternative and Extended Methods

In addition to these three basic methods, alterna-
tives to improve some of their deficiencies exist. For ex-
ample, additional replicated directories instead of a sin-
gle centralized directory may be used. However, there

is still a small set of dedicated failure points, and more-
over, a high load may arise on the replicas, both from
queries and updates.

Another alternative is to use stored or cached queries
(employed, for example, in INS/Twine [3]), where IDs
are assigned to each expected query using, for exam-
ple, a DHT. When querying, some variants of the query
are tried.

1.3. Contributions

We present CANDy (Content Addressable Network
DirectorY), a general framework for querying, in a com-
pletely distributed fashion, resources stored in DHT-
based systems. It extends the existing work in this area
by offering flexible queries while preserving the DHT
efficiency.

Proceeding beyond keyword and substring searches,
we introduce value matching against distributed
databases that consist of ranges or prefixes. In addi-
tion, it is shown when and how Bloom filters [4] can
(or cannot) help in the search process. Finally, a com-
parative analysis of these mechanisms with existing
work is provided.

The remainder of the paper is structured as fol-
lows. The next section describes the design princi-
ples, which are then applied to advanced queries such
as a set of words, range searches, and longest prefix
match in Section 3, and optimized using Bloom fil-
ters in Section 4. Section 5 briefly assesses total stor-
age consumption, the number of messages transmitted,
and the scalability and resiliency of our approach. Fi-
nally, related work is discussed in Section 6 and the pa-
per concluded in Section 7.

2. CANDy Design Principles

DHTs provide a very efficient lookup of resources
when the resource identifier (resID) is known. Queries,
on the other hand, ask for resources that have cer-
tain properties. CANDy’s approach is to use a DHT
that links properties to resIDs. The idea is to com-
pute a property identifier (propID) for each property
of a resource and store the resID at the location of the
propID. As resources share properties, an entire set of
resIDs are stored under the same propID.

The index DHT stores property and index infor-
mation, while the resource DHT stores the actual re-
sources traditionally. Logically, these are separate en-
tities but can be implemented as part of a single DHT
infrastructure.

In CANDy, a query is processed as shown
in Figure 1. The user agent analyzes the query, identi-

Subquery
ProcessingIndex DHT Resource DHT

Distributed Storage Nodes

Property Obtain
Resources

Query
Result
Set

Requesting Node

Analysis

Query
Analyzer

Subquery
Builder

Resource
Collector

User Agent

h(
pr

op
er

ty
),

...

pr
op

er
ty

 d
es

cr
ip

to
rs

se
t o

f r
es

ID
s,

 ..
.

S
et

 O
pe

ra
to

rs
S

ub
qu

er
ie

s
&

re
sI

D
, .

..

R
es

ou
rc

e,
 ..

.

Figure 1. Component interaction in CANDy.

fies the properties involved and resolves the data type
of each property. This is done using property descrip-
tors. Each property represents a set of resIDs. The user
agent translates the query into a sequence of set op-
erations on resID sets. The user agent sends the
query, now in the form of a sequence of set opera-
tions, to the storage nodes that store the correspond-
ing resID sets. Each node processes a subquery as the
query is handed from node to node. The last node re-
turns the result to the user agent. The result is a (pos-
sibly empty) set of resIDs. The user agent then uses
these resIDs to accesses one or more resources us-
ing a DHT lookup in the resource DHT.

This process will now be described in more detail.

2.1. Properties and Property Descriptors

Properties are name/value pairs of a certain type
that describe resources. For example, an image docu-
ment has a property title of type string with value
“Sunflowers”. The propID is computed using a hash-
function h() that is applied to both name and value,
i.e., propID = h(“title=Sunflowers”). The propID is
then used for the propID-lookup.

As there are several ways of storing properties in the
index DHT, it would not be sufficient to know just the
property name. An additional data structure, the prop-
erty descriptor, is used to store information about prop-
erty types and how they are stored in the index DHT.
For example, the property descriptor for title indi-
cates that title is of the type String and stored as
set-of-words. For other data types, property descrip-
tors contain more information. In particular, compa-
rable data types can be stored in hierarchical struc-
tures that allow for range searches, cf. Section 3. Prop-

erty descriptors are stored in the index DHT, using the
name of the property to compute the storage ID. Using
the above example, the property descriptor for title

is stored using the ID h(“title”).

