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Abstract—Wepresenta newalgorithm and framework for
dynamic routing of bandwidth guaranteedflows. The prob-
lem is motivated by the need to dynamically set up band-
width guaranteedpaths in carrier and ISP networks. Tra-
ditional routing algorithms such as minimum hop routing
or widest path routing do not take advantageof any knowl-
edgeabout the traffic distrib ution or ingress-egresspairs,
and thereforecanoften lead to severenetwork underutiliza-
tion. Our work is inspired by the recentlyproposed“mini-
mum interfer encerouting” algorithm (MIRA) of Kodialam
and Lakshman, but it impr oves on their approach in sev-
eral ways. Our main idea is to usea “traffic profile” of the
network, obtained by measurementsor service level agree-
ments(SLAs), asa rough predictor of the futur e traffic dis-
trib ution. We usethis profile to solve a multicommoditynet-
work flow problem, whoseoutput is usedboth to guide our
onlinepath selectionalgorithm aswell as imposeadmission
control. The offline multicommodity solution seemsvery ef-
fective at distrib uting the routes and avoiding bottlenecks
around hot spots. In particular , our algorithm can antic-
ipate a flow’s blocking effect on groups of ingress-egress
pairs, while MIRA only considersoneingress-egresspair at
a time. Our simulation resultsshow that the new algorithm
outperforms shortest path, widest path, and minimum in-
terferencerouting algorithms on several metrics, including
the fraction of requestsroutedand the fraction of requested
bandwidth routed. Finally, the framework is quite general
and can be extendedin numerous ways to accommodatea
variety of traffic managementpriorities in the network.

I . INTRODUCTION

Wepresentanew algorithmandframework for dynamic
routing of bandwidthguaranteedflows. Our algorithmis
online, meaningthatit routesrequestsoneat a time,with-
out specificknowledgeof futuredemands.We usequasi-
static informationaboutthe network and traffic to select
pathssoasto minimizethenumberof requeststhatarere-
jectedor thenetwork bandwidththatis wasted.Clearly, if
�
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noassumptionsaremadeabouttheflow requests,apatho-
logically chosensetof requestscanfoil any online algo-
rithm. We make minimal assumptionsthat arejustifiable
in practiceandleadto significantimprovementin network
utilization. In particular, we assumethat the ingressand
egressnodesin the network are known, and that a traf-
fic profile betweenpairs of ingress-egressnodesis also
known. The traffic profile betweeningress-egressnode
pairscanbeeithermeasuredor inferredfrom servicelevel
agreements(SLAs). Our algorithmusesthis quasi-static
informationin apreprocessingstep(onemulti-commodity
flow computation),to determinecertainbandwidthallo-
cationson the links of the network. The online phase
of theroutingalgorithmthenroutestunnelrequestsusing
a “shortestpath” (SPF)like algorithmbut with the addi-
tional informationgivenby thepreprocessingphase. The
multi-commodity preprocessingphaseallows the online
algorithmto exerciseadmissioncontrol by rejectingsome
requestsbecauseof theirblockingeffectsin thenetwork.

The motivation for our problemarisesfrom the needs
of serviceproviderswho mustdynamicallyreserve band-
width guaranteedroutesin carrierandISPnetworks. Fol-
lowing KodialamandLakshman[8], we will describeour
algorithmsin the context of setting up paths in Multi-
ProtocolLabelSwitched(MPLS) networks,althoughour
algorithmsareapplicablein othercontexts aswell. MPLS
networks[10] allow explicit routingof packetsby putting
labelson them,which canthenbe usedto forward pack-
etsalongspecificLabel SwitchedPaths(LSPs). Service
providers can perform this encapsulationat the ingress
routers,and then useLSPsto implementVirtual Private
Networks (VPNs) [6] or satisfy other quality of service
(QoS) agreementswith clients. At the ingressrouters,
packet classification[9], [11], [12] can be usedto map
packets into “forwarding equivalenceclasses”by exam-
ining packet headers. This aggregation (mapping into
equivalenceclasses)also has the potential advantageof
smoothingout the bandwidthrequirementacrossmany
bursty streams.In addition,theserviceproviderscanuse
a measurement-basedmechanismto build a traffic profile
for an ingress-egressnodepair. Sucha profile canbe as
simpleasanaveragebandwidthrequirementoveracertain
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time period.
A Label SwitchedPath requiresset up, meaningthat

all theintermediateroutersbetweentheingressandegress
nodesare specified. The path is set up using a signal-
ing protocol suchas RSVP [3] or LDP (Label Distribu-
tion Protocol[1]). Theability to specifyexplicit pathsfor
any flow gives the serviceprovidersan importanttool to
engineerhow their traffic is routed,andtherebyimprove
the network utilization, by minimizing the numberof re-
queststhat arerejectedwhenthe network becomesover-
loaded.Currentintra-domainroutingschemes,which for-
ward packets basedon destinationaddressonly, do not
take into accountwhatotherflows arecurrently, or likely
to be, requested.Thus, their routing behavior is highly
myopic—they will reject a flow when the default short-
est path route becomecongested,even if an alternative
path is available. The algorithmslike widest path rout-
ing alsosuffer from similar problems.We thereforeneed
betterschemesfor routing flow requeststhat take better
advantageof the network infrastructure,network topol-
ogy, andtraffic distribution. We show that this problemis
NP-Completeevenin highly simplifiedform, but propose
a novel multi-commoditybasedframework, which elimi-
natesmany of the shortcomingsof shortestpath routing,
widestpathrouting,andevenminimuminterferencerout-
ing.

While we presentour algorithmin thecontext of band-
width guarantees,it can also perform routing basedon
otherQoSmetricssuchasdelay, lossetc. As pointedout
by KodialamandLakshman[8], if additionalconstraints,
suchasdelayor loss,areto beincorporatedinto SLAs,one
candosoeffectively by convertingthoserequirementsinto
abandwidthrequirement.

Our framework is quitegeneral,andit canbeextended
andgeneralizedin multiplewaysto handleadditionalmet-
rics andrequirements.In particular, themulti-commodity
flow formulationpermitsa costfunction,which we mini-
mizeto achieve optimal routing. In orderto minimizethe
numberrejectedrequests,we usethe simple linear cost
function. A variety of non-linear cost functionscan be
usedto handlefeatureslike minimumguaranteedband-
width or fairnessacrossmultiple flows.

I I . ROUTING REQUIREMENTS

In this section,we briefly discusstherequirementsthat
a flow routingalgorithmmustsatisfy. KodialamandLak-
shman[8] give a detailedlist of tenimportantcriteriathat
adynamicpathselectionalgorithmmustmeet.Wediscuss
only themostimportantrequirementshere.� [Routingwithout splitting flows] It is assumedthat the
flow shouldbe routedon a singlepath,without splitting.

