
Creating Advanced Functions on Network Processors:

Experience and Perspectives

Robert Haas, Clark Jeffries‡, Lukas Kencl, Andreas Kind, Bernard Metzler,

Roman Pletka, Marcel Waldvogel, Laurent Freléchoux, and Patrick Droz

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
‡ IBM Corporation, Research Triangle Park, NC 27709, USA

Abstract

In this paper, we present five case studies of ad-
vanced networking functions that detail how a net-
work processor (NP) can provide high performance
and also the necessary flexibility compared with
Application-Specific Integrated Circuits (ASICs).
We first review the basic NP system architectures,
and describe the IBM PowerNP architecture from
a data-plane as well as from a control-plane point
of view. We introduce models for the program-
mer’s views of NPs that facilitate a global under-
standing of NP software programming. Then, for
each case study, we present results from proto-
types as well as general considerations that apply
to a wider range of system architectures. Specifi-
cally, we investigate the suitability of NPs for Qual-
ity of Service (active queue management and traf-
fic engineering), header processing (GPRS tunnel-
ing protocol), intelligent forwarding (load balanc-
ing without flow disruption), payload processing
(code interpretation and just-in-time compilation
in active networks), and protocol stack termina-
tion (SCTP). Finally, we summarize the key fea-
tures as revealed by each case study, and conclude
with remarks on the future of NPs.

1 Introduction

The advent of network processors was driven by an
increasing demand for high throughput combined
with flexibility in packet routers. As a first step in
the evolution from software-based routers to net-
work processors (see Figure 1), the bus connect-
ing network interface cards with the central con-
trol processor (Control Point, CP) was replaced
by a switch fabric. As demand grew for even

greater bandwidth, simple network interface cards
were replaced by intelligent ASICs which relieved
the CP of most forwarding tasks. ASIC-based
routers, however, turned out to be not as flexible
as necessary in the fast and diverse network equip-
ment market. Also, hardware development cycles
tended to be too slow to accomodate the continu-
ous demand for new features and support for addi-
tional protocols. The need for adaptability, differ-
entiation, and short time-to-market brought about
the idea of using Application-Specific Instruction-
set Processors (ASIPs). These so-called Network
Processors (NPs) can be programmed easily and
quickly according to specific products and deploy-
ment needs. In particular, a set of Application
Programming Interfaces (APIs) and protocols are
currently being standardized by bodies such as the
Internet Engineering Task Force (IETF) ForCES
working group and the Network Processor Forum.1

This finally enables users to exploit the full range
of NP capabilities: the powerful combination of
performance and flexibility that allows an efficient
development of advanced networking functions.

Today, a wide variety of NPs exists, each provid-
ing a different combination of flexibility, price, and
performance [1]. Despite this variety, NPs share
many features, such as the capability to simplify
and accelerate the development of advanced net-
working functions. Even though this paper will fo-
cus on our experience with the IBM PowerNP [2]
network processor, it provides insight into a much
wider selection of existing and forthcoming prod-
ucts, as the concepts discussed apply to most other
NPs as well.

This paper provides insight into many of the

1Online at http://www.ietf.org/html.charters/forces-
charters.html and http://www.npforum.org/, respectively.



Figure 1: The advent of network processors.

enabling factors we found to be necessary during
the implementation of a wide selection of func-
tions, ranging from features of increasing signif-
icance such as header processing and Quality-of-
Service (QoS) enforcement to traffic-engineered
packet processing. Furthermore, we worked on
functions that are less widely considered for use
in NPs, such as code compilation, intelligent for-
warding, and protocol termination. Based on our
first-hand experience, we are thus able to explain
how NPs simplify and help accelerate the devel-
opment of this broad spectrum of functions, and
describe the lessons learned. The paper is struc-
tured as follows. Section 2 introduces a small tax-
onomy of NP architectures and describes a sam-
ple an NP architecture in sufficient detail for the
following five case studies. Section 3 states the
seven goals of QoS and explains how to achieve
them using active queue management and traffic
engineering. Section 4 presents our experience im-
plementing the GPRS Tunneling Protocol used for
mobile Internet access. Section 5 introduces ad-
vanced server load-balancing techniques and their
efficient implementation supported by NP-specific
functionality. Section 6 outlines the high flexibility
of NPs by discussing just-in-time (JIT) compila-
tion of active networking code and its performance
gains. Section 7 describes experiences gained from
the implementation of the Stream Control Trans-
port Protocol, which over the next few years is
expected to be widely adopted for diverse applica-
tions. In Section 8, we conclude by summarizing
and comparing the individual features that were
major enabling factors for each of the case studies.

2 Network Processor
Architecture

The challenge in NP design is to provide fast and
flexible processing capabilities that enable a variety
of functions on the data path yet retain a simplic-
ity of programming similar to that of a General-
Purpose Processor. NP systems are composed of
multiple processors (“cores”) whose organization
can be classified into a serial (or pipeline) model
and a parallel model (Figure 2).

