
Fuzzycast:
Efficient Video-on-Demand over Multicast
Ramaprabhu Janakiraman

Applied Research Laboratory
Washington University in St. Louis
St. Louis, MO 63130-4899, USA

rama@arl.wustl.edu

Marcel Waldvogel
IBM Research

Zurich Research Laboratory
8803 Rüschlikon, Switzerland
mwl@zurich.ibm.com

Lihao Xu
Department of Computer Science

Washington University in St. Louis
St. Louis, MO 63130-4899, USA

lihao@cs.wustl.edu

Abstract—Server bandwidth has been identified as a major bot-
tleneck in large Video-on-Demand (VoD) systems. Using multicast
delivery to serve popular content helps increase scalability by mak-
ing efficient use of server bandwidth. In addition, recent research
has focused on proactive schemes in which the server periodically
multicasts popular content without explicit requests from clients.
Proactive schemes are attractive because they consume bounded
server bandwidth irrespective of client arrival rate.

In this work, we describe Fuzzycast, a scalable periodic multi-
cast scheme that uses simple techniques to provide video on demand
at reasonable client start-up times while consuming optimal server
bandwidth. We present a theoretical analysis of its bandwidth and
client buffer requirements and prove its optimality. We study the ef-
fect of variable bitrate (VBR) media on Fuzzycast performance and
propose a simple extension to transmit VBR media over constant-
rate channels. Finally, we solve the problem of partitioning a trans-
mission over multiple multicast groups by considering it as a spe-
cific instance of a more widely encountered resource trade-off.

I. INTRODUCTION

The promise of universal broadband networks and fast cheap
computation during the last decade has triggered active research
and popular interest in Video-on-Demand (VoD). However, ex-
perience with traditional VoD systems has revealed significant
limiting factors: server bandwidth tends to get swamped by
requests for popular videos, forcing providers to invest in ex-
pensive resources to ensure acceptable quality of service during
peak load.

Earlier work [1] on requests in video rentals suggests that an
80:20 rule might hold here too: 80% of requests are for the top
20 movies. In a VoD system, this suggests that multicast delivery
can help reduce server loads by concurrently serving multiple
requests for popular content.

Since clients in a VoD system, unlike television audiences,
choose their own schedules, plain broadcast alone does not suf-
fice. On the other hand, dedicating a channel to each client
quickly uses up server bandwidth. Most efficient VoD systems
compromise by periodically rebroadcasting content to satisfy the
demands of clients with different start times.

The following metrics are important in assessing VoD perfor-
mance: the first three are driven by user demand, the rest by
technology limits.

MEDIA QUALITY: Users expect at least the media quality that
they routinely get on cable television and rented videos.

PLAYOUT QUALITY: Playout should be reasonable free of
glitches and skipped frames. This depends on the network con-
nectivity and computational power available to the client.

START-UP DELAY: While VoD should strictly be instanta-
neous, most discussion on broadcast-based VoD systems admits
of reasonable client wait times between requesting a video and
commencement of playout.

BANDWIDTH USAGE: This might refer to server bandwidth or
client bandwidth or overall load on the ISP network used by the
VoD system. From a scalability perspective, server bandwidth
usage is the most important metric.

BUFFER SPACE: The most efficient VoD systems transmit
video segments out of order. Clients need computers or set-top
boxes with large amounts of buffer space to cache out-of-order
segments till playout and to smoothe over playout jitter intro-
duced by the network. In some broadcast-based schemes, peak
buffer requirements can run to several megabytes.

With rapidly dropping storage costs, the crucial trade-off in
VoD appears to be that of server bandwidth usage vs. client start-
up delay. Recent research has therefore focused on ways to min-
imize the server bandwidth required to achieve a given start-up
delay and vice versa.

Proactive multicast protocols [2] are especially attractive
in terms of server bandwidth usage [3–7]. These protocols
“push” popular content periodically without explicit requests
from clients, so that server bandwidth usage remains bounded
and is essentially independent of client demand. However, cur-
rent proactive protocols have their own drawbacks: The most
efficient protocols use a fluid model [6, 8] in which data is seg-
mented and multicast in parallel over many constant-rate bit
streams. This view is conceptually appealing but difficult to sus-
tain in practice: video data consists of individual frames that
are transmitted over the network in discrete packets. The com-
plexity involved in overlaying multiple time-sensitive, constant
bandwidth bit streams on a best-effort packet network will be a
significant stumbling block in deploying these protocols.

In this work, we discuss Fuzzycast–a proactive multicast
scheme that takes an alternate discrete frame-oriented approach
to periodic multicasting of video data. We demonstrate that us-
ing a discrete approach results in a bandwidth-efficient system
that is also easy to build and maintain.

The remainder of this paper is organized as follows: In § II,
we introduce and analyze harmonic broadcasting, the holy grail
for proactive VoD schemes, and explain why its existing approx-
imations either are infeasible in practice or inefficient in design.
In § III, we describe Fuzzycast, a practicable and efficient ver-
sion of harmonic broadcasting, and evaluate its performance. In
§ IV, we consider the effect of variable bit rate (VBR) media on

its performance and outline a simple extension for transmitting
VBR media. In § V, we propose the problem of optimally parti-
tioning a transmission over a few multicast groups, show that it is
a special case of a commonly encountered resource tradeoff–one
that we have labeled “Scottie’s dilemma”–and solve the problem
in its general form. We discuss related work in §VI and conclude
in § VII.

II. TOWARDS OPTIMALITY

A. Definitions

This work applies to a VoD system that comprises a central
server distributing digital media to clients over a network that
supports a bandwidth-efficient broadcast primitive, such as satel-
lite broadcast or Internet Protocol (IP) Multicast. We use the
terms “broadcast” and “multicast” interchangeably throughout
this paper, except in § V where we assume an ability to join and
leave multicast groups.

