Profile-BasedRouting:
A New Framavork for MPLS Traffic Engineering
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Abstract—Wepresenta newalgorithm and framework for
dynamic routing of bandwidth guaranteedflows. The prob-
lem is motivated by the needto dynamically setup band-
width guaranteedpathsin carrier and ISP networks. Tra-
ditional routing algorithms such as minimum hop routing
or widest path routing do not take advantageof any knowl-
edge about the traffic distribution or ingress-egesspairs,
and therefore can often lead to severe network underutiliza-
tion. Our work is inspired by the recently proposed‘mini-
mum interfer encerouting” algorithm (MIRA) of Kodialam
and Lakshman, but it improveson their approachin sev-
eral ways. Our main ideais to usea “traffic profile” of the
network, obtained by measurementsor service level agree-
ments (SLAS), asa rough predictor of the futur e traffic dis-
trib ution. We usethis profile to solve a multicommoditynet-
work flow problem, whoseoutput is usedboth to guide our
online path selectionalgorithm aswell asimposeadmission
control. The offline multicommodity solution seemsvery ef-
fective at distrib uting the routes and avoiding bottlenecks
around hot spots. In particular, our algorithm can antic-
ipate a flow’s blocking effect on groups of ingress-egess
pairs, while MIRA only considersoneingress-egesspair at
atime. Our simulation resultsshow that the new algorithm
outperforms shortest path, widest path, and minimum in-
terferencerouting algorithms on several metrics, including
the fraction of requestsrouted and the fraction of requested
bandwidth routed. Finally, the framework is quite general
and can be extendedin numerous ways to accommodatea
variety of traffic managementpriorities in the network.

I. INTRODUCTION

We presentinew algorithmandframework for dynamic
routing of bandwidthguaranteediows. Our algorithmis
onling meaningthatit routesrequest®neat atime, with-
out specificknowledgeof future demandsWe usequasi-
staticinformation aboutthe network andtraffic to select
pathssoasto minimizethe numberof requestshatarere-
jectedor the network bandwidththatis wasted.Clearly; if
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no assumptionaremadeabouttheflow requestsa patho-
logically chosensetof requestanfoil any online algo-

rithm. We malke minimal assumptionshat arejustifiable

in practiceandleadto significantimprovementin network

utilization. In particular we assumehat the ingressand

egressnodesin the network are known, andthat a traf-

fic profile betweenpairs of ingress-gressnodesis also
known. The traffic profile betweeningress-gressnode
pairscanbeeithermeasuredr inferredfrom servicelevel

agreement$SLAs). Our algorithmusesthis quasi-static
informationin apreprocessingtep(onemulti-commodity
flow computation),to determinecertainbandwidthallo-

cationson the links of the network. The online phase
of therouting algorithmthenroutestunnelrequestsising
a “shortestpath” (SPF)like algorithm but with the addi-

tional informationgivenby the preprocessingohase The

multi-commodity preprocessinghaseallows the online

algorithmto exerciseadmissiorcontiol by rejectingsome
requestdecausef their blocking effectsin the network.

The motivation for our problemarisesfrom the needs
of serviceproviderswho mustdynamicallyresere band-
width guaranteedoutesin carrierandISP networks. Fol-
lowing KodialamandLakshmar8], we will describeour
algorithmsin the contet of settingup pathsin Multi-
ProtocolLabel Switched(MPLS) networks, althoughour
algorithmsareapplicablein othercontets aswell. MPLS
networks[10] allow explicit routing of pacletsby putting
labelson them,which canthenbe usedto forward pack-
etsalong specificLabel SwitchedPaths(LSPs). Service
providers can perform this encapsulatiorat the ingress
routers,andthen useLSPsto implementVirtual Private
Networks (VPNSs) [6] or satisfy other quality of service
(QoS) agreementswith clients. At the ingressrouters,
paclet classification[9], [11], [12] can be usedto map
paclets into “forwarding equivalenceclasses’by exam-
ining paclet headers. This aggrgation (mappinginto
equialenceclassesklso hasthe potential advantageof
smoothingout the bandwidth requirementacrossmary
bursty streams.In addition,the serviceproviderscanuse
a measurement-basedechanisnto build a traffic profile
for aningress-gressnodepair. Sucha profile canbe as
simpleasanaveragebandwidthrequiremenbveracertain



time period.

A Label SwitchedPath requiresset up, meaningthat
all theintermediateoutersbetweertheingressandegress
nodesare specified. The pathis setup using a signal-
ing protocol suchas RSVP [3] or LDP (Label Distribu-
tion Protocol[1]). Theability to specifyexplicit pathsfor
ary flow givesthe serviceproviders animportanttool to
engineerhow their traffic is routed,andtherebyimprove
the network utilization, by minimizing the numberof re-
gueststhat are rejectedwhenthe network becomesover
loaded.Currentintra-domainrouting schemeswhich for-
ward paclets basedon destinationaddressonly, do not
take into accountwhat otherflows arecurrently or likely
to be, requested. Thus, their routing behaior is highly
myopic—thg will rejecta flow when the default short-
est path route becomecongestedgven if an alternatve
pathis available. The algorithmslike widest path rout-
ing alsosuffer from similar problems.We thereforeneed
better schemedor routing flow requestghat take better
advantageof the network infrastructure,network topol-
ogy, andtraffic distribution. We shaw thatthis problemis
NP-Completeevenin highly simplified form, but propose
a novel multi-commoditybasediramavork, which elimi-
natesmary of the shortcomingsof shortestpath routing,
widestpathrouting,andeven minimuminterferencaout-
ing.