In the parallel model, each thread in an NP core
receives a different packet and executes the entire
data-path code for this packet. In the serial model,

2



Figure 2: NP concurrency models

the packet is pipelined through a subset of NP
cores, in each of which a different portion of the
data-path code is applied.

From a programming point of view, the serial
model requires that the code be partitioned such
that the work is evenly distributed, as the per-
formance of the NP equals that of its most heav-
ily loaded NP core. In the parallel model, given
that the same code can be performed by any NP
core and packets are assigned to the next avail-
able thread in any NP core, the work inherently is
evenly distributed. To maintain comparable per-
formance under all conditions of realistic, fluctuat-
ing traffic mixes, the serial model would require a
dynamic repartitioning of the code, whereas in the
parallel model no partitioning is necessary.

While most NPs are able to operate in both
parallel and serial models, architectural decisions
often favor one over the other and thus need to
be considered in software design and benchmark-
ing, to avoid unnecessary bottlenecks and proces-
sor stalls waiting for coprocessors, to name just a
few. For example, larger applications on the Intel
IXP [3] may exceed the per-core instruction mem-
ory and require serialization, distributing the code
among more cores. The IBM PowerNP [2] is de-
signed based on the parallel model. Preferences
for either model may be given by state interdepen-
dence between packets (e.g., in stateful protocol
termination, as shown for SCTP in Section 7) or
the use of powerful semi-autonomous coprocessors
such as in the Motorola C-5 or the IBM PowerNP.

The PowerNP consists of 16 concurrent NP cores

that are scaled-down RISC processors running at
133 MHz, with a PowerPC-resembling instruc-
tion set, each supporting two independent threads.
Multithreading keeps an NP core busy, even when
one thread waits for coprocessors results. A thread
entirely processes a packet, i.e., threads are in run-
to-completion mode unless the thread explicitly in-
terrupts processing (Section 7).

To accelerate common tasks compared with their
execution in picocode (i.e., a program in a NP
core), each pair of NP cores is assisted by eight ded-
icated coprocessors. They perform asynchronous
functions such as longest-prefix lookup, full-match
lookup, packet classification, hashing (all done by
the two Tree Search Engines (TSE)), data copy-
ing, checksum computation, counter management,
semaphores, policing, and packet memory access.
In addition, the TSEs provide access to the con-
trol store consisting of several memories with dif-
ferent characteristics. Some of the coprocessors are
shown in the lower right corner of Figure 3 Fur-
thermore, a number of hardware assists accelerate
tasks such as frame alteration2 and header parsing.

Packet processing is divided into two stages:
Ingress processing directs packets from the link
to the switch, egress processing vice versa. The
threads can perform either task and dynamically
balance the load. Along with the packet, addi-
tional context information (e.g., output-port iden-
tifier obtained by the IP forwarding lookup) can be

2Hardware-assisted frame alteration can, for example,
update the TTL field in an IP header, generate frame CRC,
or overlay an existing Layer 2 wrapper with a new one.

3



Figure 3: PowerNP programmer’s view of the five case studies.

transported from ingress to egress. Note that no
switch is required and that the ingress and egress
NP can be the same.

NPs and CPs do not strictly map to data plane
and control plane. In fact, complex data-plane op-
erations can be shared between NP and CP. Several
of our case studies also showed the converse, i.e.,
that NPs perform control-plane functions.

Available functions programmed in picocode and
the rest of the NP hardware are driven by higher-
level APIs from the CP. The communication be-
tween the two takes place using control messages
processed by a special thread in the NP. These CP
APIs control logical components, a subset of which
are represented by rounded rectangles along the
ingress and egress data paths in Figure 3.

3 QoS Provisioning

Good QoS design differentiates both realtime and
nonrealtime traffic into classes of service, and
meets the following criteria.

1. Despite any physically possible level of data
congestion, realtime Premium traffic such as
IP Voice that arrives at a rate under its con-
tractual limit must not be dropped or unduly

delayed.

2. Premium data that conforms to its bandwidth
guarantees should not be dropped, and its
queuing delay must be short regardless of con-
gestion due to Best-Effort (BE) data traffic.

3. During steady congestion conditions, all
queues should be low, ensuring a low queu-
ing latency of the backlog. Exceptional bursts
should fill the buffer, however.

4. Utilization should be high. If excess band-
width remains after Premium traffic has been
served, it should be used by BE.

5. Bandwidth allocation should be fair and pre-
dictable.

6. As congestion conditions change, the response
of the NP should be fast convergence to a new
equilibrium.

7. Last but not least, all of the above should be
autonomic and easy to administer.

Typically, latency and loss are minimal and
nearly constant, up to a certain offered load, and

4



Table 1: Example of flows for bandwidth allocation.