The server stores a set of movies from which each client is
free to choose. A movie comprises of fixed-size blocks of data
(frames) which– for convenience–are assumed to be transmitted
atomically in network packets.

Time is measured in instants; an instant is defined to be the
playout time of a single frame. Bandwidth is measured in frames
per instant. Clients arrive at times of their choosing, request
the server for movies, and after a given initial waiting period of
w instants, consume their movies from beginning to end, thus
spending a total of w + n instants on a movie of n frames.

For simplicity, we initially assume that content is constant bit
rate; VBR issues will be discussed later in § IV.

For convenience, we also assume that clients arrive syn-
chronous with instants and are able to receive frames transmitted
during the instant of their joining. This might lead to underesti-
mating delays by at most one instant. In practice this is insignif-
icant: an instant, by our definition, would correspond to about
33 milliseconds for 30 frames-per-second (fps) video. We shall
also omit client decoding time and network setup delay from our
analysis.

B. Harmonic Broadcasting

Consider the broadcast of a popular movie of n frames. As-
sume the frames are to be broadcast to satisfy the on-demand
requirements of multiple clients with different join times. Now,
a client with a join time of t and a wait-time of w will require
frame f at time tf no later than playout time t + w + f − 1,
i.e., t ≤ tf < t + w + f . Thus each client has a window of
w + f instants in which to receive frame f . In the absence of
client feedback, i.e., in a proactive system, on-demand delivery
for each client is ensured by broadcasting frame f at least once
every w + f instants. Most of the work expands on this simple
result, known as Harmonic Broadcasting [4].

This is formalized as algorithm IDEAL (Listing 1) below. The
schedule generated by algorithm IDEAL (with w = 0) is plotted
in Fig. 1(a), showing the frames transmitted during each instant
and the receive windows for two clients joining at instants 1 and
4. In this example, we assume a transmit system call that sched-
ules frame f for transmission at instant t using a transmission
queue.

Listing 1 Algorithm IDEAL

for all frames fj do
λ← j + w;
for (t← λ; t ≤ tmax; t+ = λ) do

transmit (t, fj);
end for

end for

Theorem 1 On average, algorithm IDEAL (Listing 1) con-
sumes server bandwidth and client bandwidth of log n+w

w

frames/instant.
Proof: Each frame f is scheduled once in w + f instants and

hence occupies an average bandwidth of 1

w+f
frames/instant.

Thus average bandwidth for the entire movie is:

B =

n∑

f=1

1

w + f
≈ log

n + w

w
, (1)

where B is normalized to the playout bandwidth of the movie. In
other words,

Bandwidth (in frames/instant) ≈ log
Movie length
Initial delay

where the log function refers to the natural logarithm.
In practical terms, serving a 2-hour 300 kbps Real Media or

MPEG-4 movie with a 5-minute initial delay requires a server
and client bandwidth of ≈ 1 Mbps. Thus, the system begins
to be advantageous as soon as the number of clients exceeds 3.
Fig. 1(b) shows the scaled bandwidth usage (relative to the bit
rate of the movie) as a function of the initial delay (relative to
the length of the movie).

Theorem 2 For a client with a waiting time w between arrival
and playout, algorithm IDEAL:

• delivers all data on time.
• has the least server bandwidth for any pure proactive

scheme.
Proof: It is easy to prove that algorithm IDEAL is optimal in

the sense that a frequency of 1

w+f
instants for frame f is both

necessary and sufficient for on-demand data delivery: necessary
because an interval of w + f instants without frame f beginning
at time t would cause a client starting at t to just miss f ; suf-
ficient because, in the absence of interactive functions like fast
forwarding, each client is guaranteed to play out frame f no ear-
lier than w + f − 1 instants after joining.

Theorem 3 Algorithm IDEAL requires a peak client buffer
space of about 1/e ≈ 37% of the movie length, where e is the
base of the natural logarithm.

Proof: The probability p(f, t) that frame f has reached by
time t (t < f +w) into the movie is t

w+f
. Expected buffer space

at time t is just the cumulative probability
∑n

f=t p(f, t). Thus
buffer requirements at the client side are given by:

B(t) =

{

t log n+w
w

1 ≤ t ≤ w,

t log n+w
t

w ≤ t ≤ n + w .
(2)

This has a maximum Bmax = n+w
e

at time n+w
e

. As w << n,
Bmax ≈ 0.37n.

Time
3 4 5 6 7 1821 8 9 10 11 12 13 14 15 16 17

1

2

4

6

7

8

9

3

5Fr
am

es

Client@4Client@1

(a) Basic Transmission Pattern

1

2

3

4

5

6

7

0 0.02 0.04 0.06 0.08 0.1

S
ca

le
d
 b

a
n
d
w

id
th

Fractional delay

(b) Bandwidth vs. Delay

Fig. 1. Fuzzycast Transmission

C. Existing approaches

Although algorithm IDEAL is simple, elegant, and optimal, a
fatal flaw renders it unusable in its original form. The number of
frames scheduled for transmission at time t is the number of inte-
gers i ≥ w such that i divides t. This function is extremely spiky,
varying from≤ 2 for prime values of t to record highs for highly
composite [9] t. It is due to this spikiness that earlier research
has advanced algorithm IDEAL as a theoretical limit rather than
as a practicable scheme [6, 7].

