
2

A library of layered protocol wrap-
pers processes Internet packets in reconfig-
urable hardware. Collectively, the wrappers
simplify and streamline the implementation
of high-level networking functions by
abstracting the operation of lower-level pack-
et processing functions. The library synthe-
sizes into field-programmable gate array
(FPGA) logic and is utilized in a network plat-
form called the field-programmable port
extender (FPX). The library processes asyn-
chronous transfer mode (ATM) cells, ATM
adaptation layer 5 (AAL5) frames, Internet
protocol (IP) messages, and user datagram
protocol (UDP) packets directly in hardware.1

Applications can process data at several lay-
ers of the protocol stack using the library of
wrappers discussed in this article. Layers are
important for networks because they let appli-
cations abstract from above and below details
of the network protocols. At the lowest layer,
networks modify raw data passing between
interfaces. At higher levels, the applications
process variable length frames or IP packages.
For example, an Internet router or firewall uses
the IP, frame, and cell wrapper together with

a circuit to perform routing lookups. At the
user level, a network application may transmit
directly or receive UDP messages by instanti-
ating all wrappers, as shown in Figure 1.

Background
The FPX is a networking platform that

processes packets in reprogrammable hard-
ware. The platform allows modular hardware
components to be dynamically loaded into an
FPGA device over a network. The FPX is part
of a larger set of networking, switching, rout-
ing, and active networking hardware and soft-
ware components developed at Washington
University in St. Louis. The modules de-
scribed in this article are primarily targeted
for the FPX, though we wrote the design in
portable VHSIC hardware description lan-
guage (VHDL) suited for use in any FPGA-
based system.

Switch fabric
The central component of our research is

the Washington University gigabit switch
(WUGS).2 This fully featured ATM switch
can handle up to 20 Gbps of network traffic.

Florian Braun
University of Stuttgart

John Lockwood
Washington University

in St. Louis

Marcel Waldvogel
IBM Zurich

Research Laboratory

A NETWORK PLATFORM CALLED THE FIELD-PROGRAMMABLE PORT EXTENDER

(FPX) STREAMLINES AND SIMPLIFIES NETWORK TRANSMISSION PROCESSING

DIRECTLY IN HARDWARE.

0272-1732/02/$17.00  2002 IEEE

PROTOCOL WRAPPERS FOR
LAYERED NETWORK PACKET

PROCESSING IN
RECONFIGURABLE HARDWARE

The WUGS main circuit board has eight con-
nectors used to attach line cards through the
front of the unit. The WUGS enables hard-
ware insertion between the line cards and the
backplane in a daisy-chain fashion, providing
configuration flexibility.

There are two extension cards for the
WUGS so far, both providing programmable
means for advanced cell and/or packet pro-
cessing. The smart port card (SPC)3 provides
an Intel Pentium processor for implementing
user-specified packet processing functions.
The SPC attaches to the network via an
advanced port interconnect4 ATM network
interface card. We use the SPC whenever the
processing applied to packets is suited for soft-
ware implementation. The FPX card5,6 pro-
vides reprogrammable logic for user
applications. Like the SPC, we can insert the
FPX between the switch fabric mainboard and
any line card, as shown in Figure 2. Figure 3
(next page) shows the major components on
an FPX board.

The FPX contains two FPGAs: the network
interface device (NID) and the reprogram-
mable application device (RAD). The NID
interconnects the WUGS, the line card, and
the RAD via an on-chip ATM switch core.
The NID also provides logic to dynamically
reprogram the RAD. Programming the RAD
to hold user-defined modules enables network
modules to be dynamically loaded into the
system. The RAD connects to two static
RAM (SRAM) and two synchronous dynam-
ic RAM (SDRAM) components. The mem-
ory modules can cache cell data or hold large
tables.