Flow label Type Minimum Maximum Priority (strict)

Flow0 realtime 10 30 0 (highest)
Flow1 non-realtime 20 40 1
Flow2 non-realtime 0 100 2
Flow3 non-realtime 0 100 3 (lowest)

increase abruptly on the onset of congestion. Fur-
ther considerations include finite packet life, fi-
nite storage, priority, and unpredictable duration
of bursts. Active Queue Management (AQM)
should address these issues in routers by actively
dropping packets before queues overflow. The
next subsection describes the implementation of an
AQM system called Bandwidth Allocation Technol-
ogy (BAT).

3.1 Active Queue Management

BAT makes use of the following NP hardware sup-
port:

• BAT is invoked when a packet is enqueued in
ingress and egress. The transmit probabili-
ties used for flow control are taken from a ta-
ble stored in fast access memory, the Transmit
Probability table, relieving the NP cores from
individual drop decisions.

• The key indexing the transmit probability ta-
ble is composed of packet header bits (e.g.
DiffServ code point). The access to these
header bits is supported by a header parser
hardware-assist, which is capable of recogniz-
ing packet attributes such as priority or TCP
SYN flags.

• Furthermore, detailed flow accounting infor-
mation about individual offered loads is pro-
vided via hardware counters. Such counters
as well as queue occupancy and queue deple-
tion indicators at various locations in an NP
can be used by a control theory algorithm to
update transmit probabilities.

Traditional AQM schemes such as Random
Early Detection (RED) and its variants use aver-
age queue occupancy to determine transmit prob-
abilities. However, RED itself utilizes hand-tuned

thresholds and therefore does not easily meet the
above QoS criteria, especially the seventh.

BAT allows organization of traffic into pipes at
each processing bottleneck (see Figure 3) [4]. A
pipe is a local (per bottleneck) aggregation of traf-
fic of one traffic class. As network end-to-end paths
with guarantees are being added or deleted, net-
work control is responsible for ensuring the guar-
antees of the minima at each NP in the network
and fairly distributing any available excess band-
width, which is a complex task of network control.

BAT uses control theory to adapt transmit prob-
abilities to current offered loads. A binary signal
defines the existence of excess bandwidth. This
signal can incorporate flow measurements, queue
occupancy, rate of change of queue occupancy, or
other factors such as network congestion signals. If
there is excess bandwidth, then flows that are not
already at their max s are allowed to increase their
bandwidth share linearly. Otherwise, the rates al-
located to flows not already below their mins must
decrease exponentially.

For example, let us suppose that four flows in
egress are all destined to the same 100-Mbps tar-
get port, as shown in Table 1. All bandwidth units
are in Mbps. If the four flows offer rates of 15, 50,
15, and 100 (sum is 180), then (noting the max
of Flow1) the correct allocation should be: 15 of
Flow0, 40 of Flow1, 15 of Flow2, and 30 of Flow3.
The correct transmit probabilities are therefore 1,
0.8, 1, 0.3. Moreover, the above allocation should
be reached quickly and with low queue occupancy.
We emphasize the QoS criteria 1–3: queuing la-
tency during steady congestion must remain low.

By contrast, suppose the flow control were con-
ventional taildrop (i.e., packet drop only occurs
when the queue occupancy becomes full) and the
egress data store were 128 Mb. BE packets for-
warded to a 100-Mbps link arriving at 101 Mbps
would fill up the egress data store, causing an unac-

5



ceptable queuing latency of 1.28 s. However, set-
ting a low taildrop threshold would result in an
unacceptable shaving of bursts. Thus QoS with
taildrop may fail criterion 7.

BAT meets criteria 1–7, achieving high utiliza-
tion, fast convergence, fairness, and administrative
simplicity [4]. The latter advantage is by virtue of
the fact that the AQM system is configured with
minimum and maximum flow rates and priorities
rather than queue levels.

The implementation of BAT in the data plane of
the PowerNP is straightforward because the header
parser hardware-assist and hardware flow-control
support can be configured according to the new
scheme. No additional processing is needed in the
data plane. The execution cost in the control plane
is less than 2 µs (< 267 cycles) to update a single
transmit probability value. This update is trig-
gered every 80 µs in ingress and every 8 ms in
egress. Therefore even running 32 ingress pipes
and 2K egress pipes would occupy only about 8%
of the computational power of all NP cores.

3.2 Traffic Engineering Reference
Platform (TERP)

We now highlight how the NP is used in the con-
text of Traffic Engineering (TE), from both the
data plane and the control plane point of view.
Our implementation of TE relies on RSVP-TE to
set up MPLS paths (or LSP, for Label-Switched
Path) through the network and on DiffServ to
provide QoS. An OSPF-routing mechanism with
specific TE extensions is used to collect QoS-
usage information throughout the network. Our
own Route Server component computes paths on
request from RSVP. TE permits ISPs (Internet
Service Providers) to start offering value-added
commercial-grade services. Each MPLS node is
composed of one or more NPs, interconnected with
a switching fabric and attached to a CP: these NPs
and the CP together act as a single MPLS node.