Many flow requestsmay involve traffic that is inherently
unsplittable(circuit emulationor voice), and thereforeit
is important to route them on single paths. Thus, for
eachflow request,thealgorithmmustfind a pathwith de-
siredamountof bandwidthbetweentheingressandegress
nodes,or determinethattheflow is unroutable.� [Onlinerouting] Weassumethattheindividual flow set-
up requestsarrive online,oneat a time, andthealgorithm
mustprocesseachrequestwithout having to know thefu-
turerequests.In network provisioninganddesignphase,it
is customaryto assumethatexactpoint-to-pointdemands
areknown. But that assumptionis highly impracticalfor
theMPLS tunnelsetup problem. While we make useof
the quasi-staticinformation suchas traffic profile in our
algorithm, thoseprofiles areusedonly as a roughguide
for theaggregatedemands.Furthermore,our routingalgo-
rithm is completelyonline—itdoesnotneedto know any-
thing aboutindividual requests,their bandwidthrequire-
ments,or their time of arrival. Of course,if theactualde-
mandsin aggregatedeviatesignificantlyfrom theassumed
profile, theperformanceimprovementachievedby our al-
gorithm may degrade,but that is to be expectedfor any
onlinealgorithm.� [Computationalrequirement] Wewantthepathselection
algorithmto bequitefastandscalable.Individualflow set-
uprequestsaretypically processedattheingressroutersor
switches,whichoperateatveryhigh loadandhave limited
computingpower. Thus, the computationalrequirement
per flow setuprequestmust be kept as low as possible.
In this regard,our algorithm is just asefficient andsim-
ple astheshortestpathalgorithm,andsubstantiallyfaster
thanKodialam-Lakshmanalgorithm. The expensive part
of our algorithmis thepreprocessingphase,which is run
very infrequentlyand offline, only when the quasi-static
informationchanges.The online algorithmrunsa single
breadth-firstsearchalgorithm,which is several orders of
magnitudefaster thanthemaxflow computationsneeded
by MIRA [8].� [Policy constraints] A good path selectionalgorithm
shouldbeableto incorporateadditionalpolicy constraints.
For example,aservicelevel agreementmayrequireavoid-
ing links with certainlossrate. Similarly, SLAs may re-
quire a minimum flow acceptanceguarantee;for exam-
ple, over a periodof onehour, flows with total bandwidth
at least100 Mbps must be accepted.In SectionIX, we
describemechanismsto implementpolicy constraintsinto
theframework.� [Traffic profile] Our algorithm usesinformation about
“expected”flows betweensomeingress-egressnodes.We
explain theexactform of this informationlater, but briefly
speakingour belief is that yesterday’s traffic betweenan
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ingress-egresspair can serve as a good predictor for to-
day’s traffic. This shouldbeespeciallytruein light of fact
that serviceprovidersaggregatea large numberof flows,
using forwarding equivalence classes,for the ingress-
egresspairs. Serviceproviderscanhave multiple classes
per ingress-egresspair, andkeepseparateprofilesfor var-
ious classes. Theseprofiles can be either measurement
based,or they can be inferred from servicelevel agree-
ments.� Finally, like shortestpath routing, our algorithm also
usesonly the link-stateinformation and, like the widest
pathroutingalgorithm,it usessomeauxiliary capacityin-
formation.In ordertokeepthepresentationsimple,Wede-
scribeouralgorithmfor thecentralizedrouteserve model,
thoughit canalsobeimplementedin thedistributedmode.

I I I . REVIEW OF EXISTING ALGORITHMS

The most commonlyusedalgorithm for routing LSPs
is the shortestpath routing. In the shortestpathrouting,
the path with the leastnumberof links betweeningress
andegressnodesis chosen.The routing algorithmkeeps
track of the currentresidualcapacity for eachlink, and
only thoselinks that have sufficient residualcapacityfor
thenew flow areconsidered.Theshortestpathalgorithm
is very simple,but it canalsocreatebottlenecksfor future
flows, andleadto severenetwork under-utilization. (See
examplesin SectionV.) Our new proposedalgorithmis
justasefficientandfastastheshortestpathalgorithm(dur-
ing the pathselectionphase),but by usingadditionalin-
formationaboutthenetwork andtraffic in apreprocessing
phase,we cansignificantlyreducethenumberof requests
thatmightberejecteddueto inappropriaterouteselection.
Insteadof a full-fledgedshortestpathalgorithmthat has
to dealwith weights,whichhaveundergoneheavy manual
tuningby thenetwork operatorsto achieve just thedesired
traffic distribution, our algorithmcouldeven usethesim-
pler “minimum hop” algorithm(which is just a breadth-
first search)to selecta pathin theonlinephase,thanksto
thepowerful preprocessing).

Guerinet al [7] proposea variantof the shortestpath
algorithm,calledwidestshortestpath(WSP),wherethey
choosea feasibleshortestpath path that has the largest
residualcapacity—inotherwords,thesmallestlink resid-
ualcapacityalongthepathis maximized.While WSPcer-
tainly improves on the shortestpath routing, it also has
a myopic behavior—since the algorithm doesnot make
useof theingress-egresspairsor thetraffic characteristics,
it cancreatebottlenecks.More significantly, neitherthe
shortestpathnorthewidestshortestpathroutingalgorithm
imposeany form of admissioncontrol. Thus,thesealgo-
rithmswill alwaysaccepta flow if thereis a feasiblepath

in thenetwork, evenif acceptingthatflow hasthepotential
to block off a large numberof future flows. Theexample
in Figure2 dramaticallyillustratestheeffect of admission
control—withoutadmissioncontrol,onecanforceany on-
line algorithmto achievecloseto zeronetwork utilization!

The work mostcloselyrelatedto ours,and indeedthe
basisfor our work, is the “minimum interferencerout-
ing algorithm” (MIRA) of Kodialamand Lakshman[8].
MIRA is quite a bit more sophisticatedalgorithm than
either shortestpath or WSP, and it takes critical advan-
tageof ingress-egresspairs. The basicobservation in [8]
is that routing a flow alonga path can reducethe maxi-
mumpermissibleflow betweensomeotheringress-egress
pairs. They call this phenomenon“interference.” Their
thesisis thatif pathsthatreducealargeamountof possible
max-flow betweenotheringress-egresspairsareavoided,
creationof bottleneckscanalsobe avoided. Their algo-
rithm performsmultiple max-flow computationsto deter-
minethepathof leastinterference.

