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Abstract— Widespread availability of high-speed net-
works and fast, cheap computation have rendered high-
quality Media-on-Demand (MoD) feasible. Research on
scalable MoD has resulted in many efficient schemes that
involve segmentation and asynchronous broadcast of media
data, requiring clients to buffer and reorder out-of-order
segments efficiently for serial playout.

In such schemes, buffer space requirements run to sev-
eral hundred megabytes and hence require efficient buffer
management techniques involving both primary memory
and secondary storage: while disk sizes have increased ex-
ponentially, access speeds have not kept pace at all.

The conversion of out-of-order arrival to in-order play-
out suggests the use of external memory priority queues, but
their content-agnostic nature prevents them from perform-
ing well under MoD loads. In this paper, we propose and
evaluate a series of simple heuristic schemes which, in sim-
ulation studies and in combination with our scalable MoD
scheme, achieve significant improvements in storage perfor-
mance over existing schemes.

I. INTRODUCTION

The widespread availability of broadband connectivity
to the end-user has opened up possibilities of high qual-
ity Media-on-demand (MoD) delivery to the home. Ear-
lier work [1] on requests in video rentals suggests that an
80:20 rule might hold here: 80% of requests are for the
top 20 movies. Recent research [2], [3], [4], [5], [6], [7]
has thrown up a variety of scalable MoD schemes that at-
tempt to conserve server bandwidth by segmenting popu-
lar MoD data and periodically broadcasting it to interested
clients.

One downside of such periodic-broadcast schemes is
that they require the client to re-order segments and buffer
them till their proper playout time. These schemes there-
fore require clients to have buffer capacities of several
hundred megabytes, necessitating use of a hard disk to
store the bulk of the buffered data. While disk space us-
age is no longer an issue due to exponentially increasing
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disk capacities, disk load is: disk throughputs have not
kept pace with capacities.

In this paper, we discuss schemes for efficient client-
side management of buffers for scalable MoD schemes.
Specifically, we address the problem of minimizing the
time spent in disk 1/O by the client during the course of
accessing media data.

The rest of this paper is organized as follows: In § Il we
provide a brief introduction to the scalable MoD scheme
that we consider. We then provide a justification for effi-
cient buffer management in § IV. We introduce our sche-
mes in § V and evaluate their performance in § VI. Finally,
we briefly discuss server-side support for more efficient
buffer management by clients.

I1. RELATED WORK

Our buffering problem can be formulated as an ex-
ternal memory sorting problem involving random inser-
tions and minimum element deletion, for which a heap-
or priority-queue-based algorithm naturally suggests it-
self. One high-performance variant is a radix-heap-based
structure, which stores frames in multi-level buckets ac-
cording to an optimal radix. According to a comparative
analysis performed by [8], radix heaps are the best exist-
ing scheme when the keys are integers in a pre-defined
range. However, radix-bucket-based schemes neglect to
take linear access into account. Widely seperated frames
map to the same bucket and end up getting written to and
read from disk together, resulting in suboptimum perfor-
mance. We have used a modified version of the algorithm
presented in [8] and in [9] for performance comparison.

Buffer management could also be treated as a cache re-
placement problem, with the additional property that there
are at most two accesses to each block, one random (dur-
ing arrival), the other serial (during playout). The op-
timum cache replacement strategy of writing the frame
with the most distant playout to disk, while minimizing
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Fig. 1. Basic Transmission Pattern

the number of disk accesses, ends up using one seek for
every frame read or written, incurring a high overall disk
1/0 cost.

I11. SCALABLE MOD TRANSMISSION

Consider the broadcast of a popular movie of n frames.
Assume the frames are to be broadcast to satisfy the on-
demand requirements of multiple clients with different
join times. Now, a client with a join time of ¢ and a wait-
time of w will require frame f at time ¢, no later than
playouttime t+w+ f —1,i.e.,t <ty <t+w-+ f. Thus
each client has a window of w + f instants in which to
receive frame f. In the absence of client feedback, i.e., in
a proactive system, on-demand delivery for each client is
ensured by broadcasting frame f at least once every w+ f
instants.

This is formalized as algorithm IDEAL (Algorithm 1)
below. The schedule generated by algorithm IDEAL (with
w = 0) is plotted in Fig. I, showing the frames transmit-
ted during each instant and the receive windows for two
clients joining at instants 1 and 4. In this example, we
assume a transmit system call that schedules frame f for
transmission at instant ¢ using a transmission queue.