In the data plane, TE nodes perform traffic clas-
sification, policing, shaping, marking, dropping,
and forwarding. The logical components described
in Figure 3 are configured by the CP using a La-
bel and Resource Manager (LRM) process: Ingress
MPLS nodes perform traffic classification, policing,
and DiffServ marking, whereas transit nodes per-
form MPLS forwarding (MPLS label swapping),

Figure 4: TERP control-point architecture.

and egress MPLS nodes perform IP forwarding.
All nodes can be configured to use WRED or BAT
AQM to perform bandwidth allocation.

In the control plane, the CP runs the RSVP
signaling, OSPF routing, and possibly the Router
Server processes. As shown in Figure 4, each NP
Ethernet port (eth1 to eth39 ) is mirrored in the CP
as a normal interface (reth1 to reth39 ): CP pro-
cesses can therefore send and receive packets (pro-
tocol messages) as if the MPLS node were built as a
centralized software-based router. In addition, the
CP kernel’s IP routing table is mirrored automat-
ically into the NPs. OSPF routing therefore oper-
ates completely transparently from the underlying
NP architecture; it uses the Linux Netlink API to
insert routes into the table. These route updates
are reported to the CP-APIs-wrapper process that
creates the appropriate control messages to auto-
matically insert these routes into the NP. RSVP in-
terfaces with the LRM to perform resource reserva-

6



Table 2: Performance of GTP tunneling

Instruction Coprocessors Other stall Total
cycles stall cycles cycles cycles

Encapsulation 402 170 190 762

Decapsulation 455 240 207 902

tion, i.e., to reserve, commit, and release resources
as needed in each node. The LRM performs CP
APIs calls that are then translated into control
messages destined for the NP.

All these features allow a seamless integration of
off-the-shelf control-plane software into the CP.

4 Header Processing: GTP

General packet radio service (GPRS) is a set of pro-
tocols for converging mobile data with IP packet
data. GPRS requires a new infrastructure in the
form of GPRS Support Nodes (GSNs) to process
packets at a very high rate, yet maintain flexibility
because GPRS deployment is still in process.

Aside from common functions performed by any
IP router, such as routing table lookup and packet
forwarding, a GSN has to encapsulate or decapsu-
late IP packets according to the GPRS tunneling
protocol (GTP) that associates a specific GTP tun-
nel with each mobile terminal and performs traffic-
volume recording for billing and flow-mirroring for
legal interception.

The design of our early prototype supports one
million GTP tunnels. The increase in processing
complexity required by GTP encapsulation and de-
capsulation results in a processing capability of
roughly 2.2 million packets per second (Mpps) per
NP.

The encapsulation process requires the retrieval
of a GTP context (i.e., a mapping to a GTP tun-
nel) based on the IP address of the packet be-
ing encapsulated and the construction of the GTP
header using information contained in the context.
A header chain composed of the GTP, UDP, and
IP headers is then prepended to the packet. The
decapsulation process requires the retrieval of the
GTP context from the IP address of the inner IP
header. The outer header chain is stripped at the
destination GSN, and normal IP forwarding is ap-
plied to the decapsulated packet. In encapsulation

and decapsulation, traffic counters associated with
the context are asynchronously incremented to ac-
count for the data transmission.

As shown in Figure 5, the implementation of the
GPRS extensions to the NP consists of the follow-
ing:

• Design of the GPRS service APIs

• Design of the data structures for storing the
GTP contexts, counters, and tree lookup

• Extension of the control-code library on the
CP to provide new GPRS CP-APIs

• Extension of the control picocode on the NP
to implement the CP APIs

• Extension of the picocode on the data path to
perform the GTP tunneling function.

Figure 5: GTP extensions to the NP software.

For tree, table, memory block, and counter man-
agement, generic CP APIs can be used that sim-
plify the management of the GTP lookup-tree, the
GTP context table, and the GTP counter tables.
The design makes extensive use of the NP copro-
cessors: GTP contexts are organized as a tree, and
the TSE coprocessor is used to retrieve the GTP

7



Figure 6: Server load balancer on the NP: data path diagram.

context associated with an incoming packet. Coun-
ters for traffic accounting are incremented asyn-
chronously using the counter-management copro-
cessor. Header prepending and stripping use the
flexible frame-alteration hardware assists of the
NP.

Table 2 shows the number of cycles a frame
spends in ingress and egress processing for the tun-
neling tasks, including stall cycles spent waiting
for coprocessor results or memory and instruction
accesses. The processing includes layer-2, layer-3,
and GTP encapsulation or decapsulation.

5 Intelligent Forwarding:
Adaptive Load Balancing

Many networking applications, such as Web
server farms, benefit from distributing the data-
processing tasks among multiple servers or pro-
cessing units. The task of adaptively balancing the
load among multiple servers is nontrivial because
of the high volume and unknown characteristics of
the traffic and the need to maintain connectivity
of active packet flows between hosts. To balance
a large number of flows simultaneously, it is neces-
sary to minimize the amount of state information
stored.