FPX modules
Our approach uses modules to implement

user applications on the RAD. Modules are
hardware components that contain well-
defined interfaces. These interfaces commu-
nicate with the RAD and other infrastructure
components. The basic data interface is a 32-
bit wide Utopia. Utopia uses a single signal
indicating the beginning of a new ATM cell,
whereas the data is sent as a burst of 14 con-
secutive 32-bit words on the data bus, with
the first two holding the ATM header. Inter-
net packets enter the module using classic IP
over ATM encapsulation and segmentation
into ATM cells.7 The data bus carries cell
headers and payloads. The other signals in the
module interface control congestion and con-

3JANUARY–FEBRUARY 2002

Network
application

User datagram protocol wrapper

IP wrapper

Frame wrapper

Cell wrapper

Data
flow

Figure 1. The wrapper concept.

IPP

IPP

OPP

OPP

IPP

IPP

OPP

OPP

Field
programmable

port
extender

OC-3/
OC-12/
OC-48

Line
card

Field
programmable

port
extender

OC-3/
OC-12/
OC-48

Line
card

Gigabit
switch
fabric

IPP
OPP

Input port processor chip
Output port processor chip

Figure 2. The WUGS configuration using the field-programmable port
extender.

nect to memory controllers to access the off-
chip memory.8

Usually, there are two application modules
on the RAD. Typically, one handles data from
the line card to the switch (ingress), and the
other handles data from the switch to the line
card (egress). Programmers can replace the mod-
ules at any time by partially reprogramming the
RAD FPGA. (Documentation and source code
to many of the FPX modules are available at
http://www.arl.wustl.edu/arl/projects/fpx/).

Network wrapper concept
Components using the FPX let applications

handle data on several protocol layers. Simi-
lar circuits implement IP over Ethernet9 data
in static systems. Instead of offloading proto-
col processing to a coprocessor,10,11 FPX com-
ponents let hardware implement all
packet-processing functions.

Translation steps are necessary between lay-
ers. A classical approach creates components
for each protocol translation. We combine
these two translation units into one compo-

nent that has four interfaces: two support the
lower level protocol and two provide a high-
er-level interface. Some components connect
to exchange additional information or to
bypass the application. The latter occurs in
the cell processor.

Protocol wrappers surround the user’s appli-
cation logic like the letter “U,” as shown in
Figure 1. Regarding the data stream, the appli-
cation only connects to the translating com-
ponent, which wraps up the application itself.
Therefore, we refer to the surrounding com-
ponents as wrappers.

To support higher levels of abstraction, we
can nest the wrappers. Each has a well-defined
interface for an outer and an inner protocol
level and, therefore, fit together as shown in
Figure 1. As a result, we get a modular design
method to support applications for different
protocols and levels of abstraction. Associat-
ing each wrapper with a specific protocol, we
get a layer model comparable to the well-
known Open Systems Interconnection (OSI)
Basic Reference Model. This modularity lets
application developers implement functions
at several protocol layers in their designs. They
can interface their logic to a wrapper with the
level of abstraction appropriate for the specif-
ic application. User-level applications, for
example, can completely ignore handling of
complicated protocol issues, such as frame
boundaries or checksums.

When referring to specific components, we
refer to the single translation component as
processor, and the combination of processors
make up a wrapper for this protocol level. For
instance, the IP processor performs the trans-
lation steps on IP packets only, whereas the
IP wrapper also includes the frame processor
to handle AAL5 frames.

Cell wrapper
The wrapper on the lowest level is the cell

processor, as shown in Figure 4. The cell proces-
sor performs every necessary step on the cell
level common to all FPX modules. It checks
incoming ATM cells against their header error
control (HEC) field, which is part of the 5-
octet header. An 8-bit cyclic redundancy code
(CRC) prevents corrupted cells from misrout-
ing. If the check fails, the cell is dropped.

This level processes accepted cells accord-
ing to their virtual circuit information. The

4

PROTOCOL WRAPPERS

IEEE MICRO

ECEC

M
od

ul
e

Switch Line card

RAD

M
od

ul
e

NID

Field-programmable port extender

RAD
program
SRAM

Data
SDRAM

Data
SRAM

Data
SDRAM

Data
SRAM

EC
NID

RAD
VC

Electronic circuit
Network interface device
Reprogrammable application device
Virtual circuit

VC VC

VC VC

Figure 3. Components on a field-programmable port extender.

cell processor distinguishes between three dif-
ferent flow types:

• The cell is on the data virtual circuit for
this module. In this case, the cell is for-
warded to the inner interface of the wrap-
per and thus to the application.