Existing protocols, notably the harmonic broadcasting proto-
cols [4,5], have taken a stream-based approach to get around this
limitation. Stream-based protocols, rather than transmit frame
(or segment) f every f + w instants, transmit it continuously in
a separate channel or stream of bandwidth 1

f+w
. This ensures

uniform bandwidth usage, but also runs into difficulties:
In stream-based protocols, the initial delay is a function of

segment size. Because user acceptance considerations dictate
that initial delay be small compared to movie length, these pro-
tocols transmit a movie over many concurrent streams. For ex-
ample, Polyharmonic Broadcasting [8] transmits a single 2-hour
movie with a 5 minute initial delay over 96 streams, with band-
widths varying from a few hundred Kbps to a few hundred bps.

Moreover, this merely defers responsibility down the net-
work stack because streams ultimately map to network pack-
ets. Because packets cannot be arbitrarily small, low-bandwidth
streams will have to be aggregated, revisiting the original prob-
lem of infeasible schedules.

Finally, unless error correction techniques like Forward Error
Correction (FEC [10]) are used, transmitting a segment over an
extended period and over multiple packets increases the chances
that a frame is unusable due to partial loss or corruption in tran-
sit.

Another stream based protocol, Pagoda broadcasting [11], at-
tempts to pack segments into a few fixed-rate channels determin-
istically, but sacrifices performance in the process because it has
to settle for suboptimal schedules (Fig. 2(d)).

III. COMPUTING FEASIBLE FRAME SCHEDULES

As a proactive scheme, the only flaw of algorithm IDEAL is
that it results in non-uniform bandwidth usage. We rectify this

Listing 2 Algorithm BASIC

Best ← Bact ← 0;
for all frames fj do

λ← j + w;
Best+ = 1

λ
;

for (t← λ; t ≤ tmax; t+ = δt, Bact[t] + +) do
δt ← FINDNEIGHBOR;
transmit (t + δt, fj);

end for
end for

as follows: Whenever a frame f has to be scheduled at an in-
stant that has used up the bandwidth allotted to frames 1 · · · f ,
we allow it to heuristically ‘drift’ from its scheduled position to
a neighboring time slot that can spare some of its allotted band-
width. The aim is to spread out or smear a bandwidth peak over
time– flattening peaks and filling up troughs–without changing
the optimal schedule significantly.1

This is formalized as algorithm BASIC (Listing 2). The crux
of it is the FINDNEIGHBOR function, which finds an alternate
neighboring time slot for frames that algorithm IDEAL originally
schedules in relatively ‘crowded’ time slots.

At this point, we pause to distinguish between advancing a
frame and delaying it: advancing a frame wastes bandwidth lo-
cally by scheduling it before it is due; Delaying it potentially in-
creases start-up delay for all clients expecting it. The impact of
both operations depends on the frame shifted, but in contrasting
ways: Delaying later frames increases the average initial delay
more, since more clients wait for these frames. Advancing later
frames, however, is less harmful since its marginal effect on av-
erage bandwidth usage decreases with increasing gap between
successive transmissions of a frame.

With this in mind, we define two parameters δa and δd, which
together limit the shifting of frame f out of time slot t between
t−δa(w+f) and t+δd×w. Reasonable defaults are δa ≈ 0.05
and δd < 0.1, but these values can be tuned during system setup
or configuration taking into account practical limits on server
bandwidth and delay variability. For example, variability in

1This fuzziness of operation is the origin of the term “Fuzzycast.”

Listing 3 BFSCAN FINDNEIGHBOR FUNCTION

1: δt ← λ;
2: for (i← λ; i > λ− left; i−−) do
3: if (Bact[t + i] ≤ Best) then
4: δt ← i;
5: break;
6: else if (Bact[t + i] < Bact[t + δt]) then
7: δt ← i;
8: end if
9: end for

10:

11: for (i← λ + 1; i < λ + right; i++) do
12: /* Lines 3 through 8 */
13: end for
14: return δt;

start-up delay can be forbidden by setting δd = 0 so that a frame
may only be advanced from its original slot.

Given these limits, there are many ways to implement a neigh-
borhood search function. Some examples are:

BFSCAN: Starting from t, scan first left from t to t−δa(f+w)
and then right from t to t + δd × w, looking for time slots with
available bandwidth.

FBSCAN: Similar to BFSCAN, but start going forward first.
SPIRAL: Search along a spiral path alternatingly going back-

ward and forward, so that t− δa(w + f) is evaluated just before
t + δd × w. To accomodate asymmetric bounds, the spiral is
correspondingly distorted. For example, if the advancing limit
is 6 frames and delay limit is 3, the sequence of time slots that
SPIRAL considers is:

(t, t− 1, t− 2, t + 1, t− 3, t− 4, t + 2, t− 5, t− 6, t + 3).

It is possible that FINDNEIGHBOR finds no neighbour that can
accomodate frame f . As a fallback, if all instants in the search
interval exceed their allotted bandwidth, these algorithms sched-
ule f in the minimum bandwidth instant within this interval. But
our simulations suggest this seldom happens for reasonable val-
ues of δa and δd since both allotted bandwidth and search inter-
val size increase with frame number.

As in Fig. 2(a), these strategies can be represented by differ-
ent paths from coordinate (t, t) to (t− δa(w + f), t + δd × w).
For example, SPIRAL can be represented by a straight line path
between the two points, as mapped by Bresenham’s line drawing
algorithm [12]. Advancing horizontally or vertically by a “pixel”
results in probing the next unprobed time slot in the backward or
forward direction, respectively; direction changes on the rect-
angle correspond to direction changes in the search. Extensive
simulation over a wide range of parameters indicates that SPI-
RAL is a robust way to do neighborhood search. Because of
its back-and-forth nature, SPIRAL generates feasible schedules
while managing to place frames close to their original time slots.

