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Abstract. Network processors (NPs) implement a balance between
hardware and software that addresses the demand of performance and
programmability in active networks (AN). We argue that this makes
them an important player in the implementation and deployment of ANs.
Besides a general introduction into the relationship of NPs and ANs, we
describe the power of this combination in a framework for secure and
safe capsule-based active code. We also describe the advantages of of-
floading AN control point functionality into the NP and how to execute
active code in the data path efficiently. Furthermore, the paper reports
on experiences about implementing active networking concepts on the
IBM PowerNP network processor.

1 Introduction

The ongoing convergence of voice, broadcast, and data networks leads to a de-
mand for a novel flexible and high-performance packet-forwarding technology.
Flexibility is needed for short development cycles and for the support of evolv-
ing protocols and standards, combined with the shift towards high-performance
packet handling [25] due to the increasing bandwidth demands. Today, packet
handling is performed by application-specific integrated circuits (ASICs), field-
programmable gate arrays (FPGAs), or general-purpose processors (GPPs).
While ASICs have clear advantages in terms of performance, the hardware func-
tions do not provide sufficient flexibility. In contrast, packet forwarding based
on GPPs provides high flexibility, but insufficient performance because GPPs
were not designed with packet forwarding in mind. Finally, FPGAs can be repro-
grammed at gate level, combining features from ASICs and GPPs [18]. However,
high-level programmability of FPGAs still is very limited despite improvements
of the level of abstraction [5].

Network processors (NPs) are specifically designed processors for combined
fast and flexible packet handling [11]. Typically pairing an embedded processor
complex with application-specific instructions and coprocessor support, NPs can

? An earlier, shorter version of this paper was presented at ANTA 2002 [15]
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achieve even higher-layer packet processing at line speeds of several Gb/s. Be-
sides the instruction set, the entire design focuses on high-performance packet
processing, including memory, hardware accelerators, bus, and I/O architec-
ture. NPs are well suited for most packet-processing tasks, ranging from content
switching, load balancing, traffic conditioning, network security, and terminal
mobility to active networks [4,11]. This paper focuses on the specific role of NPs
in ANs.

Recent work has resulted in secure and manageable AN approaches [3,6,20].
This paper argues that the remaining performance concerns can be addressed
with NPs because their balance between hardware and software efficiently ad-
dresses the demand for high data-path performance without sacrificing pro-
grammability.

The remainder of the paper is structured as follows. The next section intro-
duces NP architectures and their potential applications. The general benefits of
NPs for implementing ANs are described in Section 3. The specific advantages
of a concrete AN framework are shown in Section 4, and our experience from its
implementation is presented in Section 5.

2 Network Processor Architectures

The main goal of NPs is to provide high processing power and fast packet-
oriented I/O, the latter being one of the key GPP bottlenecks. As a typical
result, on-chip memory is small due to chip area constraints, arithmetic units
are much simpler compared to GPPs and high speed is achieved through paral-
lel packet processing by multiple threads in order to hide memory latencies. In
addition, common packet-handling functions, such as prefix matching, classifica-
tion, metering, policing, checksum computation, interrupt and timer handling,
bit manipulation, and packet scheduling, are frequently supported by dedicated
hardware units. Moreover, NPs are often teamed with an embedded GPP for
more complex tasks [4].

Depending on the location in the network (i.e., edge or core), NP architec-
tures differ in terms of hardware design. The bus architecture as well as the size
and type of memory units vary considerably. Edge-type NPs are better equipped
for intelligent and stateful packet processing, whereas core-type NPs focus on
processing aggregated traffic flows rather than individual packets.

A main NP design decision is whether packet processing prefers the run-to-

completion or the pipeline model [4,8,11]. The former dedicates a single thread
to packet forwarding from the input interface to the router’s packet switch and,
likewise, from the switch to the output interface. Threads run on a fixed number
of core processors, sharing the memory units, such as lookup trees, instruction
memory, and global packet buffers. An alternative to run-to-completion is the
pipeline model. Here, the forwarding process is divided into different stages,
and each stage is handled by another core processor with its own instruction
memory [24].
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Fig. 1. Network processor programmability.