The ideaof minimizing interferenceis a goodone,but
we believe it hasseveral limitations. First and foremost
is the observation that MIRA focusesexclusively on the
interferenceeffect on singleingress-egresspairs. It is not
able to estimatethe bottleneckcreatedon links that are
critical for clusters of nodes.(Seeexamplesin SectionV.)
Second,MIRA considerssimply thereductionin themax-
imum flow betweena pair, without regardto theexpected
bandwidthbetweenthatpair. Thus,MIRA might rejecta
flow requesteven thoughthe network retainedsufficient
residualbandwidthto routetheflow betweentheaffected
pair. Finally, MIRA is computationallyvery expensive.
While shortestpath,widestshortestpath,andournew pro-
posedalgorithm all perform a single shortestpath com-
putationto routea request,MIRA performshundredsof
maximumflow computations, eachof which is severalor-
dersof magnitudemoreexpensive thanthe shortestpath
calculation.

IV. PROBLEM STATEMENT

Wemodelthenetwork asagraph �	�	
���
���� , where�
is thesetof routersand � is thesetof links. Thecurrent
residualcapacityof a link ����� is denoted������
���� —this
is theadditionalbandwidththatcanberoutedon link � . A
subsetof routersareassumedto beingress-egressrouters,
betweenwhich labelswitchedpaths(LSPs)canbesetup.
We assumethat the ingress-egresspairs are known, and
that this information is quasi-static,meaningit changes
veryinfrequently. An exampleis shown in Figure1,which
is borrowed from Kodialam-Lakshman[8]. We call this
network theKL-graph,andit isoneof theseveralnetworks
on whichwereportour simulationresults.
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Fig. 1. An examplenetwork, showing ingress-egressnodes.
This network borrowedfrom [8] is referredto asKL-graph
in ourpaper.

A requestfor an LSP setupis definedby a quadruple

-,/.0
�1/23
�.�23
�4323� , where,/. is therequestID, 1/2 is the ingress
(source)router, . 2 is the egress(destination)router, and
4 2 is thebandwidthrequestedfor theLSP. (Thereasonfor
having a separate,/. for eachrequestis that therecanbe
multiple requestfor thesame
�1 2 
�. 2 � pair.) As mentioned
earlier, all QoSrequirementsfor the flow areassumedto
have beenfolded into the bandwidth 4 2 . Given a request

-,/.0
�1/23
�.�23
�4323� , thealgorithmcaneitheracceptit, in which
caseit mustfind a pathin thenetwork from 1 2 to . 2 along
which eachlink hasresidualcapacityat least 4 2 , or theal-
gorithmmayrejecttherequest.Theadmissioncontrolfea-
ture allows our algorithmto rejecta requesteven if there
is a feasiblepath—thismayhappenif thealgorithmdeter-
minesthat acceptingthis requestmay createa significant
bottleneckfor future requests(basedon its knowledgeof
the ingress-egresspairsand their traffic profile). We as-
sumethat all LSP setup requestsarrive online, oneat a
time, andthealgorithmdoesnot know anything aboutin-
dividual futurerequests,their bandwidthrequirements,or
their timeof arrival.

The traffic profile information usedby our algorithm
recordstheexpectedflow betweenpairsof ingress-egress
routers,andrepresentsan aggregateddemandprofile be-
tweeningress-egresspairs. Suchinformation can be ei-
thermeasurement-basedor it canbecalculatedfrom SLAs
that have been enteredby a service provider with its
clients.Eachtraffic profile is alsodefinedby a quadruple:

���56�0171980:;
�1 2 
�. 2 
�< 2 � , where �=56�>19178?: is the traffic class,
1 2 
�. 2 arethe ingressandegressnodes,and < 2 is the ag-
gregatetraffic to beexpectedfor this classbetween1 2 and
. 2 . Betweenthe same 1 2 , . 2 pair, therecan be multiple
traffic classes(correspondingto differentservicetypesof-

feredby theprovider). EachLSPrequestcanbemappedto
a uniquetraffic profile class.(Conversely, a traffic profile
classactsasan aggregateproxy for all the LSP requests
mappedto it.)

The traffic profile is a rough indicationof the amount
of traffic thatcanbeexpectedbetweena pair; theLSPset
up requestsequencehowever arrivesonline.A convenient
wayto think aboutthis is thattotalsumof all LSPrequests
between1=2 and .�2 for theclass, is a randomvariablewith
mean< 2 . But thetimeof arrival of individual requestsand
their bandwidthrequirementsare entirely unpredictable.
Thus,asfor asour routingalgorithmis concerned,there-
questsequenceis completelyonline.

For simplicity, we assumethere is a route server that
knows thecurrentnetwork topologyandavailablelink ca-
pacities.Insteadof dedicatingasinglemachineto perform
routecomputations,this job could alsobe sharedamong
all ingressnodeswithoutchangesto theframework.

V. EXAMPLES ILLUSTRATING L IMITATIONS OF

EXISTING ROUTING ALGORITHMS

In thissection,weinformally describetheshortcomings
of existing routingalgorithmsusingsomesimpleillustra-
tive examples.Our basicthemeis thatalgorithmsthatdo
not adaptto the traffic distribution in thenetwork (taking
advantageof ingress-egresspairsandsomeroughestimate
of the traffic flow betweenpairs)will alwaysleadto sub-
optimal network utilization, which canbe quite severein
somecases.In particular, the routing by algorithmslike
shortestpathandWSPthatdo not imposeany form of ad-
missioncontrolcanoccasionallyleadto significantbottle-
necks.Simplyhaving moreinformationaboutthenetwork
or traffic doesnot guaranteebetterrouting. Our proposed
framework assumesminimal information about the net-
work andtraffic, which we believe canbeeasilyobtained.
Ouralgorithm,thoughassimpleandcomputationallyeffi-
cientasshortestpath,leadsto fewer rejectedrequestsand
betternetwork utilization.

Weusethreesimpleexamplesto illustratetheshortcom-
ingsof existing routingalgorithms.In orderto drivehome
thepoint,theseexamplesarenecessarilyartificial looking,
but their generalform is not at all unusual. In fact, real
networksarequitelikely to containssubgraphsresembling
theconcentrator or thedistributor example. Theparking
lot topologyis commonaswell, but alsodependson the
selectionof ingress-egresspairs.Sincepairselectionis of-
tenoutsidetheinfluenceof theISP, theoccurrenceof this
pathologicalcaseis likely to appearin therealworld.� [Parking Lot ] Figure 2 shows a simple network with@=ACBD@

nodes. The ingress-egresspairs for the LSP set
up requestsare 
�EGFH
�:IFH��
�
�EKJ�
�:LJ���
�M�M�M�
�
�EONP
�:QNP� , andthe
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bandwidthrequestedfor eachLSPis 1. All link capacities
in thenetwork areeither1 or R BTS , asshown.