• The cell is on the control cell virtual cir-
cuit and tagged with the correct module
identification. The cell processor itself
processes control cells.

• None of the above—the cell is not des-
tined for this module. These cells are for-
warded around the inner layers of the
module and bypass processing by the
higher-level protocol processors.

The cell processor has three FIFO pipes to
buffer cells from the three paths. A multiplexer
combines the cells and forwards them to their
final stop. A new HEC is computed before
the cell leaves the cell processor.

Control cells modify the behavior of an FPX
module. Control cells are ATM cells with a well-
defined structure that provide a communica-
tion path between an external controller, for
example, software, and the on-chip modules. A
standard control cell format is used on the FPX.
Control cells to the RAD contain a module
identification field opcode to address the appli-
cation module. All FPX modules understand a
common subset of generic opcodes. For exam-
ple, commands to change the virtual path and
virtual channel identifier can always be speci-
fied to let a module dynamically change the flow
processed by the hardware.

The design of the control cell handling
functions inside the cell processor is very flex-

ible. Application developers can easily extend
the control cell functionality to fit their mod-
ules’ needs. User applications typically sup-
port more control cell opcodes than the
generic subset. The extensions are typically
used to interact with remote software com-
ponents. An important goal of our research
was extendibility in the design of the cell
processor. A control cell processing framework
checks and generates CRCs, buffers common
data structures, and implements a mechanism
to share common information.

A master state machine waits for control
cells destined for its module, and, after receiv-
ing them, stores opcodes, user data, and a
sequence number. The master state machine
also checks the control cell CRC. Every opcode
has its own state machine; therefore, adding a
new command does not interfere with imple-
mentation of existing commands. Every state
machine polls the master state to check if the
cell processor has received a control cell with
a valid CRC; the state machine becomes active
upon recognizing its control cell opcode. For
any incoming control cell (request), the mod-
ule should send a response cell if the command
has been processed successfully. Since an inde-
pendent state machine handles every opcode,
generating its own individual response cells, a
multiplexer merges the response cells at the
output port and then sets the CRC.

Frame wrapper
To handle data with arbitrary lengths, sev-

eral adaptation layers exist for ATM networks
to organize data in frames and send it as mul-
tiple cells.12 AAL5 is widely used for IP net-
works.7 It allows efficient transmission of

5JANUARY–FEBRUARY 2002

Control
cells

Dispatch

Header
error

controller
check Header

error
controller

set

Applications

Forwarded cell

Forwarded cell

Data
VC

ATM
cells

Control cell VC

FIFO

FIFO

FIFO M
ul

tip
le

xe
r

Figure 4. Field-programmable port extender cell wrapper.

packets longer than a single ATM cell over
ATM links. During encapsulation into AAL5,
the higher layer packet receives padding and
an 8-byte appended trailer (see Figure 5). The
amount of padding fills the resulting frame to
an even multiple of 48 bytes (the size of a sin-
gle ATM cell). The trailer contains the origi-
nal payload length (16 bits), a 16-bit wide
field available to higher protocol layers, and a
32-bit CRC for integrity checks. A special bit
set in the last ATM cell header enables decap-
sulation. The length field and this last cell bit
let the decoder identify the payload start and
end. The length and CRC fields identify lost,
inserted, and corrupted cells in the stream.

The FPX’s frame wrapper module handles
AAL5 frame data. The module’s interface
enables application modules to transmit and
receive variable length frames. The frame
processor replaces the start of cell signal with
three signals, namely start of frame, end of
frame, and data enable (DataEn).

The start-of-frame signal indicates the trans-
mission of a new frame. Note that HEC sup-
port is not available with this wrapper, because
it is assumed that only valid ATM cells pass to
this wrapper and that the cell processor will
generate a valid HEC for outgoing cells.