Algorithm 1 Algorithm IDEAL

for all frames f; do
A—j+uw;
for (t — A\t < tyaz;t+=A) do
transmit (¢, f;);
end for
end for

It can be proved [7] that the average bandwidth for the
entire movie is:
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Fig. 2. Bandwidth vs. Delay

where B is normalized to the playout bandwidth of the
movie. In other words,

Movie length

Bandwidth (in frames/instant) =~ In ——
Initial delay

In practical terms, serving a 2-hour 300 kbps Real Me-
dia or MPEG-4 movie with a 5-minute initial delay re-
quires a server and client bandwidth of ~ 1 Mbps. Thus,
the system begins to be advantageous as soon as the num-
ber of clients exceeds 3. Fig. Il shows the scaled band-
width usage (relative to the bit rate of the movie) as a
function of the initial delay (relative to the length of the
movie).

IV. THE BUFFER MANAGEMENT PROBLEM

As it stands, Algorithm IDEAL results in too spiky a
bandwidth usage to be implemented in practice. We have
developed schemes [7] that schedule frame transmission
in a way that preserves its bandwidth optimality with-
out violating peak bandwidth constraints. These schemes
work by “fuzzifying” the schedules, redistributing band-
width more equitably over time by moving frames away
from bandwidth “spikes”. This is formalized as algorithm
BASIC (Algorithm 2). The crux of it is the FINDNEIGH-
BOR function, which finds an alternate neighboring time
slot for frames that algorithm IDEAL originally schedules
in relatively ‘crowded’ time slots.

We do not discuss further the ways in which FIND-
NEIGHBOUR may be implemented, but refer the inter-
ested reader instead to [7]. For this work , it is sufficient to
assume that for a movie of n frames, any client with a join
time of ¢, and an initial wait period of w would receive at
least one instance of any given frame f at some instant ¢
before playout, i.e. in the time interval [¢,, ts +w + f).

It is clear that the scheme relies heavily on buffering
and reordering of out-of-order frames by the client. It can



Algorithm 2 Algorithm BASIC

Best < Baet < 0;
for all frames f; do
A—j+w;
Best+ = %;
for (t — At < tmaz; t+ = 5t7 Bact[t] + +) do
0; — FINDNEIGHBOR,;
transmit (¢ + &, f;);
end for
end for

be shown [7] that the client buffer size as a function of
time ¢ relative to ¢, is

tln 2w ] <t < w,
B(t)Z{ Y T )

tln’”T“’ w<t<n4+w

The peak buffer size is “T“’ of the entire movie size,
at a fraction "JFT“J (e being Euler’s constant) of the entire
playout time into movie. For a two-hour MPEG-2 movie
with a transfer rate of 4 Mb/s and a 30 s initial delay, this
would translate to a peak buffer requirement of approxi-
mately 700 MB.

Thus the typical client is forced to distribute its buffer
between a small fast cache in primary memory and a large,
slow hard disk that holds the bulk of the buffered frames.
As frames arrive over the network, existing frames are dis-
placed from the cache and written to disk until playout
time. This naturally leads us to the question of doing this
efficiently from a disk 1/O performance perspective. Why
is this important? Let us look at some of the reasons:

« For set-top boxes, more efficient buffer management
obviates the need for higher-performance hardware,
leading to lower costs.

o Clients could be commodity PCs running multi-
ple concurrent tasks: both memory and storage are
shared resources that should be used optimally.

« Some proxies or transcoding devices located, e.g., at
cable head-ends, receive, buffer, and reorder frames
(among other things) before streaming them seri-
ally to constrained end-systems such as diskless set-
top boxes. Better buffer management contributes to
greater scalability.

V. EFFICIENT BUFFER MANAGEMENT SCHEMES
A. Disk Metrics

We use a relatively simple metric to estimate disk per-
formance: Consider a disk with these parameters:

RANDOM SEEK TIME, S,: This is the average seek
time for unrelated read/writes.

SEQUENTIAL SEEK TIME, Ss: This is the seek time
for adjacent blocks of the same read/write.

BLock size, B: Disk space is always allocated in
blocks. All disk 1/O is in multiples of B bytes.

TRANSFER RATE, T': This is the rate at which data can
be read/written. If we assume that the disk allocator writes
data in one write over multiple adjacent blocks, the time
taken for a read/write of b bytes is given by

Ssb b
tb) = S, + — + =
(b) = S, + 5 +T
Effectively, the time to transfer n frames in one read/write

between memory and disk is of the following form:
t(n) = Cy + Cy X n, 3)

where C7 and C, are constant for a given disk.