1 1+ε 1

1 1 1 1

1111

S1 S2 S3 Sn

D1 D2 Dn-1 Dn

1+ε 1+ε
S0 D0

Fig. 2. Theparking lot topologyPL.

Supposetheonlinesequenceof LSPrequestsarrive in the
order 
�EGFH
�:IFH��
�
�EUJ�
�:LJ���
�M�M�M9
�
�EONV
�:QN�� . Acceptingthere-
quest 
�EGFH
�:IFH� completelychokes off the networks—no
otherLSPrequestcanbesatisfied.However, sinceneither
theshortestpathnor WSPrejectsflow requestsif thereis
a feasiblepath,they will accept
�EGFW
�:IFH� , resultingin the
total network utilization of 1. An optimal algorithmwill
reject 
�EGFW
�:IFH� , and will accept 
�EUJ�
�:LJ���
�M�M�M9
�
�EONV
�:QN�� ,
for a totalnetwork utilization of

A
.

Thechoiceof capacityR B�S for thelinks alongthespineof
theparkinglot alsofoils MIRA—sincetheselinks arenot
in themin cut for any 
�E 2 
�: 2 � pair, andarenotconsidered
critical. Thus,MIRA alsoacceptsthe first flow request,
andendsuprejectingall otherrequests.
Although the links are drawn as directed,path selection
andblockingbehavior would remainthesamefor bidirec-
tional links. In the following two examples,someof the
links needto beunidirectional.Eventhoughunidirectional
links are rare (i.e., satellitedownlinks and downstream-
only cable modeminstallations),unidirectionalremain-
ing capacityis quite common. Due to asymmetriclinks
or loads,the remainingcapacityin the oppositedirection
couldbecometoosmallto beuseful.� [Concentrator] Figure 3 shows a network, which we
call a concentrator graph—one node X actsas a feeder
for
A

ingressnodesEUJ=
�M�M�M�
�EON . Theconcentratornode X
is connectedto a high capacitylink, fat pipe, of capacityAYB R , whoseotherendpointis aegressnode : . Onehigh
bandwidthingressEGF is alsoconnectedto theconcentrator,
throughacapacity

A
link. E F is alsoconnectedto : via an

alternative 3-hoppath,of capacity
A

.
In this example,anonlinesequenceof

AZB R requestsar-
rive 
�EGFW
�:;� , 
�EUJ�
�:[��
�M�M�M�
�
�EVNP
�:[� . The first requesthas
bandwidthrequirement

A
, while all othershavebandwidth

requirement1. Usingeithertheshortestpathor theWSP,
onewould routethefirst requestthroughtheconcentrator
node(using2 hops).This leavesresidualcapacity1 along
the link X�: , andso of the remaining

A
requestsat most

onecanbesatisfied.
This examplealsoillustratestheshortcomingof MIRA—

S0

S1

Sn

n n

nn

n+1
1

1
D

C

Fig. 3. TheconcentratortopologyCN.

the fat link X�: is not in the minimum cut for any in-
dividual ingress-egresspair. Thus saturatingit doesn’t
seemharmfulto MIRA. So,theMIRA algorithmwill also
chooseincorrectpathsin this scenario.Theoptimalalgo-
rithm will routethe 
�E F 
�:[� requestalongthetop alterna-
tivepath,andusethefat link to routethe

A
1-unit requests

from E 2 to : .� [Distributor ] While theprecedingexampleshows why
it may be a goodideato not usethe fat pipe sometimes,
ournext exampleshows thattheconverseis alsotrue.

S0

S1

Sn

1

1

n

1 1

n

D

n

1+ε

1+ε

Fig. 4. Thedistributor topologyDS.

In thisexample,weget
A

requestsbetweenEOF and : , each
of bandwidth1. In addition,we also get

A
requestsbe-

tweeneach E 2 and : , also of bandwidth1. Again, the
shortestpathalgorithms(shortestpathandWSP)will use
thetwo-hoppaths,for eachof thefirst

A
requests,choking

off the R B\S links. Thus,eachof theremaining
A

requests
betweenE 2 and : are rejected. The routesselectedby
MIRA arealsothesame,sincethelinks of capacityR BZS
arenot in theminimumcut for any EO2]
�: pair. By contrast,
the optimal algorithmwill routeall the requestsfrom EGF
alongthe bottomfat path(3 hops),leaving the top 2-hop
pathsfor E 2 to : requests.

The precedingexamplesaremeantto illustratehow a
badpathselectionfor oneflow cancreatesignificantbot-
tlenecksfor futureflows. An onlineroutingalgorithmthat
doesnot have any additionalinformationaboutthe flows
canperformquitepoorly in theworstcase.As theparking
lot exampleshows, in somecasesthesealgorithmscannot
guaranteethat even RW^ of the network bandwidthis uti-
lized, whereastheoptimalalgorithmachieves RW_W_W^ . We
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build onthework by KodialamandLakshman[8] andpro-
poseanew algorithmaswell asgeneralframework, where
we exploit informationaboutthe ingress-egressnodesas
well asameasured(or estimated)traffic profile to perform
bothpathselectionandadmissioncontrol. Our algorithm
is both simplerthanMIRA andit alsoperformsbetterin
many caseswhereMIRA falls into the sametrapsasthe
shortestpathor widestshortestpathroutingalgorithms.

VI. MULTI-COMMODITY FLOWS

We begin with the observation that even if the exact
sequenceof tunnel requestswereknown in advance,the
problemis intractable. In particular, given an offline se-
quenceof LSP setup requests,it is NP-Completeto de-
terminewhatis themaximumnumberof requeststhatcan
besimultaneouslyrouted.Thus,thedifficulty is notneces-
sarily in theonlinenatureof theproblem—ratherit lies in
having to choosewhichof many pathsto selectfor routing
a flow. We turn this difficulty aroundby formulatingthe
offline problemasa multi-commodityflow problem, on a
modifiednetwork. We usethe traffic profile datafor the
ingress-egresspairsastheoffline aggregatedata.Theso-
lution to the multicommodityflow problemis then used
to pre-allocatelink capacitiesto variousflows, which are
thenusedby the online algorithmto performpathselec-
tion. Whentheallocatedcapacityfor aflow becomeszero
(or wasassignedzero from the beginning), that flow re-
questis rejected—even thoughtheremight be sufficient
capacityin the network to route that flow. Let us begin
with somepreliminariesaboutmulticommodityflows. In-
terestedreadercanfind acomprehensive treatmentof net-
work flows in thebook[2].