DataEn indicates valid payload data. Act-
ing as an enable signal for the data processing
application, DataEn is completely indepen-

dent from the cell structure. Applications can
therefore easily resize frames or append data,
facilitating new frame generation. The frame
processor does not assert DataEn when
padding is sent, because it is not part of the
actual frame contents. The end-of-frame sig-
nal is asserted with the last valid payload word
sent. This gives applications enough time to
start appending data to a frame, if necessary.

After the end-of-frame signal, the frame
wrapper sends two additional 32-bit words.
These 8 octets represent the AAL5 trailer and
include some additional information, which
helps the wrapper recreate the length and
CRC fields. It is essential that applications
copy and forward these two additional words,
even if they do not inspect or modify them.
To achieve the desired modularity of our sys-
tem, the frame processor is not (and in fact
should not be) aware of the modifications car-
ried out at higher processing layers. We there-
fore were unable to improve the efficiency of
the CRC calculation by applying techniques
we developed earlier for fast incremental CRC
updates in IP over ATM networks.13

IP packet wrapper
IP processing is a critical feature of the

wrappers. IP dictates packet formatting on the
Internet. Subprotocols, such as UDP or trans-
mission-control protocol (TCP), send con-
nectionless datagrams or establish reliable
connections by inserting their own payloads
into IP packets. The Applied Research Lab at
Washington University in St. Louis developed
an IP processor to support IP-based applica-
tions. Our IP processor inherits the signaling
interface from the frame processor, and adds
a start-of-payload signal, to indicate the pay-
load coming after the IP header, which can be
of variable length. This wrapper serves three
purposes:

• Checks the IP header integrity to verify
the correctness of the header checksum.
Corrupted packets are dropped.

• Decrements the time-to-live (TTL) field.
With RFC 1812,14 all IP processing enti-
ties must decrement this field. Once this
field reaches zero, packet forwarding
should stop. This prevents packets from
looping in networks owing to miscon-
figured routers.

6

PROTOCOL WRAPPERS

IEEE MICRO

Padding LengthOptions

ATM
adaptation

layer 5
trailer

ATM
adaptation

layer 5
payload

ATM cell
payload

Cyclic
redundancy

code-32

0
ATM header

0

1

Figure 5. ATM adaptation layer 5 frame segmentation.

• Recomputes the length and the header
checksum on outgoing IP packets.

An IP header usually has a length of 20
bytes, or 5 words, but can be longer in the rare
case that it contains IP options. Before the IP
processor can make a decision about a head-
er’s integrity, the entire header must pass
through the wrapper. The IP processor com-
putes and then compares the header check-
sum. On a failure, the IP packet is dropped; a
signal is not propagated to the application. If
an incoming packet’s TTL field is already zero,
the IP processor also drops the packet and
instead returns an Internet control message
protocol (ICMP) error packet. Otherwise, the
TTL field is decremented. Buffering the out-
going IP packets allows the IP processor to
determine the actual length by counting the
words received from higher protocol layers.
The IP processor sets the corresponding field
in the header and recomputes the header
checksum accordingly. Therefore, a whole
packet must be buffered before it is sent.

Because the IP wrapper needs to buffer out-
going packets anyway, it provides a buffer
update service to higher layers, freeing them
from buffering the packet themselves. After an
IP packet has been completely received and
buffered, but before it is forwarded to the high-
er-layer wrapper, the IP processor can apply
changes to the packet payload for fields—such
as in a header—set when the packet originally
streamed through the hardware. We have
extended the interwrapper protocol for IP
applications to support this update feature.
Update commands are optional and the IP
processor inserts them between the last payload
word (when it asserts the end-of-frame signal)
and the AAL5 trailer. Our approach uses an
unused bit (bit 15) in the AAL5 length to indi-
cate update words or the start of the trailer. We

also use the length field to hold an error code
to enable packet dropping before it is sent.
Recall that the frame processor recomputes the
word count of the payload by monitoring the
DataEn signal. Therefore only the least signif-
icant two bits can ever be nonzero in a correct
length field, indicating the number of bytes
valid in the last word. Update words contain a
16-bit update field and a 15-bit update offset
address. The update field replaces the 16-bit
word at the offset address in the buffer.