The adaptive load-balancing method (Figure 6)
uses a hardware-based hash function to deter-
mine the destination server. The hash function
is based on the robust hash routing algorithm [5],
which supports arbitrary processing capacities of
the balanced servers, and on its adaptive exten-
sion [6] that minimizes the disruption of the flow-
to-processor mapping. The hash is performed on
a portion of the packet that is constant for the
duration of a flow, such as the source address.
The method alternates between the stable state,
in which only one hash function is computed, and
a transient state with two hash calculations.

Initially, a single hash function is configured
based on the resources available on the servers.
During operation, if some servers become over-
loaded while others still have capacities, hashing
is adapted to distribute network traffic optimally
based on the statistics gathered.

During this transition, both the old (Hold) and
the new hash functions (Hnew) are computed on
each packet simultaneously. Packets in the inter-
section of the two hash functions (Hnew = Hold)
continue to be routed to the resulting server. Pack-
ets that do not fall in the intersection of the two
hash functions (Hnew 6= Hold) are redirected to
the CP for routing. The CP determines and keeps
track whether the flow is old or new, and routes ac-

8



cording to the appropriate hash function. After a
configured period of time, multi-field classification
rules are installed for the remaining (“long-lived”)
flows in the state table until the flows terminate
or time out. The rules avoid breaking the flow in
future transitions and allow the return to a single
hash function.

The method continually alternates between the
one-hash and two-hash states, thus adapting to the
current traffic conditions.

Advantages of this approach include the follow-
ing:

• No flows in progress are ever moved between
servers, ensuring uninterrupted flow connec-
tivity.

• State information is only maintained for flows
that are not in the intersection of the two hash
functions, thus minimizing memory and pro-
cessing needs.

• The intersection of the two hash functions
is mathematically maximized, minimizing the
state kept.

• Part of the routing is performed in hardware,
using hashes performed by the TSE coproces-
sor in the NP, thus exploiting the high data
rate of the device.

A number of software and hardware components
of the PowerNP have been used in prototyping the
load-balancer application; among them are stan-
dard layer-2, layer-3 and layer-4 (Multi-Field Clas-
sification) forwarding elements, as well as the hash
function of the TSE coprocessor. The availabil-
ity of these ready-made components reduced the
data-path programming on the NP to the rela-
tively modest work of implementing the hash rout-
ing method, its managing API, and the CP redi-
rection. The speed and good spreading properties
of the hash function built into the TSE coproces-
sor eliminated the necessity to implement a hash
function.

The number of processor instructions required to
execute the hash-routing method on each packet
depends on the number of balanced servers, m.
The instructions are primarily dedicated to reading
and executing operations on the per-server weights,
while calling the TSE coprocessor in parallel. For
m ≤ 8, the prototype implementation executes

20m + 75 instructions. For m > 8, the number
of instructions executed grows logarithmically with
m, as the weights table is then organized into a tree
structure.

6 Payload Processing:
Active Networking

Two main approaches dominate Active Networking
(AN) research: The capsule approach embeds ac-
tive code into data packets that is executed on each
node along the path. The programmable switch ap-
proach maintains the existing packet format. Pro-
grammability is provided through dynamic down-
loading of programs, which are then executed upon
arrival of packets matching a filter.

Combining the capsule approach with a byte-
code language possessing intrinsic safety proper-
ties [7] leads to an architecture-neutral compact
code suited for both parallel and serial NP mod-
els. The execution environment provides a virtual
machine that can be implemented in the data plane
of NPs.

The resulting framework provides the flexibility
and safety required in active networks. Although
the approach is application-neutral, our AN work
is motivated by the fact that no end-to-end QoS
guarantees can be given in IP networks today. AN
shifts the traditional view of networking, where
programmability is given by the definition of pro-
tocols, and hence limited to their functionalities,
towards a world where packets can carry active
code that is being executed on-the-fly in network-
ing nodes. Protocols, unlike active code, are not
powerful enough to provide translation between ex-
isting QoS frameworks.

The bottleneck of byte-code interpretation can
be overcome by just-in-time (JIT) compilation of
active code [8]. Our work on the IBM PowerNP
showed that native execution is more than an or-
der of magnitude more efficient than interpreta-
tion. We also observed that the compilation speed
almost matched interpretation. Accordingly, al-
ready small amounts of reuse quickly result in per-
formance gains. Reuse comes as loops or function
calls, but also by caching compiled code either at
routers or inside the packet, as a service to subse-
quent NPs.

We implemented and tested a general active net-

9



work setup based on a dialect of the SNAP active
networking language [7] on the PowerNP. Results
show that JIT compilation is not only feasible in
an active router because the compiler is sufficiently
small and fast to run in the data plane’s NP cores,
but also leads to significant performance improve-
ments. Figure 7 compares three different types of
active packets.

Figure 7: Execution cycles for active code on a NP.