This model might seem simplistic in these times of
intelligent caching disk controllers, but considering the
massive amounts of data involved, our analysis shows that
this simple model provides a close approximation. For
typical disk and transmission parameters, C; = 10 ms and
Csy = 2 ms. We have arrived at these parameters by exper-
imenting with simulations of the Seagate Barracuda disk,
as obtained from DiskSim [10]. Moreover, we are work-
ing on refining these measures, possibly through more
complex disk models.

During playout of the movie, a number of frames are
written to disk and read back again. Our goal is to min-
imize the total 1/O time spent over these frames, as esti-
mated by (3). In the following sections, we present our
algorithms.

B. Most Distant Playout (MDP) Replacement

MDP is similar to the optimum cache replacement al-
gorithm: the principle is to replace frames that would be
required farthest in the future. With sequentially accessed
media data, the highest-numbered frame in the cache is
the ideal candidate for replacement.

In MDP, instead of replacing just the last frame in the
cache, a number « of frames in cache are written out to
disk as a single chunk. Preemptively writing out a batch
of likely-to-be replaced frames amortizes seek time over
x frames, instead of using up one seek for each frame.
When the earliest frame in the sequence is to be played
out, the entire chunk is read back into the cache again.

MDP is suboptimum in terms of the number of total ac-
cesses to disk; some frames cycle more than once between
memory and disk. But as access time for reasonable frame
sizes is much lower then seek time, MDP, by effectively
trading in more reads/writes for fewer seeks, is able to
achieve a reduction in overall disk 1/O time.
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C. Most Compact Sequence (MCS) Replacement

Another strategy is to take advantage of linear access
of frames, and write out the x-long run of frames that has
the most compact playout schedule of the frames currently
in memory, in order to reduce the rate of blocks cycling
between disk and memory. For a run of x frames with
playout times Py, Ps, - - - P,, we define its sparseness (as
opposed to compactness) by

S=> (h—P)
=1

We choose the rightmost such sequence with minimum S.
In the best case, this is a stretch of x continuous frames.

Sparseness can be thought of as a cumulative measure
of wasted buffer occupancy: the earliest frame in a sparse
run wastefully drags along much later frames from disk to
memory. Replacing compact runs lowers the risk of later
frames in the run getting replaced again before playout.

An advantage of this definition is that it selects Run-1
over Run-2 in Fig. 4, although both have the same ‘den-
sity.” A run with more frames near the head is a better
candidate for replacement because fewer frames (if at all)
get cycled back to disk, while other frames necessary for
playout are being fetched.

D. Optimal Block Szes

The rationale for writing out blocks of « frames instead
of single frames is to trade an increase in the number of
(cheaper) disk transfers for a decrease of (costly) seeks.
The optimum value of « depends on the relative costs of
seeks vs. read/writes as well as the cache size.

Increasing ~ will reduce seeks and buy shorter disk 1/0
time upto a point. Thereafter, increased access times pre-
dominate, and the parameters move away from the opti-
mum. Figures 5 and 6 plot « as a fraction of the cache
size (', against I/O time as a fraction of n +w, the playout
time. The 1/O time is calculated based on the disk param-
eters discussed above. Fig. 5 shows the results for MDP
and Fig. 6 for MCS. It is seen that k ~ 2...3% of the
cache size provides the best performance for both MDP
and MCS. All 1/O times are given relative to the actual
playout time. As all of the blocks written to disk are of
the same size, disk allocation management becomes triv-
ial. We have also experimented with a variable &, but feel
that the performance gains accrued might not be worth the
increased complexity in disk management.
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VI. PERFORMANCE COMPARISON

Fig. 7 summarizes the performance of MDP and MCS
replacement schemes in comparison with the radix-heap-
based algorithm and the optimum cache replacement al-
gorithm. It is clearly seen that in the feasible operating
regions of Cache size = 0.2 % to 2 % (= 6 to 60 MB for
typical MPEG-2 movies), our schemes outperform exist-
ing schemes by more than a factor of two in disk /0.

In our implementation of the radix-heap algorithm pre-
sented in [9], we have improved its efficiency somewhat
by modifying it to take advantage of the entire memory
available and write out radix buckets to disk only when
this memory is used up: The performance of radix-tries as
described by the authors [8] would have been much worse.
Array heaps [8], another promising data structure, did not
perform better in practice than the radix-heap algorithm in
our tests.