UDP datagram wrapper
The UDP processor supports connection-

less communication between user level appli-
cations using the UDP/IP protocol, sitting on
top of IP. This wrapper computes and gener-
ates the UDP checksum and the length field
in the header for outgoing datagrams. The
wrapper checks the checksum on incoming
datagrams as well, but the result is only avail-
able after the whole packet has passed through
the wrapper. The UDP processor uses similar
signals as the IP processor. It replaces the start-
of-payload signal with the start-of-datagram
signal. Applications can simply process data-
grams or even generate new ones without
interpreting or generating UDP headers.

Buffering the whole packet is necessary
before the UDP wrapper can determine the
correct checksum for outgoing datagrams.
Instead of buffering again, it takes advantage
of the IP processor’s buffer update feature
described previously; this saves memory and
other on-chip resources.

Implementation results
We have synthesized wrappers to operate

on the RAD FPGA on the FPX. The RAD is
a Xilinx Virtex XCV1000E-7 and the FPX
system clock is 100 MHz. Table 1 summarizes
the results of our framework. The table’s space

7JANUARY–FEBRUARY 2002

Table 1. Wrapper implementation results.

Wrapper Space Speed Delay (short) Delay (long) Throughput (short) Throughput (long)

processor Lookup tables Relative (%) (MHz) In Out In Out Relative (%) Gbps Relative (%) Gbps

Cell 781 3 125 4 6 4 6 100 3.5 100 3.5
Frame 1,251 5 116 21 22 10 31 84 2.7 93 3.0
IP 1,009 4 109 36 39* 24 197* 84 2.6 93 2.9
UDP 550 2 114 39 44* 27 202* 84 2.6 93 2.9

*Depending on packet size.

column gives the number of lookup tables
used to implement each function and the rel-
ative fraction of the chip required to hold the
logic. The speed column specifies the maxi-
mum frequency of each synthesized wrapper.
The delay columns show delays in clock cycles
of data passing through the wrappers and are
split into delays before (in) and after (out) an
embedded application.

To measure delays, we sent ATM cells back-
to-back, containing UDP packets. We used
UDP packets with only one word (short) and
packets with 512 bytes of payload (long). The
short datagrams fit into a single cell and there-
fore have the highest relative protocol over-
head—representing the worst-case scenario.
The longer datagrams represent a common size,
giving an average delay. Note that the delays
marked with an asterisk in the table depend on
IP packet length, because the IP wrapper per-
forms a store-and-forward operation.

Table 1’s throughput columns show the the-
oretical relative and absolute maximum
throughput in gigabits per second for each
wrapper and for both the short and the long
UDP packets.

Wrapper example applications
Researchers and graduate networking class-

es have used the layered protocol library to
implement several applications, including
encryption, compression, routing, and active
processing functions with low overhead in
reprogrammable hardware. For each of these
applications, the protocol wrapper library
processed UDP, IP, AAL5, and ATM headers,
whereas, the remaining gates on the FPGA
processed packet payloads.15 Several applica-
tion level payload-processing modules have
been implemented. An implemented run
length encoder shortened the length of pay-
loads containing repeated bytes. The circuit
replaces runs of repeating bytes with a single
byte and a count indicating the length of that
run. A corresponding run length decoder
restored the content to the original value for
use on the remote side of the connection. A
simple encryption circuit was also imple-
mented to scramble the data in each byte in
the payload. For all of these circuits, through-
put exceeded 2.4 Gbps for all packet sizes
using the Virtex XCV1000E-7 FPGA on the
FPX. The high throughput for large packets

results from performing parallel computation
on the FPGA using multiple instances of
hardware components. The high throughput
for small packets is a result of the protocol
library’s low overhead.

An IP lookup engine has been implement-
ed on top of the IP wrapper to route IP pack-
ets.16 The router runs at the 2.4 Gbps rate of
the line card (Sonet OC-48), that is, it handles
6.25 million IP packets per second. The cir-
cuit, including the necessary wrappers, occu-
pies only 17 percent of the chip space.