2.2. Subqueries and Set Operations in In-

dex Nodes

The result of a propID-lookup operation in the in-
dex DHT is a set of resource IDs. A typical query asks
for resources that fulfill several property names or val-
ues rather than one single property. This means that
several propID lookups have to be combined to fulfill
the query. This could be done locally at the requesting
node, i.e., all resID sets could be transferred to the re-
questing node, which then carries out the evaluation.
As resID sets may be large, such an approach requires a
large amount of network resources. CANDy uses a dis-
tributed approach in which the query, in the form of a
sequence of set operations, is forwarded from one stor-
age node to another where individual propID lookups
are evaluated on the fly. As the query propagates, in-
termediate results in the form of resID sets are added
until the final result is returned to the requesting node.

Hence we propose the following scheme: At the re-
questing node, CANDy splits the search query into sub-
queries and a set of operations that links them. This
query comprises all information on the resources to be
located in the distributed storage nodes. The supported
set operations are union ‘∪’, intersection ‘∩’, and set
minus ‘\’. The complement ‘A’ can be obtained from
A ∩ B = A \ B. Note that the complement operator
only makes sense in conjunction with a given base set,
where it can be computed using set minus.

A query request includes the subqueries and the
set of operators. This information is encoded in a lin-
earized evaluation tree, e.g., using reverse polish nota-
tion (RPN) as instructions for a stack machine. The
query request is then transmitted sequentially along
storage nodes which processes one subquery and links
the result provided by the previous node by means of
the corresponding set operator. The request is then
adapted and the request forwarded to the next node ac-
cordingly. Eventually, the last node sends the final re-
sult back to the requesting node. The packet is routed
between nodes by the underlying DHT.

Consider the example where the keyword query
for all resources that do not contain sunflow-
ers and portrait paintings by Vincent Van Gogh
could be (“artist=Van”, “artist=Gogh”, not (“ti-
tle=Sunflowers” or “title=Portraits”)), which can
be translated into four subqueries and written as

Query: subQ1 subQ2 subQ3 subQ4)

docID1s

subQ1

subQ3 subQ4,
resID1s]

[subQ1 subQ2

subQ2

docID2s

[subQ1 subQ2
subQ3 subQ4,
resID1s resID2s]

docID3s

subQ3

[(subQ1 subQ2
subQ3 subQ4,
resID3s \ (resID2s
resID1s)]

docID4s

subQ4

subQ3 subQ4,
(resID3s \ (resID2s
resID1s)) resID4s]

[subQ1 subQ2

Storage
Node 4

?

Requesting
Node

Storage
Node 1

Storage
Node 2

Storage
Node 3

Figure 2. Search example with subqueries.

subQ1 ∪ subQ2 ∩ subQ3 ∩ subQ4, where

subQ1 = “title=Sunflowers”

subQ2 = “title=Portrait”

subQ3 = “artist=Van”

subQ4 = “artist=Gogh”.

The subqueries and their set operators are then sent
through the network as illustrated in Figure 2 with
each storage node performing one subquery. Each sub-
query returns the resIDs of the resources that contain
the corresponding keyword. The resID sets are then
combined using the corresponding set operator before
the packet is forwarded to the next node. In particu-
lar, for storage node 2 it does not make sense to enu-
merate the complement set resIDQ1 ∪ resID2s, hence
resIDQ1 ∪ resID2s is marked as being a complement
set instead.

Note that when using an existing DHT algorithm to
route the query packet to the next node, O(log n) in-
termediate nodes are expected to be traversed until the
node that executes the next subquery is reached. These
intermediate nodes are omitted from Figure 2.

If the index DHT has a message size limitation, the
message may be split into multiple segments, each ac-
companied by the range of resIDs they represent. This
is necessary to allow independent processing of these
messages while ensuring correct operation of later set
complement or exclusion operations. Messages so split
can travel independently and without reassembly to the
destination.