The scout active packet discovers the list of ac-
tive routers between the source and destination
and is 22 byte-code instructions long, including
bounds checks. Although compilation and execu-
tion do not outperform interpretation, the remark-
able cycle cost of execution readily shows the po-
tential of native code caching techniques.

The traceroute active packet sends a new active
packet containing the IP address of the current tra-
versed router back to the source. The traceroute
packet consisting of 26 byte-code instructions; no
bounds checking is needed, as information is sent
back immediately. The execution time becomes
visible as a result of the high cost of packet cre-
ation.

The third active packet is a congested hop
counter in 28 byte-code instructions. The program
collects information on the number of congested
queues in active routers along a path through the
network. In contrast to the programs described
above, this one uses a loop to accumulate the data,
resulting in a fourfold speedup.

Critical for the generic applicability of JIT com-
pilation in active networks are unrestrained write
access to the instruction memory and a sufficiently
large instruction memory to hold the compiler and
the JIT-compiled active code; some NPs fail these
requirements.

7 Protocol Termination: SCTP

Offloading of transport-level protocol processing
from the end-system host CPU is a technique that
is receiving increasing attention. On the one hand,
this off-CPU “protocol termination” helps to re-
lieve overloaded end systems such as servers from
processor-cycle-consuming protocol processing, es-
pecially at emerging multigigabit line rates. A typ-
ical example of this technique is the development
of TCP offloading engines (TOEs) located on in-
telligent network interface cards that perform TCP
processing on dedicated hardware.

On the other hand, moving protocol processing
further into the network allows the realization of
applications such as stateful firewalls, application-
level server load balancers or even transport-layer
protocol gateways. Available solutions are often
based on off-the-shelf end-host networking stacks,
which typically leads to significant performance
limitations. To overcome these limitations, the
integration of a wire-speed protocol termination
into an NP-based intermediate system was envi-
sioned. The termination of a typical stateful, re-
liable transport protocol such as TCP poses the
following challenges:

• A per-connection state context must be main-
tained efficiently.

• A timer service for protocol timers must be
offered.

• Segmentation and reassembly (SAR) and re-
transmission services need per-context inter-
mediate packet buffering.

• The often limited instruction memory size
conflicts with the extensive functionality of
some protocols.

• The protocol-termination environment should
provide a clean API to allow seamless and effi-
cient integration of applications such as a fire-
wall or a load balancer.

A challenging example is the termination of the
SCTP protocol on the PowerNP. The SCTP proto-
col was chosen because it combines advanced pro-
tocol features such as multihoming, multistream-
ing, partial message ordering, and cookie-based as-
sociation establishment with traditional reliability
and robustness requirements.

10



A first prototype on the PowerNP implements
full SCTP termination and already includes multi-
streaming and multihoming. It offers a socket-like
API to link to the envisioned applications at the
picocode level. The implementation provides suffi-
cient headroom in available code space to integrate
with such applications.

Although it is still too early to give performance
numbers, it can be stated that the termination of
several hundred thousands of SCTP flows on this
type of NP is possible. Given the model of sev-
eral parallel, run-to-completion threads, each op-
erating on a specific SCTP context at a time, the
use of a semaphore-based context-locking mecha-
nism is required. The run-to-completion model,
on the other hand, allows the implementation of
a natural, event-based code path. Possible events
are incoming packets, timer expiry, and application
downcalls.

Except incoming packet checksum verification,
the entire SCTP code operates on packets in the
egress data store of the NP. This provides the
proper amount of packet memory required to store
data for send and receive windows, SAR, and
packet retransmission. Preservation of data se-
quence within a stream requires packets to be
stored until all prerequisite packets have been re-
ceived. Even though the PowerNP favors the
run-to-completion model, our implementations of
SCTP and GTP show that waiting for missing
data can easily and efficiently be achieved without
blocking any threads.

Although the NP-based SCTP stack was de-
signed to extend the functionality of an interme-
diate system, it can also be employed within an
intelligent network adapter to provide host-CPU
protocol offloading.

8 Conclusion

The case studies presented here help us visualize
and understand several driving factors behind NPs.
Figure 3 summarizes the configurations of existing
logical blocks and/or new logical blocks with their
own CP APIs for each case study.

The case studies first provide insight into the
functions that can be performed on NPs, how they
can be implemented, and how they fit into appli-
cations. Second, we examined the NP features re-

Table 3: Feature requirements

Case Key features and accelerators

BAT Probability operations
Many per-flow queues
Timers

TERP Policing, flow-control, scheduling,
and Layer-3/4 classification
Packet forwarding to CP
State synchronization NP ↔ CP

GTP Millions of exact-match classifier rules
Concurrent counters
Frame size alteration (pre-/appending)
Large packet storage for reordering

Load Collaboration NP ↔ CP
balancer Fast hash of disjoint header fields

Uniformly spreading hash function
Multi-Field Classification (exceptions)
Fast update of MF Classification rules

Active Direct write to instruction memory
networks Access to forwarding information

Programmable per-packet forwarding
Program-controlled multicast
Payload processing

SCTP Collaboration NP ↔ CP
Fast CRC
Frame-size alteration (pre-/appending)
Large packet storage for reassembly
and reordering
Mutual exclusion
Scalable per-flow timer support
Payload processing

quired by different applications. Some of these
requirements have been summarized in Table 3.
Third, these different requirements also help ex-
plain why current NPs cover such a wide range of
the design space. Depending on the applications
envisioned by the designers, different decisions and
compromises had to be implemented.