Given a directedgraph �`�a
���
���� , with positive ca-
pacity ������
-b�
dc�� for eachedge 
-be
dc�� , a flow on � is a
real-valuedfunction f on node-pairshaving thefollowing
properties:� [Skew Symmetry] fg
-c�
dhi���kjlfg
-hi
dcm� . If fg
-c�
dhi�Qn
_ , thenwe thereis aflow from c to h .� [Capacity Constraint] fg
-c�
dho�Qpq�����P
-c�
dho� . If 
-cm
dhi�
is notanedgeof � , thenwe assumethat �=���P
-cm
dhi�r�s_ .� [Flow Conservation] For every vertex c , otherthanthe
sourceor thesink (i.e. ingressor egress),theflow is con-
served: t;fg
-c�
dho�u�	_ .

It is straightforward to prove that theproblemof deter-
mining whethera given (offline) setof LSP requestscan
beroutedis NP-Complete.

THEOREM VI.1. Given a network �v�v
��K
���� , where
each link hasa positivecapacity, and a setof w LSPre-
quests
-,/.?
�1 2 
�. 2 
�4 2 � , for ,r�xRW
�yW
�M�M�M9
�w , decidingwhether
it is possibleto simultaneouslyrouteall w requestsin � is
NP-Complete.

Indeed,theLSP routingproblemis a generalizationof
thesimpletwo-commodityintegralflow problem,whichis
known to beNP-Complete[5]. The2-commodityintegral
flow problemaskswhetherit is possibleto find two flow
functionsthatdeliver somerequiredsetof flows from two
sourcenodesto two sink nodes.Specifically, supposewe
aregivenadirectedgraph�x�	
���
���� , nodepairs 
�1zJ�
�.0J�� ,

�1/{z
�.�{?� , positive integral capacity �����P
��9� for eachedge
�|�}� , andbandwidthrequirements4�J and 4d{ . Then, it
is NP-Completeto decideif thereareflow functionsfHJ=
�f�{
suchthat(1) for eachlink �~�Z� , f J 
���� B f { 
�����p	�����P
��9� ,
(2) for eachnodeotherthan 1zJ=
�1�{W
�.>J�
�.�{ , flows fHJ and f�{
areconserved,and(3) thenetflow to .�2 underf�2 is at least
4 2 .

We arenow readyto describethe detailsof our algo-
rithm.

VII . PROFILE-BASED ROUTING

Examiningthe problemmoreclosely, we find that the
intractability of LSP set up problemstemsfrom two re-
quirements:unsplittability of the flows, andseparatede-
mandfunctionsfor eachflow. In otherwords,if flows are
allowedto besplit, andif theobjective is to maximizeto-
tal flow ratherthanto satisfyeachindividualflow, thenthe
problemcanbesolvedefficiently throughlinearprogram-
ming. Unfortunately, in theLSPproblem,we do not want
flows to besplit, andwe do want to enforcesomekind of
fairnessso as to admit asmany flow aspossible. Fortu-
nately, we areableto finessetheproblemon both counts
by usingamulti-commodityflow framework on thetraffic
profiles, ratherthanindividual flows. First, the individual
flow requestssizesaretypically muchsmallerthanthelink
capacities—forinstance,thelink capacitiesmightberange
from OC-12to OC-192,while a typical requestmight be
just a few megabitspersecond.Second,we usethemulti-
commodityflow in thepreprocessingphase,where“com-
modities”correspondto highly aggregatedtraffic profiles,
andnot individual LSP requests.So, whena commodity
is split, it doesnot meanthata flow is split; ratherit just
meansthata “group” of flows is routedon adifferentpath
than anothergroup. An individual LSP requestis never
split—our algorithmeitherfinds a singlepathto routeit,
or rejectit.

Our algorithmhastwo phases:a preprocessingphase,
wherewe solve a multicommodityflow problemto pre-
allocatelink capacitiesfor varioustraffic classes;andan
online routing phase,whereeachLSP requestis routed
online using a shortestpath like algorithm. Let us first
describethepreprocessingphase.
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A. Multi-CommodityFlow Preprocessing

Theinputto thepreprocessingphaseis thenetwork �	�

���
���� , with capacity�=���P
��9� for eachedge����� . Weare
given a setof traffic profiles 
���56�017178?:[
�1 2 
�. 2 
�< 2 � , where
��56�0171980: is thetraffic class,1=2#
�.92 aretheingressandegress
nodes,and < 2 is theaggregatebandwidthrequirementfor
this classbetween1 2 and . 2 . We treateachtraffic classas
a separatecommodity. Supposethereare w commodities,
numbered1 through w . The goal is to find routesin the
network to sendasmuchof eachcommodityaspossible
from its sourcenodeto thedestinationnode.

As notedearlier, satisfyingall bandwidthrequirements
however maynot bepossible.We thereforeput additional
edgesin thenetwork, calledexcessedges, sothattheprob-
lem always have a feasiblesolution, and useedge costs
to distinguishbetweenthe network edgesandthe excess
edges. In particular, we addan infinite capacity excess
edgebetweeneachingress-egresspair, asshown in Fig-
ure 5. Thus, ���z1���
��9��� R if ����� , and ���71���
������
������
�������� if � is an excessedge,where � is an ap-
propriately large number. The large cost of the excess
edgesforcesasmuchof thefeasibleflow aspossibleto go
throughoriginal network edges.Let ��� denotethegraph
obtainedby addingtheseexcessedges.

�K�

�G�

� �

� �

�]���-�]�)�0�]�/���O���]� � �6���K�
Fig. 5. The excessedgesaddedto make the multicommodity

flow alwaysfeasible.Thecostof eachexcessedgeis � , a
largeconstant,while all otheredgeshavecostone.

Now, let ��2d
���� denotea real-valuedvariable,denoting
theamountof commodity, that is routedthroughedge� .
Then,themulticommodityproblemto besolvedfor graph
��� is to

minimize �=�z1���
��9�
�

26� J � 2 
����

subjectto thefollowing constraints:� capacityconstraintsare satisfiedfor all edges—if � is
notanexcessedge,then

�2 � J � 2 
����upx�=���P
��9� ,� the flow for eachcommodityis conserved at all nodes,
exceptthecorrespondingingressandegressnodes,

� theamountof commodity, reachingits destination,. 2 ,
is < 2 .