Listing III shows the implementation of the FINDNEIGHBOR

function. For clarity, we have used the simpler BFSCAN al-
gorithm instead of SPIRAL. Fig. 2(c) displays the bandwidth
spectrum–the distribution of bandwidths over time–for transmit-
ting a 30 fps 2-hour movie with various initial delays.

Listing 4 Co-scheduling multiple movies
Best ← Bact ← 0;
for all movies mi do

bframe ← bblock ← 0;
right← wiδd;
for all frames fj ∈ mi do

λ← j + w;
left← λδa;
Best+ = 1

λ
;

for (t← λ; t ≤ tmax; t+ = δt, Bact[t] + +) do
δt ← FINDNEIGHBOR;
transmit(t + δt, fj);

end for
end for

end for

A. Co-scheduling multiple movies

Algorithm BASIC has a minor defect that is apparent from
Fig. 2(b): by dealing with frames as indivisible units, if the the-
oretical server bandwidth requirement is even 4.1 frames/instant
(say), it schedules 5 frames in some time slots2, so that peak
bandwidth usage overshoots the average by more than 20%.
This is easily remedied: if multiple movies are broadcast si-
multaneously (as is likely in any VoD system), they could be
co-scheduled by modifying algorithm BASIC to be aware of both
allotted and consumed global bandwidth when making schedul-
ing decisions (Listing III-A). We find that co-scheduling as few
as 8 concurrent streams results in a peak bandwidth usage ≈2%
of optimal (Fig. 3(a)).

IV. SUPPORT FOR VARIABLE BIT RATE MEDIA

In § III, we made the simplifying assumption that media is en-
coded at a constant bit rate (CBR). In practice, however, popular
media like MPEG-2 and MPEG-4 are VBR: frame sizes are not
constant. Algorithm BASIC can be used to transmit VBR frames,
provided frame sizes are incorporated into the bandwidth calcu-
lation. For a n-frame movie with frame sizes f1, f2, · · · , fn,
estimated bandwidth for the first p frames is:

BV BR(p) =

p
∑

i=1

fi

w + i
. (3)

When combined with the global scheduling algorithm, this
significantly smoothes bandwidth usage. For example, Fig. 3(b)
shows the bandwidth usage (normalized bandwidth predicted ac-
cording to Eq. (1)) of 1-hour MPEG-4 movie streams, over a 10-
hour period. However, clients do not benefit from the smoothing
effect of multiple streams; they still suffer from significant band-
width variability. Variable sized frames also complicate buffer
management.

Using a smoothing mechanism like piecewise constant rate
transmission (PCRT) [13,14] is an effective compromise. PCRT
smoothes by dividing the media into a few variable-sized seg-
ments, which are then transmitted at constant rates. Initial delay
and peak bandwidth usage depend heavily on how the movie

2
≈ 10% of them

 δ (f+w)
 a

t −

δ
(w

)
d

t +

SPIRAL

BFSCAN

FBSCAN

Backward
(t, t)

Fo
rw

ar
d

(a) Search strategies

0

1

2

3

4

5

6

7

8

0 0.02 0.04 0.06 0.08 0.1

B
an

dw
id

th

Initial delay

Average
Peak

(b) Peak and average bandwidths

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

Bandwidth (# Frames)

w = 0.1% (Actual)
w = 0.1% (Ideal)

w = 1.0% (Actual)
w = 1.0% (Ideal)

w = 10.0% (Actual)
w = 10.0% (Ideal)

(c) Bandwidth spectrum

2

2.5

3

3.5

4

4.5

5

5.5

6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B
an

dw
id

th

Delay

Fuzzycast
Optimal

Polyharmonic
Pagoda

(d) Performance comparison (Note: The Fuzzycast and optimal
graphs are practically superposed)

Fig. 2. Effectiveness of heuristic scheduling

is split [13]. PCRT smooths bandwidth variability effectively
(Fig. 3(c)) but the extra initial delay incurred sometimes results
in performance overheads exceeding 20%.

We now propose a simpler and more effective solution called
Fragmented Fuzzycast, which is a straight-forward extension of
our original frame scheduling: Consider a VBR-encoded movie
with a set of frames F = {f1, f2, · · · , fn}, split into a set of
fixed-sized blocks B = {b1, b2, · · · , bm}. For each block bi,
there is a set C(bi) ⊂ F of frames which are either fully or
partially contained in bi. If the earliest frame in C(bi) is fj , then
transmit block bi at frequency 1

w+j
.

Theorem 4 Fragmented Fuzzycast delivers all data on time.
Proof: Block bi is scheduled such that the earliest frame in it

reaches all clients on time. By fixing its transmission rate ac-
cording to the frame with the most urgent requirement, we en-
sure that later frames in it also reach on time. If the last frame
in block bi is truncated, transmitting block bi only guarantees
on-time delivery of this fragment. But the rest of this frame, by
virtue of being the earliest in block bi+1, reaches on time. Since
all frames in the last block reach on time, all frames in the movie
do too.

Fragmented Fuzzycast (Listing 5) is simple to implement: We

maintain pointers to the end of the current block in bblock and
the current frame in bframe, which grow at rates blocksize and
size(j) respectively. Whenever the block pointer overtakes the
frame pointer, the frame number is increased until this state of
affairs is reversed. Fig. 3(d) shows that Fragmented Fuzzycast
is effective in smoothing the rate variability of VBR traffic: the
graph is a virtual replica of the CBR bandwidth usage graph in
Fig. 3(a).

Listing 6 shows a version of the Fuzzycast algorithm support-
ing co-scheduling multiple streams and fragmenting VBR con-
tent.