2.1 Programmability

The NP hardware is typically combined with a horizontally layered software
architecture (see Figure 1). On the lowest layer, the NP instruction set provides
means for direct packet handling. Many NPs allow access to the instruction
memory from a separate control processor, enabling extension or update of the
router functionality at runtime.

On the control processor, application programming interfaces (APIs) provide
an abstract view of the resources of the network node [1]. The APIs are dedi-
cated to different data-plane, control-plane, and management-plane services of
the NP (e.g., initialization, interface configuration, memory and address man-
agement, forwarding and address resolution, traffic engineering, classification,
diagnostic, event logging, debugging) and can be used for developing portable
network applications [4, 9, 11].

2.2 Applications

The use of NPs is beneficial in network applications and services which depend
on high data rates as well as rapid development and deployment. In particular,
the following application domains have shown benefits from using NPs:

Content switching and load balancing. Information access via HTTP, FTP,
or multimedia streaming protocols can result in heavy load on the server.
Content switching and load balancing address this problem by transparently
distributing client requests across different servers [10, 14].

Traffic differentiation. Quality of service (QoS) and traffic engineering ap-
proaches in IP networks require traffic differentiation based on classification,
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conditioning, and forwarding functions at edge and core routers. These func-
tions increase data-plane processing and are likely to continue evolving in
the future, requiring the flexibility provided by NPs.

Network security. With the increase in manual and automated attacks, se-
curity functions are needed for protection of systems and network, such as
encryption, intrusion detection, and firewalling. This again increases the need
for flexible and evolving data-plane processing, a prime opportunity for NPs.

Terminal mobility. The protocols used in mobile/IP convergence networks
[2,22] are likely to evolve in the near future. NPs help mobile-equipment man-
ufactures to adjust their products to the latest standards much faster than
with dedicated hardware-based solutions. An alternative GPP/software-
based solution would not be able to sustain the necessary stateful higher-
layer packet processing at wire speed [11].

Active networking. In AN, packets are no longer passively forwarded, but
code carried in packets can actively influence the forwarding process at
routers. They require not only significantly more data-plane processing, but
can only be implemented if routers expose their state of operation and allow
the reconfiguration of forwarding functions. Several of the above domains
could also benefit from AN-based implementations.

The rest of the paper will focus on the relationship between ANs and NPs.

3 General Advantages of NP-based ANs

The key idea of ANs [23] is to decouple network services from the networking
infrastructure. This is achieved with active packets and active nodes. The exe-
cution environment (EE) on active nodes is typically set up to interpret active
programs in byte-code for security and platform independence.

Unfortunately, the interpretation of byte-coded active programs significantly
increases the processing overhead per packet. This demand for more performance
cannot be addressed with hardware-based forwarding solutions. Routers imple-
mented in ASIC or with FPGAs cannot provide the level of programmability
required for active nodes. In the remainder of this section, we discuss how some
typical AN concepts can benefit in terms of performance and/or ease of devel-
opment when implemented on an NP.

Active programs get to the router in two basic forms: as capsules and plugins.
Capsules are self-contained packets including active code that are interpreted
or just-in-time compiled [16]. The language used, such as SNAP [19], should be
safe with respect to network-resource usage and evaluation isolation. Plugins [13]
differ from capsules as the packets contain URL-like pointers, whose contents are
then retrieved (if not already cached) and executed by the EE. Both approaches
can only gain from NPs: The code can be executed directly on the line card at
high speed and direct access to all allowed components.
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3.1 Application-Level Multimedia Filtering

In unicast scenarios with peer-to-peer communication between end users, it is
possible to negotiate or sense optimum sending rates. However, in multicast
scenarios, network resources are difficult to use effectively because the bandwidth
up to a congested router may be partially wasted. Positioning application-level
packet filters in multicast trees (e.g., preferential dropping of MPEG B-frames)
can result in a much better overall link utilization while preserving quality.