A pair of tunnel modules has been imple-
mented to transport IPv6 packets through an
IPv4 network.17 These modules reside in FPX
devices at remote ends of a network. The
source module packages IPv6 packets into
IPv4 packets then tunnels them into an IPv4
network. The destination module extracts the
original IPv6 packets and transmits them on
the remote network. Both modules accept
control cells to configure the tunnels and spec-
ify the destination IPv4 address and IPv6 net-
work address mask. The circuit is compatible
with RFC 1933 and achieved a throughput
of 2.5 gigabits per second.

In addition to these data intensive process-
ing applications, an active processing module
has been implemented on the FPX that
included the protocol wrapper library and a
soft-core processor called the constant (k)
coded programmable state machine
(KCPSM) from Xilinx.18 This FPX KCPSM
module implementation showed that proces-
sor program memory could be dynamically
reprogrammed over the Internet via a single
UDP datagram. Once a new program loads
into the module, the processor swaps context
and implements a new processing function on
the payload of the subsequent data packets.
The layered protocol library made processor
cycles available exclusively to the application,
sparing them from the overhead of process-
ing protocol functions.

Although we created our current imple-
mentation for use in the FPX, the frame-

work is very general and easily adaptable to
other platforms. Developers of networking
hardware components can use our framework.
The entire IP processing framework only uses
14 percent of the RAD FPGA on the FPX,
leaving sufficient space to implement user-

8

PROTOCOL WRAPPERS

IEEE MICRO

defined logic. Many students have imple-
mented simpler functions as part of their
coursework, indicating that the framework is
easy to use. MICRO

Acknowledgment
This research was supported in part by NSF

ANI-0096052 and Xilinx and was conduct-
ed while all of the authors were based at Wash-
ington University in St. Louis.

References
1. J.W. Lockwood, “An Open Platform for

Development of Network Processing
Modules in Reprogrammable Hardware,”
Proc. Int’l Engineering Consortium
DesignCon (IEC DesignCon 01), 2001, p.
WB-19; http://www.designcon.com/2001/
(current Dec. 2001).

2. T. Chaney et al., Design of a Gigabit ATM
Switch, tech report WU-CS-96-07, Applied
Research Laboratory, Washington Univ. in
St. Louis, 1996.

3. W.N. Eatherton and T. Aramaki, SPC
Specification, working note ARL-WN-98-01,
Applied Research Laboratory, Washington
Univ. in St. Louis, 1998; http://www.arl.wustl.
edu/arl/TechRpts/wn/ps/spcspec.ps (current
Dec. 2001).

4. Z. Dittia, G. Parulkar, and J. Cox Jr., “The
APIC Approach to High Performance
Network Interface Design: Protected DMA
and Other Techniques,” Proc. IEEE Infocom,
IEEE CS Press, Los Alamitos, Calif., 1997,
pp. 179-187.

5. J.W. Lockwood, J.S. Turner, and D.E. Taylor,
“Field Programmable Port Extender (FPX)
for Distributed Routing and Queuing,” Proc.
ACM Int’l Symp. Field Programmable Gate
Arrays (FPGA), ACM Press, New York, 2000,
pp. 137-144.

6. J.W. Lockwood et al., “Reprogrammable
Network Packet Processing on the Field
Programmable Port Extender (FPX),” Proc.
ACM Int’l Symp. Field-Programmable Gate
Arrays (FPGA), ACM Press, New York, 2001,
pp. 87-93.

7. P. Newman et al., IETF RFC 1954,
Transmission of Flow Labeled IPv4 on ATM
Data Links, Internet Engineering Task Force,
May 1996; www.ietf.org/rfc (current Dec.
2001).

8. D.E Taylor, J.W. Lockwood, and S.

Dharmapurikar, Generalized RAD Module
Interface Specification on the Field
Programmable Port Extender (FPX), tech.
report WU-CS-TM-01-15, Computer Science
Dept., Washington Univ. in St. Louis, 2001;
http://www.arl.wustl.edu/~det3/fpx_module
_interface.pdf (current Dec. 2001).