A. Computational Complexity

We note that both MDP and MCS are quite easy to im-
plement compared with heap-based schemes, as they use
relatively simple structures like lists and arrays. A simple
array based implementation of MDP with a cache of size
of C frames takes O(C') time to insert a frame and O(1)
time to delete x frames from cache. Note that these oper-
ations are in addition to the actual Disk 1/O operations
which, we assume, happen in the background. Imple-
menting the cache as a balanced binary tree would result
in O(log C') time for inserting and deleting a single frame.
A simple array-based implementation of MCS takes O(C')
time to insert a frame and O(C') time to replace a run of
k frames. As memory constraints will typically limit C
to not more than a few hundred frames, this will be ex-
tremely inexpensive compared with the other operations
involved.

0.6 T T T T

T

MCP - Cache = 1%

MCP(Chunk) - Cache = 1% ———
MCP - Cache = 2% -
0.5 MCP(Chunk) - Cache = 2% ------
MCP - Cache = 10% — =—-

b MCP(Chunk) - Cache = 10% — o—

Time spent in 1/O (fraction of movie length)

0
0 005 01 015 02 025 03 0.35

k/C
Fig. 8. Relative performance of server-side chunking.
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VI1l. SERVER SUPPORT FOR CLIENT CACHING

The success of MCS depends on finding enough com-
pact runs to write to disk during each replacement. This
can be exploited at the server side by altering schedules
such that frames whose playout times are close together
tend to be transmitted during nearby instants, a technique
we refer to as “chunking.”

Specifically, we implement chunking by defining a
chunk size H and a time frame 7'(f) for each frame f,
ensuring that no two frames in a chunk are scheduled
more than 7'( f) instants from each other. The time-frame
function T'(f) is typically a linearly increasing function
of frame size and is of the form 6, * (w + f) + dg * w
where J, and &4 are small constants. More details may
be found in our detailed paper on our server-side schedul-
ing scheme [7]. The chunk size, too, is an important pa-
rameter: the server’s flexibility in scheduling frames over
time decreases with increasing chunk size. Empirically,
we observe that using chunk sizes that correspond to the
client-side cache replacement size « produces optimal re-
sults with no significant impact on the server bandwidth
usage. This makes intuitive sense, since the best case for
MCS replacement is a chunk of x consecutive frames.

Because chunking causes each client to receive adja-
cent frames closely together in time, most iterations of
MCS will find clusters of frames that are to be played out
near each other. Thus, altering server schedules to sup-
port MCS cache replacement at the client results in further
gains in the performance of the MCS algorithm. Fig. 8 il-
lustrates the relative performance with and without chunk-
ing for various cache and chunk sizes. As can be seen, this
effect is most pronounced for small caches (1 — 2%). For
a cache able to hold 10% of the movie, the effect becomes
effectively nil. Therefore, Fig. 8 shows the two 10% lines
directly on top of each other.



VIII. CONCLUSIONS

Recent scalable MoD systems place a heavy load on
the client in terms of buffer space. When designing
cheaper end-systems or more scalable proxies, efficient
buffer management becomes critical. We have proposed
and evaluated some simple schemes drawing upon these
principles:

BATCHED 1/0O: Cache replacement in blocks of multi-
ple frames amortizes seek times over these frames. Em-
pirically, we found replacing 2. ..3% of the cache to be
optimal.

USING ACCESS PATTERNS: The knowledge of pro-
cessing continuous media requiring linear playout access
allows the efficient writing of compact sequences to re-
duce cycling of data between memory and disk.

SERVER-SIDE SUPPORT FOR CLIENT-SIDE CACHING:
Chunking helps servers support highly inexpensive clients
with minute amounts of main memory and very slow ex-
ternal storage, at a small trade-off in additional bandwidth.

Working in concert, these techniques achieve signifi-
cant performance gains compared with known algorithms
described in the literature. For example, when the cache
size is 1% of the movie length, using M C'S replacement
with chunking reduces disk 1/0 usage to less than 10% of
the time, compared to about 40% of the time with radix
heaps. In other common cases, our results, although less
impressive, improve performance by at least a factor of
two.

We are currently working on improving our heuristics
and providing theoretical upper bounds. Additionally, we
aim to find out more about optimum cache replacement
strategies when the server transmission schedule is known
to the clients.
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