It has been proposed that ANs perform application-level multimedia filter-
ing [7], where filters are injected into a network so that an optimum reservation
tree is created. The hardware classifiers provided by NPs as well as the corre-
sponding classifier APIs at the control-processor level would make it very easy
to implement application-level multimedia filtering.

3.2 Network Management

Active networking for network management [12,17,21,26] results in significantly
fewer implementation problems because only few active packets are injected
into a network. In general, the forwarding of network-management packets is
not time-critical as monitoring and configuration tasks operate on a larger time
scale than control- or data-plane tasks. NPs typically provide mechanisms to
direct such non-performance-critical packets to the control processor (e.g., using
IP header options).

The control processor is equipped with APIs to support typical network-
management operations, such as querying and configuring the network nodes.
However, active packets sent out for network management-purposes are not used
to set and obtain node parameters only, but may include in the code they exe-
cute some intelligence for preprocessing and aggregating information from sev-
eral managed nodes before sending it back to the management station. Such a
distributed approach to network management can prevent management stations
from becoming overwhelmed with messages, and ensures that the load incurred
due to network-management traffic remains low.

4 Advantages of our NP-based AN Framework

The advantages of NPs for implementing and deploying ANs have been described
in general terms in the previous section. This section introduces a flexible and
generic framework for active networking that matches the functionality provided
by NPs in order to exemplify the power of the NP/AN relationship.

The goal of this framework is to enable new networking functionality (i.e.,
focused on QoS support) which can be dynamically deployed while maintaining
architecture neutrality. Therefore our framework relies on a capsule-based ap-
proach providing flexible and fast execution of active packets in the data path
but also allows active code to be stored on active nodes. Most programming lan-
guages are unpredictable in terms of resource consumption and therefore inap-
propriate for safe active networking. A suitable active-networking programming
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language needs to trade off functionality for flexibility while taking into account
security. From the considerable number of security issues entailed by ANs we
derive the following requirements such an approach has to comply with.

Safe byte-code language. Architectural neutrality, intrinsic safety properties
(intrinsic bounds on CPU, memory, and networking bandwidth), and appli-
cability of the language to current and future application domains are prime
criteria when designing or choosing the language.

Resource bound. Resources need to be bounded along two axis: per-node re-
sources and the number of nodes/links the packet will visit.

Safety levels: An appropriate safety hierarchy monitors control-plane and
data-plane activities. The handling of active-networking packets is divided
into six safety levels as is shown in Table 1. The means for data-plane safety
are given through the byte-code language. Safety levels 3–5, called the higher
safety levels (HSLs), require admission control at the edge of network do-
mains (i.e., the edge of the domain of trust) using policies depending on the
network needs. This also enables easy accounting and charging for active
packets. Adding and removing dynamic router services requires a public-key
infrastructure for integrity and authentication of active code. Alternatively,
higher-level packets can be filtered or, better, disabled for a certain domain
only.

Sandbox environment: Any active byte-code is executed in a safe environ-
ment called the active networking sandbox (ANSB). Information exchange
with the router is protected by so-called router services.

Router services: Router services dynamically enhance router functionality to
overcome limitations of the byte-code instructions. They can be static, i.e.,
defined as opcodes in the byte-code language (e.g., IP address lookup, in-
terface enumeration, flow queue management, or congestion status infor-
mation), or dynamic (e.g., installation of active code into the ANSB for
active queue management (AQM) or scheduling, policy manipulation using
a dynamically loaded router service). Dynamic router services are usually
tailored to networking tasks with a focus on control-plane functionality, and
take significantly more time to execute than normal byte-code instructions
do. Therefore, router services belong to the set of instructions with a safety
level higher than 1. The installation of new router services is restricted to
safety level 5. Such an active packet contains the context for which the new
service is applicable, and the code section to be installed is given in the
packet’s payload.