9. H. Fallside and M.J.S. Smith, “Internet
Connected FPGAs,” Proc. 10th Int’l Conf. on
Field Programmable Logic and Applications
(FPL), Springer Verlag, Heidelberg, Germany,
2000, pp. 48-57.

10. E.A. Arnould et al., “The Design of Nectar:
A Network Backplane for Heterogeneous
Multicomputers,” Proc. 3rd Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS-III), ACM Press, New York, 1989,
pp. 205-216.

11. M. Zitterbart et al., “HeaRT: High Perfor-
mance Routing Table Look Up,” Proc. IEEE
High-Performance Computing Symp. (HPCS),
IEEE CS Press, Los Alamitos, Calif., 1997.

12. Recommendation I.363, B-ISDN ATM
Adaptational Layer AAL Specification, Int’l
Telecommunications Union, Geneva, 1991.

13. F. Braun and M. Waldvogel, “Fast Incremen-
tal CRC Updates for IP Over ATM Networks,”
Proc. IEEE Workshop High Performance
Switching and Routing, IEEE CS Press, Los
Alamitos, Calif., 2001, pp. 48-52.

14. Requirements for IP version 4 routers, IETF
RFC 1812, Internet Eng. Task Force, June,
1995; www.ietf.org/rfc/rfc1812.txt (current
Jan. 2002).

15. J.W. Lockwood, “Platform and Methodolo-
gy for Teaching Design of Hardware Mod-
ules in Internet Routers and Firewalls,” Proc.
Int’l Conf. Microelectronic System Educa-
tion (MSE), IEEE CS Press, Los Alamitos,
Calif., 2001, pp. 56-57.

16. F. Braun, J. Lockwood, and M. Waldvogel,
“Reconfigurable Router Modules Using
Network Protocol Wrappers,” Proc. Field-
Programmable Logic and Applications (FPL),
Springer Verlag, Heidelberg, Germany, 2001,
pp 254-263.

17. J. Moscola, D. Lim, and A. Tetley, IPv6
Tunneling Over an IPv4 Network,
Washington University. in St. Louis, 2001,
http://www.arl.wustl.edu/~lockwood/class/c
s535/project/tunnel/IPv4Tunnel.pdf (Current
15 Jan. 2002).

9JANUARY–FEBRUARY 2002

18. H. Fu and J.W. Lockwood, The FPX KCPSM
Module: An Embedded, Reconfigurable
Processing Module for the Field
Programmable Port Extender (FPX), tech.
report WUCS-01-14, Computer Science
Dept., Washington Univ. in St. Louis, 2001.

Florian Braun is working toward the Diplom
(MS) from the University of Stuttgart, Ger-
many. His research interests include high-
speed networking, reprogrammable hardware,
and mobile communications. Braun has a
Vordiplom (BSc) in computer engineering
from the University of Stuttgart, Germany.
He worked on reconfigurable networking
hardware from 2000 to 2001 as an exchange
student at Washington University in St. Louis.

John Lockwood is an assistant professor at
Washington University in St. Louis. His research
interests include the design of reconfigurable
networking hardware systems. Lockwood has a
BS, MS, and PhD in electrical engineering from
the University of Illinois at Urbana/Champaign.
He is a member of the IEEE, the ACM, Tau
Beta Pi, and Eta Kappa Nu.

Marcel Waldvogel is a research staff member
at IBM Zurich Research Laboratory. His
research interests include high-speed net-
working and data dissemination efficiency.
Waldvogel has a PhD in electrical engineer-
ing and a Dipl.-Ing. in computer science from
the Swiss Federal Institute of Technology
(ETH), Zurich. He is a senior member of the
IEEE and a member of the ACM.

Direct questions and comments about this
article to John Lockwood, Applied Research
Laboratory, Department of Computer Sci-
ence, Washington University, Campus Box
1045, 1 Brookings Drive, St. Louis, MO
63130; lockwood@arl.wustl.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

10

PROTOCOL WRAPPERS

IEEE MICRO