A query does not necessarily require the entire set
to be transfered to the next node before a set opera-
tion can take place. When the sets are all ordered by a
common criteria, the set operations can be performed
in streaming mode [11].

2.3. Building the Final Result

The resource collector first gathers all resIDs, which
might be spread over several subquery result packets,
and combines them into the final set of resIDs. From
this set, each resource is then found using the resource
DHT. Note that, depending on the complexity of the
query, the resIDs might come from more than one node.
In such a case, the last set operation is carried out by
the resource collector before accessing the resources.

3. Complex Searches in Distributed

Storage Nodes

In this section we present three different exam-
ples that utilize the query architecture based on sub-
queries introduced above, thereby allowing more com-
plex search queries to be formed, namely queries con-
sisting of a set of words such as property values, range
searches and longest-prefix match searches.

3.1. Set-of-words Searches

If a property value is composed of multiple words,
then it may be advantageous to use multiple propIDs.
For example, an image document with title “Yellow
House” is stored under both h(“title=Yellow”) and
h(“title=House”). This allows the further decomposi-
tion of queries leading to increased distributed process-
ing and it also allows the location of a resource by
means of a single word.

3.2. Range Searches

Often, it is desirable to search for value ranges,
rather than queries that are exact or contain solely key-
words.

Let’s consider two possible implementations. The
first optimizes node access and uses only one node
access to retrieve the set of resIDs for any possi-
ble subrange. Storage requirements are high, up to
W · (W + 1)/2 index resources are required, each con-
taining a distinct subset of the resIDs, where W is the
size of the value space V ; W = |V |. The second opti-
mizes storage such that each resID is stored only once.
This results in U −L+1 requests for index documents,
where L and U are the lower and upper bounds of the
search range. These two extremes show that either a lot
of memory space or a large number of queries are nec-
essary to perform a range search.

Hence, the amount of storage space required – a
static requirement – and the number of nodes in the
network to visit or index resources to retrieve – a dy-
namic requirement – must be optimized. Both should

0 1 2 3

01 23

4 5 6 7

45 67

03 47

07

Figure 3. Example range search tree.

be as small as possible but might have different priori-
ties depending on the application scenario.

A promising method to perform range searches effi-
ciently is to organize the range values in a tree as shown
in Figure 3. In the example tree for the bounded value
space V = {0, 1, . . . , 7}, the values are associated with
subranges that are super-ordinated to higher-level sub-
ranges. The example shows a four-level tree. The leaves
comprise individual values. Here, the first leaf from the
left has the value 0, and the first node on the next level
up covers the subrange from 0 to 1. The root (top-level
node) represents the full value space V . From the ex-
plicit tree structure or one defined by an algorithm,
values and value ranges can be found. Value ranges use
an algorithm that computes the largest common sub-
ranges of the search range. The index resource on each
node contains all resIDs that match the corresponding
value range. In addition, further information on par-
ent and child nodes, the branching factor, the number
of levels and query encoding is stored in the property
descriptor of the corresponding propID.

For example, when searching in the range {2, . . . , 6},
three subqueries are generated: The first for the con-
tent of index document 23, the second for index docu-
ment 45 and the third for index document 6. Without a
tree structure, the same search range results in five sin-
gle queries (one for each value). Note that this saving
effect is significantly more pronounced for larger value
spaces with larger trees.

When the value space reflects a continuous range
each node represents a bounded continuous subrange.
In both discrete and continuous ranges the granular-
ity of the tree structure is chosen such that the resID
sets in the leaves are kept small (e.g., checking only the
first p letters in a string search). In general, the stor-
age requirements of the tree structure and the number
of queries required is logk W .

Next, we analyze the worst-case performance for a
fully populated and balanced tree. The number of lev-
els of the tree structure is, ` = 1 + dlogk W e . Under
the assumption that union is the sole operation sup-
ported by the DHT, the necessary worst-case storage
factor S for a branching factor k is S = `; i.e. each

resID is stored at each level of the tree. The number of
queries Qu in the worst case corresponds to

Qu =

{

2(k − 1)(` − 2) + k − 2, ` > 2 and

k − 1, 1 ≤ ` ≤ 2 .