Theoutputof themulticommodityflow computationis
the valuesfor the variables� 2 
���� . We usethesevalues
to set a pre-allocationof � ’s capacityfor variousflows.
In otherwords, �m2]
��9� partof � ’s capacitywill be usedby
theonlinealgorithmto routeflows belongingto thetraffic
class, . In summary, themulti-commodityphaseof theal-
gorithmdeterminesadmissioncontrol thresholdsfor each
traffic class,andcomputespre-allocationof link capacities
to maximizenetwork utilization. Theonlineroutingphase
of thealgorithmis describednext.

B. OnlinePathSelectionfor LSPRequests

The input to this phaseof the algorithm is the input
graph �¡�k
���
���� , wherefor eachedge �L�s� , we keep
track of the residualcapacity ¢9£�
���� for eachtraffic class¤ �¥RW
�yW
�M�M�M9
�w . (Note thantheseresidualcapacitiesare
per traffic class,not per flow.) The initial valuefor ¢7£�
����
is setto � £ 
���� , whichis theoutputof themulti-commodity
preprocessingphase.The algorithmthenprocessan on-
line sequenceof LSPsetup requests
-,/.0
�1 2 
�. 2 
�4 2 � , where
,/. is the requestID, 1 2 is the ingress(source)router, . 2
is the egress(destination)router, and 4 2 is the bandwidth
requestedfor the LSP. We assumethat eachLSP canbe
mapped(by theingressrouter 1 2 ) to a uniquetraffic class.
Our online routing algorithmrunson the reducedgraph,
which usesthe pre-allocatedcapacitiescorrespondingto
thisclass.In this reducedgraph,weselectaminimumhop
pathbetween1 2 and . 2 , if oneexists.

PROFILE BASEDROUTING

Input: The input graph �¦��
���
���� . For eachedge � ,
we maintainresidualcapacity¢9£9
���� for eachcommodity
(traffic class)

¤ �	RW
�yW
�M�M�M7
�w . TheLSPrequestis between
aningress-egresspair 17
�. , andthebandwidthrequirement
is 4 . Let

¤
bethetraffic classto which thisLSPbelongs.

Output: A path from 1 and . , suchthat for eachedge
� along this path therehad been ¢9£9
����Z§¨4 (during the
algorithm,¢9£�
��9� is updatedto containtheupdatedresidual
bandwidth).

Algorithm:
1. Deletefrom � all edges� for which ¢9£9
����ª©«4 . (These
edgeshave insufficient residualcapacityfor class

¤
.)

2. In thereducedgraph,findapath ¬ with minimumnum-
berof hops,usingabreadthfirst search,from 1 to . .
3. For eachedge � in the path ¬ , decreasethe residual
capacity¢9£�
���� by 4 .
4. RouteLSP 
�19
�.0
�4�� alongthepath ¬ .
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C. Complexity Analysis

If the network has ­ nodesand ® edges,the breadth
first searchalgorithmcomputesa shortestpathin ¯�
�­ B
®�� time. This is a linear-time algorithm,andshouldbe
several ordersof magnitudefasterthan the MIRA algo-
rithm, which needsto performseveral hundred(asmany
as the numberof ingress-egresspairs) maxflow compu-
tations. Each maxflowcomputationitself takes ¯�
�­;°H�
time. Thus, during path selectionphase,our algorithm
hasthe samerun time complexity as the currently used
shortestpathalgorithm. Our algorithmis fasterthan the
widestshortestpathroutingalgorithm,becausethatalgo-
rithm mustexecuteaDijkstrastyleshortestpathcomputa-
tion.

Thepreprocessingphaseof ouralgorithmsolvesamin-
imum costmulti-commodityflow problem,which canbe
slow. But that step can be executedoffline, and does
not requirerecomputationunlessthenetwork information
changes,suchas ingress-egresspairsor their traffic pro-
file. Thosechangesare very infrequent. Thus, our al-
gorithm needsoccasionalheavy preprocessingto build a
pre-allocationtable,which it usesto run the online path
selectionphase.

VII I . PERFORMANCE RESULTS

Without real network topologiesand large amountsof
traffic data,it is difficult to performmeaningfulandcon-
clusive experiments. We will follow the tradition setby
otherauthors,andperformexperimentson several hand-
crafted topologies,using both worst-caseand synthetic
flow data. We presentqualitative aswell as quantitative
evidencefor why webelieveourProfile-BasedRoutingal-
gorithmshould(anddoes)performbetterthanothers.One
very attractive featureof our algorithm is that it is com-
putationallyasefficient astheshortestpathor widestpath
routing,andsubstantiallyfasterthanMIRA.

We usedfour network topologiesto measurethe per-
formanceof our Profile-BasedRouting(PBR) algorithm.
Thefirst threetopologiesaretheonesweusedfor illustra-
tion in SectionV. The fourth topology, calledKL, is the
oneusedby KodialamandLakshman[8] in their experi-
ments. In the parking lot topology(PL), all link capaci-
tiesaresetto 4800(to modelOC-48). In theconcentrator
(CN) anddistributor (DS) topologies,we used

A ��± , and
scaledup all link capacitiesby 800. Thus,all links with
capacity1 in Figure3 andcapacity R B²S in Figure4 be-
comelinks of capacity800, while thosewith capacity

A
or
A�B R becomelinks of capacity4800. In the network

KL, all light edgeshavecapacity12,while darkoneshave
capacity48 (meantto modelOC-12andOC-48links, re-

spectively). In their paper, KodialamandLakshmanalso
usedascaled-upversionof theirnetwork, in whichcapac-
ity of links 2–3, 2–5, and14–15is increasedto 48, and
thenall capacitiesaremultiplied by 100. Finally, we used
a publically available implementationof the minimum
cost multi-commodity flow algorithm, PPRN package,
for our preprocessingphase(availableat http://www-
eio.upc.es/˜jca st ro /p prn .h tml ).

A. Worst-CaseResults

We did not have accessto animplementationof MIRA
or WSPfor our studies,sowe comparedtheperformance
of our algorithmwith theshortestpathrouting. In theab-
senceof thoseimplementations,we were also unableto
compareworst-caseperformanceof thosealgorithms.We
can,however, infer their behavior on thethreeconstructed
network topologies,namely, theparkinglot (PL), thecon-
centrator(CN) andthedistributor (DS).TableI documents
theseresults.

TABLE I
WORST-CASE PERFORMANCE IMPROVEMENT.

Graph Total RequestsRoutedby Factorof
Name Req. SPF MIRA PBR Improv.

PL ³µ´o¶ 1 1 ¶ ¶
CN ·�¶ ¶ ¶ ·�¶ ·
DS ·�¶ ¶ ¶ ·�¶ ·

In the parking lot topology(PL), if the first requestis
betweenthe nodes EOF and :IF , then all threealgorithms
(shortestpath,WSP, andMIRA) acceptit, which blocks
all future requestsfrom beingrouted. Our new algorithm
rejectsthe first request,and is thenableto satisfyall re-
maining

A
requestsbetweenE 2 and : 2 . As thenumberof

ingress-egresspairs
A

increases,thepercentageof network
utilizedby shortestpath,WSP, or MIRA goesto zero.