V. MULTIPLE GROUPS

Periodic broadcast schemes, while admittedly attractive in
terms of server bandwidth usage, waste client and network band-
width by redundantly transmitting data. While this is unavoid-
able in a pure broadcast-based system, e.g., a satellite-based dis-
tribution network, it is wasteful in a multicast situation where
there is network support for subscribing to and unsubscribing
from a multicast session. It is therefore desirable that each client
explicitly deregister its interest in unwanted frames with the mul-
ticast infrastructure.

Listing 5 FRAGMENT function
bblock ← bframe ← 0;
i← 0;

for all frames fj do
while (bblock ≥ bframe and j < n) do

bframe+ = size(fj);
j++;

end while
λi ← w + j;
bblock+ = blocksize;
i++;

end for
return (λ1, λ2, · · ·);

While we would ideally like to transmit each frame in its own
multicast group, this creates too much network overhead in the
form of group membership messages and state information in
the network routers. In practice, each movie is multicast over a
small number of groups. Each client initially subscribes to all the
groups of a movie and then proceeds to shed each group when it
is done with it. This is somewhat similar to existing techniques
for receiver-driven congestion-control [15] and efficient data dis-
tribution over layered multicast [16, 17].

Our problem, then, is simply stated: Given a movie of n
frames, how do we transmit it over α multicast groups in a way
that minimizes total redundancy? Since the first few frames have
the most bandwidth in our scheduling scheme, our first instinct
is to drop early and drop often. On the other hand, we have only
a few groups to play with: running out of groups too early will
only have exchanged the bombardment of a few high-bandwidth
frames for the slow torture of many low-bandwidth ones.

In [18], we consider the problem of partitioning a Fuzzycast
transmission over multiple multicast groups. In this section, we
show how this problem is really a specific instance of a more
general problem that we have termed “Scottie’s dilemma.”

A. Scottie’s dilemma

In situations involving processes that have a constant accru-
ing cost but decreasing utility, we would like to cut costs as soon
and as often as possible, rather than drag along excess baggage.
However, practical constraints dictate that we aggregate such ac-
tions into a few distinct decision points rather than continuously
improve the state of affairs. This dilemma is common in real life.
For example, psychologists speak of deferring instant gratifica-
tion for long-term profit. Rocket scientists have to decide when
and how often their creations jettison unwanted cargo. File sys-
tems periodically synchronize with storage and discard modified
buffers.

In general, we find that situations of this kind can be repre-
sented by two simple functions: Θ(t), a weight function that
defines how cost accrues over time and Φ(t), a utility function
that defines how utility decays with time. In the common case
when costs add up linearly in time, Θ(t) = t.

Given these two functions, the theoretical minimum cost, C∞

Listing 6 Fragmented Fuzzycast
Best ← Bact ← 0;
for all movies mi do

(λ1, λ2, · · ·)← FRAGMENT;
right← wiδd;
for all blocks bj ∈ mi do

Best+ = 1

λj
;

left← λjδa;
for (t← λj ; t ≤ tmax; t+ = δt, Bact[t] + +) do

δt ← FINDNEIGHBOR;
transmit(t + δt, fj);

end for
end for

end for

is obtained by perfectly following the utility at each instant:

C∞ =

∫ T

0

Φ(t) dΘ(t). (4)

However, in practice, it is more realistic to assume that time
consists of a number of distinct epochs (say α of them), sepa-
rated by decision points t0 = 0, t1, · · · , tα = T . At each deci-
sion point, unwanted costs accumulated over the previous epoch
are eliminated. In this case total cost is given by,

Cα =

α∑

k=1

∫ tk

tk−1

Φ(t) dΘ(t)

=

α∑

k=1

{
Θ(tk)−Θ(tk−1)

}
Φ(tk−1),

(5)

where t0 = 0 and tα = T .
Thus the trade-off is reduced to choosing an optimal set of

decision points (t∗1, t
∗

2, · · · , t
∗

α−1) that minimizes cost Cα = C∗

α.
Differentiating both sides of Eq. (5) w.r.t tk,

∂Cα

∂tk
=

{
Θ(tk+1)−Θ(tk)

}
Φ′(tk)−

Θ′(tk)Φ(tk) + Θ′(tk)Φ(tk−1)

= 0 (For minimum cost).

Or,

Θ(t∗k+1) = Θ(t∗k) +
Θ′(t∗k)

Φ′(t∗k)

{
Φ(t∗k)− Φ(t∗k−1)

}
. (6)

This recurrence can then be solved for particular cost and utility
functions Θ(t) and Φ(t), to obtain optimal decision points. For
measuring performance, we define inefficiency as follows:

I(α) =
Optimal cost with α groups
Theoretical minimum cost

=
C∗

α

C∞

. (7)

B. Numerical solution

When closed-form expressions for the optimal boundaries
cannot be obtained, we have to settle for obtaining these through
numerical methods. Due to the recursive nature of Eq. (6), find-
ing the set of optimal decision points (t∗1, t

∗

2, ...t
∗

α−1) is reduced

0

0.5

1

1.5

2

0 2 4 6 8 10

N
or

m
al

iz
ed

 B
an

dw
id

th

Time (Hours)

single CBR stream
8 CBR streams

(a) CBR

0

0.5

1

1.5

2

0 2 4 6 8 10

N
or

m
al

iz
ed

 B
an

dw
id

th

Time (Hours)

single VBR stream
8 VBR streams

(b) VBR

0

0.5

1

1.5

2

0 2 4 6 8 10

N
or

m
al

iz
ed

 B
an

dw
id

th

Time (Hours)

Single PCRT stream
8 PCRT streams

(c) PCRT

0

0.5

1

1.5

2

0 2 4 6 8 10

N
or

m
al

iz
ed

 B
an

dw
id

th

Time (Hours)

single stream
8 concurrent streams

(d) Fragmented Fuzzycast

Fig. 3. Peak bandwidth for Fuzzycast (one-second peaks)

to finding the first point t∗1. For a given candidate t1 = x, we
can define a recursive set of functions, t2(x), t3(x), · · · tα(x)
that can be determined either analytically or numerically using
Eq. (6). Since it is always true that tα(t∗1) = t∗α = T , finding t∗1
reduces to solving

tα(x)− T = 0. (8)

This can be done numerically, e.g., using Newton-Raphson
iteration. By determining t∗1, we have determined all the optimal
decision points.