The proof which involves induction over ` is omitted.
From Figure 3 it can be seen that {1, . . . , 6} is the
worst-case range for union, which can be obtained by
unifying the four subqueries sent to the nodes using
N1 ∪N23 ∪N45 ∪N6. The worst-case range for union is
given by combining the maximum number of nodes on
each level which cannot be replaced by a higher-level
node and equals 2(k−1) (left and right part of the tree)
for each level up to level l − 2 and k − 2 for the mid-
dle part of the tree (i.e., when k > 2).

If the operation set minus (A\B = A∩B) is also sup-
ported, then the number of worst-case search queries
for this combined case can be further reduced to

Qc =

{

(k − 1)(` − 1), W > 1 and

1 W = 1 ,

based on the observation that any query consisting of
more than k/2 nodes can be converted to subtract-
ing the remaining nodes from the parent. The neces-
sary worst-case storage is not affected by this opera-
tion. As an example, the range {1, . . . 6} can then be
expressed as N07 \N0 \N7 resulting in only three sub-
queries.

3.3. Longest Prefix Match

Another lookup method that has gained popularity
is longest prefix match. It is commonly used to deter-
mine efficiently into which of several categories a par-
ticular identifier (number, string, . . .) falls.

Tries have traditionally been used to perform longest
prefix matches [7]. Applying them to DHTs can be
done in a similar manner to the range searches de-
scribed above. A property of the tries, that nodes near
the root are more frequently accessed, is useful within
a single system, as performance is improved through
caching effects. In a distributed system, however, where
many independent nodes may perform queries at the
same time, this is prone to storage node overload.

When the total access time to retrieve information
is significant but the per-node access time is high (such
as in DHTs), large degrees of nodes become necessary
[21]. As a result, memory requirements skyrocket, and
update performance deteriorates. A better solution is
thus needed.

Binary search on prefix lengths [22, 24] seems to be
the ideal candidate, as it is already based on hashing.

To use it, all prefixes are simply stored in the DHT.
Binary search requires a three-way comparison to de-
cide whether the final solution has already been found
or whether the search needs to go on: if so, in which di-
rection. Hash lookups only provide hit or miss answers.
To ensure that all entries can be found, some marker
nodes need to be added to guide the search towards
longer prefixes if a natural higher-level prefix does not
already exist. When applying the techniques described
in [22,24], the search time is bounded by the logarithm
of the search depth.

4. Optimization using Bloom Filters

4.1. Bloom Filter Arithmetic

Bloom filters [4] have proven extremely useful for
their extremely compact representations of set mem-
bership, which results in small amounts of data to be
transmitted [5]. The compactness comes at the expense
of possible false positives, the rate of which can be
tuned by changing the size (and thus the density) of the
filter. Another drawback is that the set can no longer
be enumerated, at least not if the domain of the set
is sizable. The Bloom filter is limited to set member-
ship queries.

A Bloom filter is a bitmap that represents the union
of bitmaps of the individual entries, in which an entry
is represented by a few bits set to one, whose position
have been selected by a small number of hash func-
tions. Abstractly, a Bloom filter representation B(X)
of X can be viewed as a non-enumerable version of X
with some false positives ε(X), B(X) = X ∪ ε(X).1

This results in the following operations on Bloom fil-
ters. All binary operations are commutative and asso-
ciative.

Converting from set to Bloom filter: A Bloom
filter can be created from a set: X → B(X).

Intersection of Bloom filters: Two Bloom filters of
the same size and using the same hash func-
tions can be intersected by logical AND of their
bitmaps: B(X ∩ Y) = B(X) ∩ B(Y).

Union of Bloom filters: Two Bloom filters of the
same size and using the same hash functions can be
united by logical OR of their bitmaps: B(X∪Y) =
B(X) ∪ B(Y).