KodialamandLakshmanalsoproposea costthreshold
(total weight ©q¸ ) for admissioncontrol. However, that
modificationof MIRA alsodoesn’t work for this topology
sincenoneof the edgesusedby the first pathfrom EGF to
: F arein theminimumcut of any EO2d
�:Q2 pair, andconse-
quentlytheweightsof theseedgesremainzero.

In the concentratortopology(CN), a single requestof
size

A
by sourceEGF will beroutedby bothshortestpathand

MIRA along the path that goesthroughthe concentrator
node X , which thenblocksall futurerequestsbetweenE 2
and : . In thiscase,theedgeX�: is not foundto becritical
by MIRA becauseit doesnot belongto theminimumcut
of any singleingress-egresspair; it is only in theminimum
cut for a clusterof ingress-egresspairs.Thus,in this case,
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PBR routesall y A units of traffic, while the other three
algorithmrouteonly

A
units.

Thesameperformanceisalsoobservedin thedistributor
topology(DS).

B. SimulationResults

We next carriedout a seriesof experimentsto measure
the performanceof PBR relative to the shortestpath al-
gorithm, usingrandomlygeneratedrequestsequence.In
eachexperimentwegenerateda randomsequenceof indi-
vidualflow requests,andmeasuredtheperformanceof our
profile basedroutingaswell astheminimumhoprouting.
Theperformancewasmeasuredbothin termsof thenum-
berof flows routed,aswell asthetotal bandwidthrequest
thatwassatisfied.

Following KodialamandLakshman[8], we variedthe
bandwidthsrequestedby individualflowsbetweenR and¹ .
This wasintendedto capturethe fact that individual flow
requestsaremuchsmallerthanlink capacities.However,
we alsoranteststo evaluatetheeffect of larger individual
flow bandwidths.

The individual flow requestsare generatedin propor-
tion to their traffic profile data. That is, if a flow belongs
to traffic class, , andthe total bandwidthof class, is < 2 ,
thena flow from this classwasgeneratedwith probability
<ª2]º £ < £ . In somecases,thetraffic profiledatawasgen-
eratedmanually. In others,we usedthemulti-commodity
flow algorithm to find feasibleaggregatedflows, which
were then usedas the profile data. Becauseof the ran-
domprocess,theexpectedamountof traffic requestedfor
a traffic classwasa randomvariable,with meansetto the
profilevalueof thatclass.

C. SPFRoutingvs.PBR

Clearly, whenthenetwork is lightly loaded,theshortest
pathrouting,or any otherrouting, is expectedto do well.
Thebeneficialeffectsof admissioncontrolandgoodpath
selectionbecomeevidentonly whenthenetwork is at least
partially congested.Towardsthis end,we first generated
enoughrequeststhatalmostall pathsbetweenall ingress-
egresspairsweresaturated.Thenumberof requestssatis-
fied at this point is usedasanindicationof how important
pathselectionandadmissioncontrolarein improving the
network utilization. In eachexperiment,theresultsareav-
eragedoverseveralrunssoasto smoothoutany effectsof
randomrequestgeneration.

TableII shows the resultsof this experiment,by mea-
suringthetotal amountof bandwidththat is routedby the
two algorithms.

TableIII shows theresultsof thesameexperiment,but
this time measuresthe total numberof flow requeststhat

TABLE II
TOTAL BANDWIDTH ROUTED BY THE SHORTEST PATH

ALGORITHM VS. PBR.

Graph SPF PBR Improvement

CN »W
 @ y @ ¼ 
�»W½W½ 20.16%
DS ¾W
d¹V»=¹ »W
�yW_W_ 11.21%
KL »W
�½WR @ ¼ 
d¹V_W_ 6.15%
KL2 »W
 ¼ ¾ @ ¼ 
d¹V_W_ 6.83%
PL R=¹V
�¾ ¼ ¾ y @ 
�½W½W½ 63.41%

wereacceptedby thetwo algorithms.Thus,evenfor ran-
dom requests,the PBR seemsto consistentlyoutperform
theshortestpathalgorithm.

TABLE III
TOTAL NUMBER OF REQUESTS ROUTED BY THE SHORTEST

PATH ALGORITHM VS. PBR.

Graph SPF PBR Improvement

CN 2,921 3,509 20.13%
DS 2,616 2,896 10.70%
KL 3,193 3,392 6.23%
KL2 3,137 3,355 6.95%
PL 6,017 9,570 59.05%

Our next experimenttried to evaluatethe effect of in-
creasingthesizeof themaximumbandwidthrequestedby
anindividual flow. In this experiment,theindividual flow
requestsweregeneratedwith arandombandwidthrequire-
mentin therangefrom 1 to 48 (that is, thelargestrequest
sizebeing RW^ of the link capacity).Thenumberof flows
wasproportionatelyreducedto keepthe total bandwidth
requestedthe same.The increasedbandwidthsizedidn’t
make muchdifference.TablesIV and V show thesere-
sults.

TABLE IV
TOTAL BANDWIDTH ROUTED: SHORTEST PATH VS. PBR

WHEN THE LARGEST BANDWIDTH REQUESTED BY AN

INDIVIDUAL FLOW IS ¿�À .

Graph SPF PBR Improvement

CN 7,463 8,757 17.34%
DS 6,570 7,153 8.87%
KL 7,837 8,396 7.14%
KL2 7,907 8,399 6.22%
PL 15,319 23,991 56.61%
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TABLE V
TOTAL NUMBER OF REQUESTS ROUTED BY SHORTEST PATH

ALGORITHM VS. PBR WHEN THE LARGEST BANDWIDTH

REQUESTED BY AN INDIVIDUAL FLOW IS ¿�À .

Graph SPF PBR Improvement

CN 313 367 17.13%
DS 276 301 9.04%
KL 322 347 7.64%
KL2 334 354 6.08%
PL 655 990 50.99%

Thenumberof flow set-uprequestssatisfiedby bothal-
gorithmsarecomparedin TableV. Fragmentationof edge
capacitiesdoesnot seemto have any significantimpact.
The improvementshows a similar form asfor smallerre-
quests,asseenin above tables.Theissueof fragmentation
of edgecapacitiesis discussedin detail later.