One of the open issues in the NP space remains
software durability, which NPs share with many
other specialized, embedded systems. The proces-
sor families offer various programming paradigms,
abstraction layers, and coprocessors and/or hard-
ware assists. Therefore, it is currently nearly im-
possible to write code that would easily port to a

11



different family. But it is also difficult to foresee
what improvements and new features future mem-
bers of a family will support, thus making it advis-
able to revisit and reoptimize the code whenever
new family members appear.

Fortunately, this situation is changing for the
better. For code running in the data plane, the
use of a smart optimizing compiler permits rela-
tively architecture-independent code to be written.
With appropriate, evolving libraries, key subfunc-
tions can be transferred progressively and seam-
lessly from software implementation to hardware,
maintaining backward compatibility. In the con-
trol plane, standard interfaces are being devel-
oped and joined with capabilities for dynamic NP
feature discovery to allow NP-independent code.
Working groups such as IETF ForCES and NP
Forum are developing the relevant protocols and
semantics, allowing key performance functions to
be easily offloaded from the CP onto the NP.

The implementation of only a subset of the ex-
amples presented in this paper on an ASIC would
critically delay time-to-market as well as signifi-
cantly reduce the ability to adapt to future changes
in network patterns or protocols. Offloading them
to an embedded general-purpose processor or even
the CP would radically reduce the performance
achievable. Thanks to their high speed combined
with extensibility and modularity, NPs speed up
the development of both control and data path
thanks to higher-level interfaces and pre-existing,
reusable building blocks.

Taking a step back to see the big picture, we can
conclude that versatility is probably the strongest
NP characteristic. With comparably little effort, it
is possible to implement new features to dramat-
ically increase the value offered by a network de-
vice, and to offer new and powerful functions, often
combined from a wide variety of existing building
blocks. We believe that in the networking world,
this makes NPs a strong competitor to ASICs for
all but the highest-performance network devices,
and thus expect their use to grow dramatically in
the near future. This will open the door to ever
more versatile networks, which can adapt them-
selves and provide new, fast routing concepts [9]
and which in turn will call for new methods to
achieve efficient deployment of services in such net-
works [10]. The unique combination of flexibility
and power of NPs already now can help pave the

way towards the versatile and fast evolving net-
works of the future.

References

[1] Linley Gwennap and Bob Wheeler, A Guide
to Network Processors, The Linley Group,
Mountain View, CA, USA, 2001.

[2] James Allen, Brian Bass, Claude Basso,
Rick Boivie, Jean Calvignac, Gordon Davis,
Laurent Frelechoux, Marco Heddes, Andreas
Herkersdorf, Andreas Kind, Joe Logan, Mo-
hammad Peyravian, Mark Rinaldi, Ravi Sab-
hikhi, Michael Siegel, and Marcel Waldvo-
gel, “PowerNP network processor: Hardware,
software and applications,” IBM Journal of
Research and Development, vol. 47, no. 2-3,
pp. 177–194, 2003.

[3] Muthu Vekatachalam, Prashant Chandra, and
Raj Yavatkar, “A highly flexible, distributed
multiprocessor architecture for network pro-
cessing,” Computer Networks, vol. 41, no. 5,
pp. 563–586, 2003.

[4] Ed Bowen, Clark Jeffries, Lukas Kencl, An-
dreas Kind, and Roman Pletka, “Bandwidth
allocation for non-responsive flows with active
queue management,” in IEEE International
Zurich Seminar on Broadband Communica-
tions, IZS 2002, Feb. 2002.

[5] Keith W. Ross, “Hash routing for collections
of shared web caches,” IEEE Network, vol.
11, no. 6, pp. 37–44, Nov./Dec. 1997.

[6] Lukas Kencl and Jean-Yves Le Boudec,
“Adaptive load sharing for network proces-
sors,” in Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Com-
munications Societies (INFOCOM ’02), June
2002, pp. 545–554.

[7] Jonathan T. Moore, Michael W. Hicks, and
Scott Nettles, “Practical programmable pack-
ets,” in Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Com-
munications Societies (INFOCOM ’01), Apr.
2001, pp. 41–50.

12



[8] Andreas Kind, Roman Pletka, and Burkhard
Stiller, “The potential of just-in-time compila-
tion in active networks based on network pro-
cessors,” in Proceedings of IEEE OpenArch
2002, June 2002, pp. 79–90.