Bloom filters and enumerable sets: Probing a
Bloom filter for presence of each element of an enu-
merable set leads to a set with false positives:

1 For ease of explanation,weneglect that the (infinite) set of false
positives alsodependson the sizeof theBloomfilter and its con-
stituent hash functions.

N? NA: What is A ∩ B? Query
NA NB : B(A) Bloom filter of A

NB NA: B(A) ∩ B Approximate result

NA N? : A ∩ B = B(A) ∩ B ∩ A Final result

Figure 4. Distributed intersection

N? NA : What is A ∩ · · · ∩ Z?
NA NB : B(A)

NB NC : B(B(A) ∩ B) = B(A ∩ B)

...

NY NZ : B(B(A ∩ · · · ∩ X) ∩ Y) = B(A ∩ B ∩ · · · ∩ Y)

NZ NY : B(A ∩ B ∩ · · · ∩ Y) ∩ Z

NY NX : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y

...

NB NA : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y ∩ · · · ∩ B

NA N? : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y ∩ · · · ∩ B ∩ A

Figure 5. Distributed multi-set intersection

(X ∩ ε(X)) ∩ Y = B(X) ∩ Y . Obviously, inter-
secting a Bloom filter of a set with that set will
return the original set: B(X) ∩ X = X.

4.2. Intersection Operation

Reynolds and Vahdat [17] reduced the mes-
sage size required for the execution of keyword
intersection queries through the addition of Bloom fil-
ters.

In the simplest case, where just two sets correspond-
ing to keywords have to be intersected, A and B, stored
on nodes NA and NB , the process is shown in Figure 4.
Note that B(X) represents the Bloom filter represent-
ing set X and the requesting node is known as node
N?. Reuse of the previous message is indicated by a
light gray background .

Given the above set of operations, we can see that
B(B(A)∩B)∩A = A∩B. The advantage is that the sets
A and B are never transmitted, only a compact repre-
sentation B(A) and a close approximation of the final
result. This does not help much if A and B share many
elements, but significantly improves the case when A
and B are large and have few or no elements in com-
mon.

The generalization for intersection among multiple
sets is shown in Figure 5. Instead of having a forward
path with Bloom filters and a reverse path with ap-
proximate sets, the second path can also be performed

N? NA: What is A \ B?
NA NB : B(A)

NB NA: B(A) ∩ B

NA N? : A \ B = A \ B(A) ∩ B

Figure 6. Distributed exclusion

in forward direction, from Z over A to Y, or in any
other order.

4.3. Exclusion Operation

Another common operation is exclusion (“and not”
or “set minus”). This operation seems impossible, as
Bloom filters cannot be complemented nor do they sup-
port the elimination of elements by clearing some bits
in the filter, as this would probably lead to the elimi-
natation of some other (real) elements of the filter.

Figure 6 presents our solution to the binary exclu-
sion problem. The algorithm is based on X \ Y = X ∩
Y = X∩X ∩ Y . It is a shortcut calculation of intersec-
tion (lines 2 and 3), but the combination in step 4 is dif-
ferent. A generalization where (A∩· · ·∩M)\(N∩· · ·∩Z)
can be calculated as shown in Figure 7.

Path separation is not needed if there is only a sin-
gle set to the left of the exclusion operator. Instead,
the mechanism described in Figure 5 can be used al-
most verbatim, with only the last intersection symbol
in the result message changed from intersection to ex-
clusion.

It could be argued that the process can be sim-
plified by calculating the intersection among the base
set, A · · ·M , and the excluded set, n · · · z, separately,
and performing the exclusion only at the very end.
Although this would lead to the correct result, the
amount of data transmitted would, in general, be unac-
ceptable. The intersection among N · · ·Z could be huge
compared to the base set and the final result. The ad-
ditional inclusion of the Bloom filters for A · · ·M into
the calculation of the excluded set prevents the pro-
tocol from transmitting much more data than is part
of the base set, and thus is not relevant to determin-
ing the result set.

If the intersection between the base set and the ex-
cluded set is large in comparison to the result set, it
would be useful to avoid transmitting it as elements,
but keep it only as a Bloom filter representation. Unfor-
tunately, the solution above is the best known approach
and, because of the false positives involved, these im-
provements do not seem feasible.