Routing: Active packets will not interfere with routing protocols. Alternative
routes can be proposed by router services as long as the corresponding entries
are defined in the local routing table.

In general, we distinguish between safety and security. Safety is given through
the definition of the byte-code language itself, the safety hierarchy, and the safe
EE for active code. The goal of safety is to reduce risks to the level of tradi-
tional IP networks. Security can only be provided by additional network security
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Table 1. Safety hierarchy in active networks.

Safety

level

Allowed network

functionality

Packet and router requirements

5 Dynamic router services
(active code): registering
new router services

Authentication of active packets needed using
a public-key infrastructure.

4 Complex policy insertion
and manipulation

Admission control at the edge of network
domains; trusted within a domain.

3 Simple policy modification
and manipulation

Running in a sandbox environment, limited by
predefined rules and installed router services.

2 Creation of new packets and
resource-intensive router
services (lookups etc.)

Sandbox environment based on the knowledge
of the instruction performance.

1 Simple packet byte-code Safety issues solved by restrictions in the
language definition and the use of a sandbox.

0 No active code present in
packets

Corresponds to traditional packet-forwarding
process.

services including cryptography, authentication, and integrity mechanisms, used
to protect the code executed at higher safety levels. This combination achieves
both fast packet forwarding in the data path and secure and programmable
control-path.

5 Implementation Experience

5.1 Offloading of AN Functionality

The traditional NP control point (NPCP) does not necessarily run on the same
GPP as the ANSB and that it even makes sense to separate or dynamically
offload AN functionality. For example, the NPCP can run on the external GPP
while the higher safety levels of the ANSB are offloaded to the embedded Pow-
erPC (ePPC) available on the PowerNP. The ANSB obtains resources and be-
havior bounds1 assigned by the NPCP and administrates them autonomously.
Given the distributed layout, which enhances the robustness of the architecture,
this is certainly the preferred model. Figure 2 gives an overview of the model
based on an IBM PowerNP 4GS3 network processor. In the current implemen-
tation, both the NPCP and the ePPC run a Linux 2.4.17 kernel.

In contrast with a standard Linux router without NP, routing and MAC in-
formation maintained in the Linux kernel are automatically mirrored to the NP

1 The behavior bound consists of a classifier describing to whom the service will be
offered, a traffic specification (e.g., sender Tspec), and a resource bound vector that
characterizes the maximum resource usage of the router service.
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Fig. 2. Architectural overview of the implementation when the ANSB is of-
floaded to the ePPC.

by the NPCP task, enabling the direct use of many standard control-plane ap-
plications. NPCP uses the NP APIs provided by the NP device driver (NPDD).
These APIs are also used by NP-aware applications, e.g., a resource manager
setting up QoS parameters (e.g., Diffserv over MPLS, flow control).

The AN part is separated from the NPCP as follows. Safety levels 0 and 1
are handled by the active-networking code handler in the data path of the NP.
All higher safety levels are offloaded to the ANSB on the ePPC. The ANSB
then effectuates NPDD API calls for configuring the NP within the limits of
configured policies attributed to the ANSB.

5.2 Packet Definition

Similar to Smart Packets [21] our approach sits directly on top of the networking
layer, utilizes the router alert IP header option to indicate active packets, and
inserts an active header and code between the IP header and payload. Our
approach is a dialect of the SNAP active networking language [19] which allows
limited backward loops while still maintaining the safety properties [16]. This
approach is downward-compatible, as SNAP-unaware routers will just treat the
packet according to safety level 0 and forward them as normal IP packets.

The SNAP header holds information on the safety levels of the active packet
in two fields. The first is the initially assigned safety level (IASL) and contains the
safety levels in which the packet operates according to the creator of the packet.
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The second holds the domain-specific safety levels (DSSL) representing the safety
levels applicable in the current domain. They are set by packet classification at
the ingress of a domain, and remain valid for the entire path through the domain.
This mechanism allows a temporary reduction of the safety level within a given
domain.