C. Case 1: Minimizing Client Load

In this section, we build upon our earlier work [18], where we
restrict ourselves to the specific problem of how to optimally par-
tition a Fuzzycast transmission over multiple multicast groups.
Given the discussion in the previous section, it is apparent that
partitioning a transmission over multiple multicast groups is an
instance of “Scottie’s dilemma” where epochs correspond to dis-
tinct multicast groups. Given α decision points in which played-
out frames can be dropped, we have to choose the points that
minimize redundancy.

Let us first find the partition that minimizes the total number
of frames that each client receives. In this case, total cost is
given by the number of frames received during the course of

transmission. The utility of the transmission at any time is the
portion that has not been played out.

Thus, weight and utility functions may be formulated as:

Θ(t) = t

Φ(t) =

∫ T

t

1

t
dt = log

T

t
.

(9)

In this case, optimal values of drop boundaries are given by:

t∗k+1 = t∗k
{
1 + log

t∗k
t∗k−1

}
. (10)

Descending recursively, the first optimal drop point t∗1 is de-
termined by,

t∗α = t∗1 (1 + log
t∗1
t∗0

) (1 + log(1 + log
t∗1
t∗0

)) · · ·

︸ ︷︷ ︸

α terms

, (11)

where t∗α = n + w and t∗0 = w. For convenience, we assumed
time starts from w. This result is identical to that obtained from
first principles in [18].

Using the method outlined in § V-B, Eq. (11) can be solved
numerically to obtain t∗1, · · · t

∗

α−1. This set of boundaries is the

1

1

1 2

1 2

321

2 31

21 43

1 42 3

 Playout time

Receiver
optimal

Network
optimal

Fig. 4. Optimal partition (1–hour movie, 36 second delay)

one that minimizes the number of frames that each client re-
ceives. For example for a one-hour, 30 fps movie with α = 3
and w = 36 seconds (1%), the optimal group boundaries are
at 7:34, 26:46, and 60:36 minutes, leading to an average client
bandwidth usage of 54 fps as opposed to 165 fps without layer-
ing, (≈67% reduction).

To measure performance gain in this case, we use Eq. (7) to
get Receiver inefficiency:

C∗

α =

α∑

k=1

t∗k log
t∗k

t∗k−1

C∞ =

∫ n+w

w

log
n + w

t
dt

IR(α) =
frames received on average

frames in movie

≈

1

n

α∑

k=1

t∗k log
t∗k

t∗k−1

.

(12)

Fig. 5(a) plots receiver inefficiency against α for various ini-
tial delays. Fig. 5(b) shows the values of inefficiency obtained
through simulation. There is excellent agreement between pre-
dicted and experimental values. We also find that there is a
“sweet spot” at around 4-5 groups where maximum gains are
obtained. Increasing α further does not increase performance
much.

D. Case 2: Minimizing Network Load

Another problem that might be more relevant from an ISP’s
viewpoint is to find the partition that minimizes overall network
costs. That is, we would like to minimize the number of frames
on the network at any given time. This again is discussed specif-
ically in [18].

If the number of links in a delivery tree of m clients is L(m)
and the average client arrival rate is λ then the number of clients
subscribed to group k at any given time is ≈ λtk. Throughout
this section, we assume that clients are characterized by unique
end routers. According to this definition, two end users on a
single local network count as a single client.

A seminal result due to Chuang and Sirbu [19] states that for
Internet multicast, L(m) is fairly accurately approximated by a
power law of the form, L(m) ≈ ûmρ where ρ ≈0.8 and û is the
average unicast path length (recall that m represents the number
of unique end routers.) This represents its network bandwidth
advantage over multiple unicast, which has L(m) = ûm. This
was subsequently verified by Phillips et. al. [20].

Now, we can set up the weight function as simply the number
of links in a group of time t, i.e., for the network optimal case,

Θ(t) = û(λt)ρ

Φ(t) = log
T

t
.

This results in the recurrence:

t∗k+1 = t∗k(1 + ρ log
t∗k

t∗k−1

)
1

ρ (13)

Or,

t∗α = t∗1 (1 + ρ log
t∗1
t∗0

)
1

ρ (1 + log(1 + ρ log
t∗1
t∗0

))
1

ρ · · ·

︸ ︷︷ ︸

α terms

. (14)

Again, this equation can be numerically solved to get optimal
t1 = t∗1.

To measure performance, we obtain Network inefficiency from
Eq. (7) as:

C∗

α =
α∑

k=1

(t∗k)ρ log
t∗k

t∗k−1

C∞ =

∫ n+w

w

log
n + w

t
d
{
tρ}

IN (α) =
frames in network at any time
minimum # frames in network

≈

ρ

(n + w)
ρ

α∑

k=1

(t∗k)ρ log
t∗k

t∗k−1

.