D. Curseof BandwidthFragmentation

Assumingthat thenetwork traffic shows shortor long-
term persistentpattern,the profile datashouldbe a good
predictorof theactualobservedtraffic. Let ussupposefor
a minutethat theflow requestscloselymatchedthetraffic
profile usedby the algorithm. How closeis the perfor-
manceof PBRcomparedto anoptimal (but offline) algo-
rithm?Themulti-commodityflow solutiongivesanupper
boundon how muchflow is routable,which may not be
achieved by our online algorithmdueto bandwidthfrag-
mentation. Thepre-allocations� 2 
��9� areportionsof each
link thatarereservedfor a traffic class,but becausethein-
dividual flows have arbitrarybandwidthrequirements,we
mayendup reserved capacitieson differentlinks thatare
insufficient to routeanindividual requestwithoutsplitting
it. How severeis theeffect of this bandwidthfragmenta-
tion? A measurementof this may indicatehow closeto
optimaldoesPBRcome?

In this experiment, we generatedindividual requests
with randombandwidthrequirementsin the rangefrom R
to ÁLÂ=Ã . Four valuesof ÁLÂ=Ã , namely, 4, 12, 48 and192,
wereused,andfor eachvalue,thetotalnumberof requests
generatedwasscaleddown so asto keeptotal bandwidth
requestedaboutthe same. TableVI shows theseresults.
As expected,theamountof bandwidthpotentiallywasted
dueto fragmentationincreaseswith largerrequests,but the
degradationis quite small for even very large individual
flow requests(¹V^ of the link capacity). Even then,there
remainsasubstantialnetgainfor Profile-BasedRoutingin
all thescenarios.

TABLE VI
FRACTION OF LINK CAPACITIES THAT CAN BE

POTENTIALLY WASTED DUE TO FRAGMENTATION, AS A

FUNCTION OF THE MAXIMUM SIZE OF INDIVIDUAL

REQUESTS. THE PERCENTAGE WASTE IS MEASURED AS THE

REDUCED AMOUNT OF TOTAL BANDWIDTH ROUTED AS

COMPARED TO THE OPTIMAL .

Max. Flow Size
Graph 4 12 48 192

CN 0 0.10 0.49 1.32
DS 0 0.26 0.26 3.57
KL 0 0 0.012 0.43
KL2 0 0 0.01 0.51
PL 0 0.01 0.03 0.38

E. To acceptor not to accept?

PBR imposesan admissioncontrol andjudiciously re-
jectsflow requeststhatmightcreatesignificantbottlenecks
in the network. The obvious hope(and expectation)is
that the flows whosebottleneckwe are trying to avoid
will eventuallyberequested.Whathappensif thoseflows
arenot requested?In that case,PBR might have a lower
network utilization thata moremyopicroutingalgorithm,
such as the shortestpath algorithm. In order to evalu-
ate this aspectof PBR, we decidedto take performance
snapshotsat intermittent times during the online run of
the algorithm. In other words, we measuredwhat frac-
tion of the incomingrequestswereaccepted,at intervals
of RW_W^L
 @ _W^L
�±W_W^Ä
�»W_W^L
�½W_W^ of the total traffic. If PBR
aggressively imposesadmissioncontrol in the beginning
andsaves network resourcesfor flows that do not arrive
for a long time, its performanceshouldbe lower in the
earlydurationof therun. As TableVII below shows thatit
doesnot take longfor theadmissioncontrolof PBRto pay
off. Exceptfor oneminusculedropin theKL topology, the
numberof requestsacceptedby PBR alwaysseemsto be
morethanthenumberacceptedby theshortestpathalgo-
rithm.

IX. CONCLUDING REMARKS AND EXTENSIONS

We presenteda new Profile-BasedRouting algorithm
for dynamicrouting of bandwidthguaranteedpaths. The
onlineroutingphaseof thealgorithmisassimpleandcom-
putationallyefficient asthecommonlyusedmin hoprout-
ing or the widestshortestpathrouting, andit is substan-
tially fasterthantherecentlyproposedminimuminterfer-
encerouting algorithm[8]. Our algorithmimprovesnet-
work utilization, andacceptsmoreflows thantheseother
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TABLE VII
PE
Å

RFORMANCE IMPROVEMENT OF PBR OVER THE

SHORTEST PATH ALGORITHM AT VARIOUS POINTS DURING

THE RUN OF THE ALGORITHM .

Fractionof requests
Graph 0.1 0.3 0.5 0.7 0.9

CN 0 0 0 15.03 25.79
DS 0 2.41 6.82 14.22 20.14
PL 0 0 0 23.02 62.32
KL 0 0 -0.38 8.54 6.34
KL2 0 0 0 6.11 7.19

algorithms,becauseof its improvedpathselectionandad-
missioncontrol. Thealgorithmtakesadvantageof quasi-
static informationaboutthe network andtraffic in an of-
fline preprocessingphase,whoseoutput is usedto both
guideour online pathselectionalgorithm aswell as im-
poseadmissioncontrol. In particular, ouralgorithmis able
to spotpotentialbottlenecklinks thatmaybein themin cut
of “clusters”of ingress-egresspairs(cf. concentratorand
distributor topologies),asopposedto singlepairs identi-
fiedby MIRA.

The multi-commodity preprocessingframework pro-
posedin our paperis quite powerful and admitsnumer-
ousextensionsandgeneralization,which canbe usedto
implementadditionalpolicies and requirements.Just to
illustratetheideas,we mentiontwo suchextensions.
� [Minimum ServiceLevel] Supposea serviceprovider
wantsto ensurethata bursty traffic classreceivesat least
a guaranteedminimum level of service. In otherwords,
while theexpectedbandwidthof a traffic class, might be
< 2 , the serviceprovider wantsto ensurethat at least ® 2
level of bandwidthis guaranteedduringa certaintime pe-
riod. We canimplementthis requirementby usinga dif-
ferentcostfunctionin theobjective functionof our multi-
commodity formulation. The objective function is aug-
mentedby anadditive term X which kicks in if morethan
<ª2�jL®Æ2 unitsareroutedalongtheexcessedgecorrespond-
ing to this traffic class.� [Imposing Fairness] A flow routing algorithm can
achieve largenetwork utilization,but mayunfairly punish
someclientsby rejectinga disproportionateshareof their
flows. Serviceproviderscanimplementa minimumlevel
of fairnessby ensuringthat a given set of traffic classes
eachreceivesaproportionateshareof totalbandwidth.For
a traffic class

¤
, we add Ç�ÈgÉ/ÊÌËlÉ to ourobjective function,

whichisexponentialin thebandwidthnotrouted,for atun-
ableparameterÇ . Thisguaranteesthatoneclassreceiving

anunfairly low bandwidthallocationleadsto a steepcost,
andwill beavoided.
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