N? NA : What is (A ∩ · · · ∩ M) \ (N ∩ · · · ∩ Z)?
NA NB : B(A)

NB NC : B(A ∩ B)

...

NM NN : M = B(A ∩ · · · ∩ L) ∩ M

...

NZ NY : B(A ∩ · · · ∩ Y) ∩ Z

NY NX : B(A ∩ · · · ∩ Y) ∩ Z ∩ Y

...

NO NN : B(A ∩ · · · ∩ Y) ∩ Z ∩ · · · ∩ O

NN NA : B(A ∩ · · · ∩ Y) ∩ Z ∩ · · · ∩ O ∩ N

NM NL : B(A ∩ · · · ∩ L) ∩ M

...

NB NA : B = B(A ∩ · · · ∩ L) ∩ M ∩ · · · ∩ B

NA N? : (B ∩ A) \ M

Figure 7. Distributed multi-set exclusion sup-

ported by Bloom filters

4.4. Union Operation

The third major operator used in set operation is
union (inclusion, conjunction). Distributed operation
of the union operation requires each element of the re-
sult set to be transmitted over the network at least
once. The straightforward implementation of the (bi-
nary) union operation described earlier consists of in-
dividual transmission of the contributory sets to the
next hop in the course of query processing. The ele-
ments shared by the two contributory sets are trans-
mitted to the destination twice. If the sets are identi-
cal, which is the worst case, the data transmission dou-
bles compared to the optimum transmission.2

Unfortunately, it does not seem possible to do bet-
ter than the straightforward implementation, because
the shared elements need to be communicated between
the storage nodes to prevent duplicate delivery. This
in turn involves transmitting the shared elements over
the network twice: once between the storage nodes and
once from the storage nodes to the next hop.

Even though this means that the total transmission
size cannot be improved, using Bloom filters to calcu-
late the shared set (=intersection) and then prevent-
ing duplicate delivery to the next hop can be advanta-

2 When the two sets are disjoint, obviously no improvements can
bemade, as each elementwill alreadybe transmittedonlyonce.

geous, especially when the recipient of this (potentially
intermediate) result has limited bandwidth.

To process unions as part of Bloom-filter-optimized
queries (e.g. as explained in Figure 7), any term can
be considered to be constructed out of unions as a dis-
junctive normal form. The conjunctions will be evalu-
ated as a lower-level subquery and their result used for
the higher-level query sequence. This is applicable to
unions in Bloom filter form as well as in an element list-
ing.

5. Assessment

What follows is a qualitatively assessment of the per-
formance of CANDy’s compared with a solution based
on a central directory and an approach that uses flood-
ing.

5.1. Storage Considerations

The flooding approach uses a set of equal nodes or
peers, in which each node stores a subset of the re-
sources together with the corresponding properties. As
the resources are stored together with the properties on
the same node, no refIDs are required. In terms of stor-
age, the flooding approach is optimal.

The central directory solution uses a central server
to store property information and to link property val-
ues to resIDs. As all property information is available
at the central server, resIDs do not have to be repli-
cated for each matching property. The total storage re-
quired for this solution is then given by the storage re-
quirements of the resources themselves and the sum of
all stored property values and one resID for each re-
source. In contrast to the flooding approach, storage
space for the resIDs has to be provided. The resIDs
are, however, very small, and for all practical purposes
the additional storage can be neglected.

CANDy distributes the property information and
the associated resIDs across the index nodes. Even
though property information is mapped to propIDs by
the user agent, index nodes still need to store the com-
plete property information in order to resolve hash col-
lisions. The distributed nature of CANDy requires that
an individual resID is replicated multiple times, once
for each property that it matches and additional times
to allow substring matching and range searches. As the
number of properties of a resource is limited, an indi-
vidual resID will typically be replicated less than 100
times. The storage overhead is small compared to the
optimal solution, as an individual resID typically con-
sists of only a few bytes.