The NP-based router architecture, which is no longer centralized as NPs can
reside on each blade, divides packet processing into two stages: Ingress processing
directs packets from the physical interface to the switch, and egress processing
does the reverse. Forwarding and classification decisions are usually taken on the
ingress, whereas the egress is mainly involved in packet scheduling. This implies
that the processing of an active packet can be performed on the ingress as well
as the egress side. Consequently, two entry points have to be maintained.

To minimize data swapping during active packet execution, the memory sec-
tion of the packet is situated between the packet header and the active-code
section. In our case the memory section has a maximum size of 128 bytes. The
packet payload delivered to an application remains at the end of the packet and
can also be seen like a ROM by the active code. By moving the heap and stack
into one memory section that is being fixed when the packet is built, more com-
plex error handling (stack overflow) arises but achieves significant improvements
that speed up the execution of active packets in an NP.

For deep packet processing, NPs usually handle packet data in blocks of 64
bytes (pages). Hence, branch decisions in data-path active code encounter an
additional penalty if the branch target does not lie in the current page. Forward
branches require the chained list of pages to be traversed because the location of
pages that have not yet been loaded is unknown. Backward branching can load
the correct page immediately, as a page history is maintained.

5.3 Data-Path Elements

This section discusses the integration of the active code into the existing data-
path processing. The functional behavior of the forwarding code is shown in
Figure 3 for the ingress and in Figure 4 for the egress part.

As soon as active packets have been correctly identified in the layer-3 for-
warding code (cf. Figure 3) their processing continues in the active-networking
code handler. Depending on their functionality, they still might traverse layer-4
processing later. This is the case for HSL-active packets, which require layer-4
classification at domain ingress nodes. The egress part is much simpler as there
is no layer-4 classification, and active packet processing can immediately start
at dispatch time. HSL-active packets have to be classified already on the ingress
side (result is kept in the DSSL field) to avoid unnecessary redirection to the
ingress. AQM can be provided on the ingress and/or egress by flow control mech-
anisms which provide congestion feedbacks signals (i.e., packet arrival rates and
queue lengths). Note that there is no layer-4 processing at the egress as layer-4
classification has already been performed on the ingress side.
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5.4 Control-Path Elements

HSL-active packets can fulfill control-path tasks. These packets require layer-
4 classification and verification of the IASL and DSSL done by the active-
networking code handler. Matching packets are then redirected to the ANSB on
the ePPC. As can be seen in Figure 3, classification takes place only at ingress
and redirection is initiated from there. Possible actions are the deposition of
active code (safety level 5) and classifier updates (safety levels 3 and 4) within
the behavior bounds. Finally, the ANSB translates updated information (e.g.,
classifier) into NPDD API calls to reconfigure the NP accordingly. Tasks such
as routing and interface management are still maintained by the traditional CP
as shown in Figure 2.
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6 Conclusion

Despite evident advantages of active-networking technology, ANs still lack the
support in mainstream networking products. Many vendors fear that the safety
and performance of their platforms will be compromised while other vendors
using ASICs are prevented from implementing the flexibility required for ANs.
Network processors fill the gap by enabling high performance and flexibility.

The paper shows in general and in the context of a specific AN framework
that the implementation and deployment of ANs can benefit from network pro-
cessor technology. The advantages are linked to improved performance and sim-
plified development.

The specific NP framework for demonstrating the beneficial AN/NP relation-
ship allows to tap the power of ANs without sacrificing the safety of traditional
IP networking. The main security and safety advantages result from the com-
bination of a byte-code language with intrinsic safety properties, a lean 6-level
safety hierarchy enabling control-plane functionalities and persistent active code
in active nodes, a sandbox environment for code execution, and off-loading of
active-networking functionality from the control point to the NP’s GPP pro-
cessor. This isolation provides a physical barrier in our implementation between
the packet-processing core of the NP (i.e., the embedded processor complex), the
ePPC running the active networking sandbox, and the control and management
functions provided by the control point GPP. We believe that this approach will
lead to a wider acceptance of AN in networking devices.
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