[9] Marcel Waldvogel and Roberto Rinaldi, “Ef-
ficient topology-aware overlay network,” in
Proceedings of ACM HotNets-I, Oct. 2002.

[10] Robert Haas, Patrick Droz, and Burkhard
Stiller, “Autonomic service deployment in
networks,” IBM Systems Journal, vol. 42, no.
1, pp. 150–164, 2003.

Robert Haas is a Research Staff Member at the
Communication Systems Department of the
IBM Zurich Research Laboratory. His cur-
rent research interests focus on programmable
networks and techniques to automate service
deployment in such networks. He received the
degree in communication systems engineering
from the Swiss Federal Institute of Technology
(EPFL) in Lausanne, Switzerland, together
with the Eurécom Institute, Sophia-Antipolis,
France, in 1996, and then joined the IBM T.J.
Watson Research Center. He is currently com-
pleting his Ph.D. work with the Swiss Federal
Institute of Technology (ETH), Zurich.

Clark Jeffries earned a Ph.D. from the Univer-
sity of Toronto, Canada, in mathematics. He
joined Clemson University in Sout Carolina,
USA, as lecturer in 1987 and rose to professor
in 1994. Following a pleasant sabbatical with
IBM, he joined that company to help design
NPs in 1998. Current interests include secu-
rity features efficiently enabled in NPs.

Lukas Kencl was working toward his Ph.D. de-
gree while at IBM Research, Zurich Research
Laboratory. His research interests include
load-sharing algorithms, router architecture,
network processors, and computer networking
in general. Kencl received a Master’s degree in
computer science from the Charles University,
Prague, Czech Republic, in 1995, and a Ph.D.
degree in communication networks from the
Swiss Federal Institute of Technology (EPFL)
in Lausanne, Switzerland, in 2003. He is now
a senior researcher at the Intel Research Lab-
oratory in Cambridge, UK.

Andreas Kind joined the IBM Research, Zurich
Research Laboratory in 2000. Before, he
worked at the C&C Research Laboratories
of NEC Europe and received his Ph.D. from
the University of Bath, UK. His interests in-
clude active queue management, traffic profil-
ing, programmable networks, distributed com-
puting, and programming languages.

Bernard Metzler is a Research Staff Member at
IBM Research, Zurich Research Laboratory.
His research interests include the design and
implementation of efficient and flexible com-
munications stacks and high-speed internet-
working. Metzler received a diploma degree
in electrical engineering form the Humboldt-
University Berlin and a Ph.D. from the Tech-
nical University of Braunschweig, Germany.

Roman Pletka graduated in electrical engineer-
ing at the Swiss Federal Institute of Tech-
nology (EPFL) in Lausanne, Switzerland, in
1996 and continued his studies in commu-
nication systems there. He spent his final
year at Eurécom Institute in Sophia Antipo-
lis, France, where he majored in corporate
communications and received his diploma de-
gree in communication systems engineering in
1999. He is currently pursuing his Ph.D. de-
gree at the Swiss Federal Institute of Tech-
nology (ETH) Zurich on adaptive end-to-end
QoS guarantees in IP networks. Since 1999, he
is with IBM Research, at the Zurich Research
Laboratory in Rüschlikon, Switzerland.

Marcel Waldvogel is a Research Staff Member
at IBM Research, Zurich Research Labora-
tory. His research interests include high-
performance advanced routers, IP lookup and
classification algorithms, multimedia data dis-
tribution, distributed data retrieval, network
security, and denial of service. Waldvogel re-
ceived a diploma degree in computer science
and a Ph.D. in electrical engineering, both
from Swiss Federal Institute of Technology
(ETH), Zurich. He also enjoyed serving on
the computer science faculty at Washington
University in St. Louis, Missouri, USA, and is
a senior member of the IEEE.

Laurent Freléchoux was a Research Staff Mem-
ber at IBM Research, Zurich Research Lab-

13



oratory. His research interests include net-
working and network processors with a focus
on mobile and wireless networking. He re-
ceived a degree in computer science from the
Swiss Federal Institute of Technology (EPFL)
in Lausanne, Switzerland in 1996 and is cur-
rently undertaking an MBA at IMD, Lau-
sanne.

Patrick Droz is a Research Staff Member at the
IBM Research Laboratory in Zurich, Switzer-
land. His current focus is on high-speed com-
munication protocols in the context of net-
work processors, and he actively participates
in relevant standards activities such as the
IETF. He holds a Ph.D. in computer science
from Swiss Federal Institute of Technology
(ETH) Zurich. His previous experience in-
clude ATM/PNNI control point design and
implementations as well as ATM/IP integra-
tion with many contributions to the ATM Fo-
rum and the IETF.

Direct questions and comments about this article
to Robert Haas, IBM Research, Zurich Research
Laboratory, Säumerstrasse 4 / Postfach, CH–8803
Rüschlikon, Switzerland; rha@zurich.ibm.com.
For additional information, please visit
http://www.zurich.ibm.com/cs/networking sw/.

14