5.2. Number of Message Transmissions

The flooding approach needs to distribute the query
to all nodes to find all matching documents. The per-
formance of flooding depends on the topology, but in
order to reach N nodes at least N messages have to be
sent. In practice, flooding is much less efficient as an
individual node will receive the same message multi-
ple times. Clearly, flooding does not provide a scalable
solution.

The central directory solution requires four message
transmissions. The query is sent to the directory server,
which answers with the set of matching resIDs. An ID is
looked up and the resource is accessed. In terms of mes-
saging overhead, the centralized directory approach is
close to optimal.

CANDy’s messaging overhead is determined by the
complexity of the query. In particular, the sequence
of set operations also determines the number of mes-
sage transmissions. As typical queries involve just a
very small number of properties, the messaging over-
head is also very small, on the order of a few messages.

5.3. Scalability and Resiliency

The flooding approach provides excellent resiliency
against node and network failure. As long as a resource
is reachable in the network, the flooding approach will
find it. The lack of scalability due to excessive gener-
ation of network traffic makes the flooding approach
unusable for even moderately sized networks.

The central directory approach is very efficient, but
lacks both scalability and resiliency. The central server
is a bottleneck that can get overloaded by a large num-
ber of queries. A failure of the central server has fatal
consequences for the whole system.

While CANDy is moderately less efficient than the
central directory approach, it provides a scalable and
more resilient solution. Due to its distributed approach,
it spreads the load across several nodes without requir-
ing excessive network resources. It is resilient in that
an index-node failure affects the precision of the re-
sult, but not the overall functionality.

6. Related Work

Some recent proposals blur the boundary between
structured (i.e., DHTs) and unstructured (Gnutella-
style) P2P networks. Cohen et al. [6], for example, take
advantage of shared interests to try to attain good re-
sults with limited flooding while pSearch [20] brings
limited flooding to a modified DHT in order to get soft
queries. The remainder of the section, though, will fo-

cus on papers sharing our goal of bringing advanced
queries to essentially unmodified DHTs.

INS/Twine [3] is an intentional resource discov-
ery system [2], where resources are described by at-
tribute/value trees (AVtree), with the attributes or-
ganized orthogonally and hierarchically. Each AVtree
is stored and retrieved under a key generated by hash-
ing the tree. While INS/Twine solves the ‘exact-match’
problem, it produces a potentially large number of keys
and consequently stores the same resource description
on a large number of different nodes. Set operations, re-
stricted to intersection, are implicit in the construction
of the query AVtree.

Felber et al. [8] extend upon the INS/Twine concept
by overlaying the DHT with a rooted directed acyclic
graph (DAG). The edges of this DAG represent queries
that can be used to refine the result set. The actual
query process becomes a tight interaction between the
requesting node and the DAG.

Approximate range searches are supported by Gupta
et al. [10]. When a query for range [s, e] is made, they
try to locate a range [s− ε, e+ ε′] that has been stored
in the DHT, which minimizes ε, ε′. To make this fuzzy
match, they use distance-sensitive hash functions. The
result needs to be postprocessed to evict out-of-range
matches.

Substring searches have been described in [12]
through the intersection of the sets indexed by
the n-grams of the string. Similar to Bloom fil-
ters, these are subject to false positives, which then
need to be weeded out by inspecting the actual ob-
jects.

A completely different approach is taken by PIER
[14]. Instead of distributing the query processing, they
implement a fully functional relational database on top
of a DHT. Their trick is to disperse the database ob-
jects into the DHT, essentially treating the DHT as a
distributed disk.

7. Conclusions

A major challenge in the use of distributed stor-
age is the location of resources with a flexible and ex-
pressive query language, but without reliance on sin-
gle points of failure or requiring the waste of network
or storage solutions.

We have presented CANDy, a solution to the prob-
lem for expressive distributed searching that is (i) fully
distributed, (ii) efficient and scalable in its use of com-
putation, storage, and communications resources, (iii)
modular and flexible, and (iv) is able to take advan-
tage of any underlying DHT technology.

CANDy provides the full range of set operations ap-
plicable in this context. These operations are available
both to the querying agent and used internally to ex-
tend exact matches to range and prefix searches. We
also extended the use of Bloom filters for handling ex-
clusion and showed that a further extension to union
operations is not reasonable.