(15)

Fig. 5(c) shows the network inefficiency versus α for various
w. Fig. 5(d) shows the values obtained from simulation over re-
alistic network topologies, using the GT-ITM [21] simulator and
from traces obtained from the SCAN [22] project. Details about
our simulation setup are given in [18]. As the figure shows, there
is excellent agreement between predicted and observed values,
both for generated and real topologies. Again, there is a “sweet
spot” at around 4 or 5 groups, beyond which increasing α does
not seem to have much effect.

E. Comparing receiver-optimal and network-optimal cases

In Fig. 4, we compare partitions in the receiver and network-
optimal cases. It is apparent from the figure that the boundaries
for the network-optimal case are earlier than the corresponding
receiver-optimal boundaries. This is in fact always true and can
be easily proved by letting zk = tk

tk−1

in both cases, so that both
Eq. (10) and Eq. (13) reduce to the form:

zk+1 = (1 + ρ log zk)
1

ρ

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

R
ec

ei
ve

r
in

ef
fic

ie
nc

y

of multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(a) Predicted: IR(α) vs. α

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

R
ec

ei
ve

r
in

ef
fic

ie
nc

y

of multicast groups

delay = 0.1%
delay = 0.5%
delay = 1.0%
delay = 2.0%

(b) Actual: IR(α) vs. α

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
ef

fic
ie

nc
y

of multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(c) Predicted: IN (α) vs. α

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
in

ef
fic

ie
nc

y

of multicast groups

TS:delay = 0.1 %
TS:delay = 0.5 %
TS:delay = 1.0 %
TS:delay = 2.0 %

INET:delay = 0.1 %
INET:delay = 0.5 %
INET:delay = 1.0 %
INET:delay = 2.0 %

(d) Actual: IN (α) vs. α

Fig. 5. Performance with multiple groups

where ρ = 1.0 in the first case and 0.8 in the second (when
using multicast on Internet topologies.) This can be shown to be
an increasing function of ρ, from which the result immediately
follows.

The intuition behind this result is that the sublinear depen-
dence of multicast tree size on membership size “dilutes” the
effect of large groups, so that it is more advantageous to drop
the initial high-bandwidth frames sooner when optimizing for
network load.

F. Variable arrival rate

The analysis in the previous section is not wholly accurate in
that we have assumed uniformly distributed arrival rates, while
in reality, clients arrive in a process centered around a mean λ.
In [18], we show that switching to Poisson arrivals does not have
a significant impact on these results.

VI. RELATED WORK

One of the earliest proposals for bandwidth-efficient VoD was
Batching [1], where the server aggregated requests that came
close together in time. In subsequent years, progressively more
efficient periodic broadcast methods have been proposed.

PROACTIVE TRANSMISSION SCHEMES: Recently, the Har-
monic Broadcasting [4, 5] family of protocols (already dis-
cussed in § II-C) seem to be the most promising insofar as the
bandwidth-delay tradeoff is concerned. Some lower bounds for
the performance of such protocols have also been obtained in
[6, 7].

PRE-PUSH: Several commercial pay-per-view networks are
currently testing “on-demand” models, where movies are down-
loaded ahead of time to consumer set-top boxes. With this tech-
nique, a single broadcast transmission suffices to preload all
data. The downside is that enormous amounts of storage are
required to store enough data for a decent selection of movies to
be offered. Moreover, while most demand at any given time is
for a small set of movies, this set is a moving target, defeating
attempts at any long-term client-side caching.

SMOOTHING VBR VIDEO: While there is a large body of
work on smoothing unicast transmission of VBR video, the im-
pact of VBR media on the performance of proactive multicast
schemes has never been properly studied.

LAYERING OVER MULTIPLE GROUPS: We discuss the spe-
cific problem of client and network optimal partitioning over
multicast groups for Fuzzycast in [18]. As far as we know, there
has not been work prior to this on quantifying the network im-
pact of these VoD protocols or on optimally distributing content
among multiple multicast groups. Bhattacharyya et al. [17] dis-

cuss optimal scheduling of data packets in a layered multicast
[15] transmission to receivers with identical starting times.

CONTENT DISTRIBUTION NETWORKS: Content distribution
networks (CDNs [23]) are an alternate way of providing VoD to
many clients. For the most part, they are orthogonal to the work
on harmonic broadcasting. For our purpose, CDNs just provide a
way to trade investments in networks and routers for servers and
storage. Combining bandwidth efficient distribution strategies
with cache hierarchies in a cost effective manner is currently an
area of active research.

BULK DATA DISTRIBUTION: Byers et al. proposed a digi-
tal fountain approach to data distribution [16], where receivers
download from a continuous data stream until they have received
enough unique encoded data to reconstruct all of the original
data. While this is an attractive solution for bulk data transfer
where data only needs to be reconstructed all at once at the end of
transmission, it does not seem to be readily applicable to stream-
ing media applications where clients consume data piecemeal.

VII. CONCLUSIONS

The success of Video-on-Demand (VoD) systems depends on
the provider’s ability to offer a cost-effective service that is also
attractive to end-users. Scalability and efficiency are critical to
the first part, while functionality, ease of use, and quick response
to user commands are needed to satisfy the second.

Proactive VoD protocols are attractive from a scalability point
of view, because they use server bandwidth efficiently to serve
media in heavy demand. However, current proactive schemes
have significant drawbacks in terms of practical implementa-
tion and deployment. Fuzzycast, by taking a pragmatic frame-
oriented approach, uses near-optimal server bandwidth while re-
maining relatively simple to implement and maintain.

While transmitting variable bitrate (VBR) media is a sig-
nificant issue in the real world, most existing periodic multi-
cast schemes do not handle VBR media very well. We pro-
posed a simple extension to Fuzzycast, Fragmented Fuzzycast,
and demonstrated that it was able to deliver VBR content over
constant-rate channels with minimal performance loss or com-
plexity overhead.