Acknowledgments

We would like to thank Jan van Lunteren and
Patrick Droz for many helpful discussions.

References

[1] K. Aberer, M. Hauswirth, M. Punceva, and R. Schmidt.
Improving data access in P2P systems. IEEE Internet
Computing, 6(1), Jan./Feb. 2002.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an inten-
tional naming system. In Symposium on Operating Sys-
tems Principles, pages 186–201, 1999.

[3] M. Balazinska, H. Balakrishnan, and D. Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery. In Pervasive 2002 - In-
ternational Conference on Pervasive Computing, Aug.
2002.

[4] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[5] A. Broder and M. Mitzenmacher. Network applications
of Bloom filters: A survey. In Proceedings of the 40th An-
nual Allerton Conference on Communications, Control,
and Computing, pages 636–646, 2002.

[6] E. Cohen, A. Fiat, and H. Kaplan. A case for associa-
tive peer-to-peer overlays. volume 33, Jan. 2003. Pro-
ceedings of ACM HotNets-I (October 2002).

[7] W. Doeringer, G. Karjoth, and M. Nassehi. Routing on
longest matching prefixes. IEEE/ACM Transactions on
Networking, 4(1):86–97, Feb. 1996.

[8] P. A. Felber, E. W. Biersack, L. Garcés-Erice, K. W.
Ross, and G. Urvoy-Keller. Data indexing and query-
ing in DHT peer-to-peer networks. In Proceedings of
ICDCS 2004, Tokyo, Japan, 2004.

[9] G. N. Frederickson. Searching intervals and compact
routing tables. Algorithmica, 15(5):448–466, May 1996.

[10] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate
range selection queries in peer-to-peer systems. In Pro-
ceedings of the First Biennial Conference on Innovative
Data SystemsResearch,Asilomar,California,USA,Jan.
2003.

[11] R. F. Haddleton. Parallel Set Operations in Complex
Object-Oriented Queries. PhD thesis, University of Vir-
ginia, Jan. 1998.

[12] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex queries in DHT-
based peer-to-peer networks. In Proceedings of IPTPS
2004, 2004.

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. SkipNet: A scalable overlay network
with practical locality properties. In Proceedings of
USENIX Symposium on Internet Technologies and Sys-
tems (USITS ’03), Mar. 2003.

[14] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,
S. Shenker, and I. Stoica. Querying the internet with
PIER. In Proceedings of 19th International Conference
on Very Large Databases (VLDB), Berlin, Germany,
Sept. 2003.

[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Access-
ing nearby copies of replicated objects in a distributed
environment. In ACM Symposium on Parallel Algo-
rithms and Architectures, pages 311–320, 1997.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, Sept. 2001.

[17] P. Reynolds and A. Vahdat. Efficient peer-to-peer key-
word searching. In Proceedings of Middleware 2003,
June 2003.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware),
pages 329–350, Heidelberg, Germany, Nov. 2001.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of ACM
SIGCOMM 2001, pages 149–160, San Diego, CA, USA,
Aug. 2001.

[20] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Infor-
mation retrieval in structured overlays. volume 33, Jan.
2003. Proceedings of ACM HotNets-I (October 2002).

[21] H. H.-Y. Tzeng and T. Przygienda. On fast address-
lookup algorithms. IEEE Journal on Selected Areas in
Communications, 17(6):1067–1082, June 1999.

[22] M. Waldvogel. Multi-dimensional prefix matching us-
ing line search. In Proceedings of IEEE Local Computer
Networks, pages 200–207, Tampa, FL, USA, Nov. 2000.

[23] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. ACM Computer Communications Re-
view, 33(1):101–106, Jan. 2003. Proceedings of ACM
HotNets-I (October 2002).

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.
Scalable high-speed prefix matching. Transaction on
Computer Systems, 19(4):440–482, Nov. 2001.

[25] B.Y.Zhao,J.Kubiatowicz, andA.Joseph. Tapestry:An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, Univer-
sity of California, Berkeley, April 2001.