Finally, periodic multicast schemes place extra load on the
network due to redundant multicasts. We show how the problem
of transmitting content over multiple multicast groups results in
a fundamental resource tradeoff; by solving the general case, we
obtain an optimal solution to our problem. We find that using
even a few multicast groups results in significant reduction in
overhead for both the client and the network. We note that the
result obtained here is quite general and is capable of straightfor-
ward application to diverse situations, including networks that
follow scaling properties very different from the Chuang-Sirbu
law.

Using the optimal solution described here in other similar sce-
narios is an area of research we intend to pursue further. In ad-
dition, our current work involves extending these results to add
support for more “user-friendly” options like interactive VCR-
like functions.

REFERENCES

[1] Asit Dan, Dinkar Sitaram, and Perwez Shahabuddin, “Scheduling poli-
cies for an on-demand video server with batching,” in Proceedings ACM
Multimedia ’94, Oct. 1994, pp. 391–398.

[2] Sridhar Ramesh, Injong Rhee, and Katherine Guo, “Multicast with cache
(mcache): An adaptive zero-delay video-on-demand service,” in Proceed-
ings of IEEE Infocom 2001, 2001.

[3] Kien A. Hua and Simon Sheu, “Skyscraper broadcasting: A new broad-
casting scheme for metropolitan video-on-demand systems,” in Proceed-
ings of SIGCOMM ’97, Sept. 1997, pp. 89–100.

[4] Li-Shen Juhn and Li-Meng Tseng, “Harmonic broadcasting for video-on-
demand service,” IEEE Transactions on Broadcasting, vol. 43, no. 3, pp.
268–271, Sept. 1997.

[5] Jehan-François Pâris, Steven W. Carter, and Darrel D. E. Long, “Efficient
broadcasting protocols for video on demand,” in Proceedings 6th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, July 1998, pp. 127–132.

[6] Subhabrata Sen, Lixin Gao, and Donald F. Towsley, “Frame-based pe-
riodic broadcast and fundamental resource tradeoffs,” Tech. Rep. 99-78,
University of Massachusetts, Amherst, 1999.

[7] Derek L. Eager, Mary K. Vernon, and John Zahorjan, “Minimizing band-
width requirements for on-demand data delivery,” in Proceedings of Mul-
timedia Information Systems Conference (MIS ’99), Oct. 1999.

[8] Jehan-François Pâris, Steven W. Carter, and Darrel D. E. Long, “A low
bandwidth broadcasting protocol for video on demand,” in Proceedings
7th International Conference on Computer Communications and Networks
(IC3N’98), Oct. 1998, pp. 690–697.

[9] Srinivasa Ramanujan, “Highly composite numbers,” Proceedings of the
London Mathematical Society, vol. 14, pp. 347–409, 1915.

[10] Jörg Nonnenmacher, Ernst W. Biersack, and Donald F. Towsley, “Parity-
based loss recovery for reliable multicast transmission,” IEEE/ACM Trans-
actions on Networking, vol. 6, no. 4, pp. 349–361, Aug. 1998.

[11] Jehan-François Pâris, Steven W. Carter, and D. D. E Long, “A hybrid
broadcasting protocol for video on demand,” in Proceedings of Multimedia
Computing and Networking Conference 1999 (MMCN’99), 1999, pp. 317–
326.

[12] Jack E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, Jan. 1965.

[13] James D. Salehi, Zhi-Li Zhang, James F. Kurose, and Donald F. Towsley,
“Supporting stored video: Reducing rate variability and end-to-end re-
source requirements through optimal smoothing,” IEEE/ACM Transac-
tions on Networking, vol. 6, pp. 397–410, Aug. 1998.

[14] Jean M. McManus and Keith W. Ross, “A dynamic programming method-
ology for managing prerecorded VBR sources in packet–switched net-
works,” in Proceedings SPIE, Performance and Control of Network Sys-
tems, Nov. 1997, pp. 140–154.

[15] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-driven
layered multicast,” in Proceedings of SIGCOMM ’96, Aug. 1996, pp. 117–
130.

[16] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege,
“A digital fountain approach to reliable distribution of bulk data,” in SIG-
COMM ’98, 1998, pp. 56–67.

[17] Supratik Bhattacharyya, James F. Kurose, Donald F. Towsley, and Ramesh
Nagarajan, “Efficient rate-controlled bulk data transfer using multiple mul-
ticast groups,” in Proceedings of IEEE Infocom ’98, June 1998, pp. 1172–
1179.

[18] Marcel Waldvogel and Ramaprabhu Janakiraman, “Efficient media-on-
demand over multiple multicast groups,” in Proceedings of Globecom
2001, San Antonio, Texas, USA, Nov. 2001.

[19] John C.-I. Chuang and Marvin A. Sirbu, “Pricing multicast communica-
tions: A cost based approach,” in Proceedings INET ’98, 1998.

[20] Graham Phillips, Hongsuda Tangmunarunkit, and Scott Shenker, “Scaling
of multicast trees: Comments on the Chuang-Sirbu scaling law,” in ACM
SIGCOMM ’99, 1999.

[21] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo, “A quan-
titative comparison of graph-based models for Internet topology,” IEEE/
ACM Transactions on Networking, vol. 5, no. 6, pp. 770–783, 1997.

[22] “The Mercator Internet mapping project,” http://
www.isi.edu/scan/mercator/maps.html.

[23] Balachander Krishnamurthy, Craig Wills, and Yin Zhang, “On the use and
performance of content distribution networks,” in Proceedings of ACM
SIGCOMM Internet Measurement Workshop 2001, Nov. 2001.