While we presenbur algorithmin the context of band-
width guaranteesit can also perform routing basedon
otherQoSmetricssuchasdelay lossetc. As pointedout
by KodialamandLakshman8], if additionalconstraints,
suchasdelayor loss,areto beincorporatednto SLAs,one
candosoeffectively by convertingthoserequirementinto
abandwidthrequirement.

Our framework is quite generalandit canbe extended
andgeneralizedn multiple waysto handleadditionalmet-
rics andrequirementsin particular the multi-commodity
flow formulationpermitsa costfunction, which we mini-
mizeto achiere optimalrouting. In orderto minimizethe
numberrejectedrequestswe usethe simple linear cost
function A variety of non-linear cost functions can be
usedto handlefeatureslike minimumguaranteedband-
width or fairnessacrosamultiple flows.

Il. ROUTING REQUIREMENTS

In this sectionwe briefly discusghe requirementshat
aflow routingalgorithmmustsatisfy KodialamandLak-
shman[8] give a detailedlist of tenimportantcriteriathat
adynamicpathselectionalgorithmmustmeet.We discuss
only themostimportantrequirementhere.

o [Routingwithout splitting flowd It is assumedhatthe
flow shouldbe routedon a single path, without splitting.

Many flow requestamay involve traffic thatis inherently
unsplittable(circuit emulationor voice), and thereforeit
is importantto route them on single paths. Thus, for
eachflow requestthealgorithmmustfind a pathwith de-
siredamountof bandwidthbetweertheingressandegress
nodespr determinghattheflow is unroutable.

« [Onlinerouting We assumeéhattheindividual flow set-
up requestsarrive online,oneat atime, andthe algorithm
mustprocesseachrequestvithout having to know the fu-
turerequestsin network provisioninganddesignphaseit
is customaryto assumehat exact point-to-pointdemands
areknown. But thatassumptioris highly impracticalfor
the MPLS tunnelsetup problem. While we make useof
the quasi-statianformation such as traffic profile in our
algorithm, thoseprofiles are usedonly as a rough guide
for theaggrgatedemandsFurthermoreopurroutingalgo-
rithm is completelyonline—it doesnot needto know ary-
thing aboutindividual requeststheir bandwidthrequire-
ments,or their time of arrival. Of course|f theactualde-
mandsin aggregatedeviate significantlyfrom theassumed
profile, the performancemprovementachieved by our al-
gorithm may degrade,but that is to be expectedfor ary
onlinealgorithm.

o [ComputationatequirementWe wantthepathselection
algorithmto bequitefastandscalable Individual flow set-
uprequestsaretypically processedttheingressoutersor
switcheswhich operateatvery highloadandhave limited
computingpower. Thus, the computationakequirement
per flow setuprequestmust be kept as low as possible.
In this regard, our algorithmis just as efficient and sim-
ple asthe shortespathalgorithm,and substantiallyfaster
thanKodialam-Lakshmamlgorithm. The expensve part
of our algorithmis the preprocessinghasewhich is run
very infrequentlyand offline, only whenthe quasi-static
informationchanges.The online algorithmrunsa single
breadth-firstsearchalgorithm, which is seseral orders of
magnitudefasterthanthe maxflow computationsreeded
by MIRA [8].

o [Policy constrainfs A good path selectionalgorithm
shouldbeableto incorporateadditionalpolicy constraints.
For example a servicelevel agreemeninayrequireavoid-
ing links with certainlossrate. Similarly, SLAs may re-
guire a minimum flow acceptanceyuarantee;for exam-
ple, over a periodof onehour, flows with total bandwidth
at least100 Mbps must be accepted.In SectionlX, we
describeamechanismso implementpolicy constraintsnto
theframawork.

o [Traffic profild Our algorithm usesinformation about
“expected”flows betweersomeingress-gressnodes.We
explain the exactform of this informationlater, but briefly
speakingour belief is that yesterdays traffic betweenan



ingress-gresspair can sene as a good predictorfor to-
day'straffic. This shouldbeespeciallytruein light of fact
that serviceproviders aggrgatea large numberof flows,
using forwarding equivalence classes,for the ingress-
egresspairs. Serviceproviderscanhave multiple classes
peringress-gresspair, andkeepseparaterofilesfor var

in thenetwork, evenif acceptinghatflow hasthepotential
to blodk off a large numberof future flows. The example
in Figure2 dramaticallyillustratesthe effect of admission
control—withoutadmissiorcontrol,onecanforceary on-
line algorithmto achiere closeto zeronetwork utilization!
The work mostcloselyrelatedto ours,andindeedthe

ious classes. Theseprofiles can be either measurement basisfor our work, is the “minimum interferencerout-

based,or they canbe inferred from servicelevel agree-
ments.

« Finally, like shortestpath routing, our algorithm also
usesonly the link-stateinformation and, like the widest
pathroutingalgorithm,it usessomeauxiliary capacityin-

formation.In orderto keepthepresentatiosimple,Wede-
scribeour algorithmfor the centralizedoutesene model,
thoughit canalsobeimplementedn thedistributedmode.

The mostcommonlyusedalgorithm for routing LSPs
is the shortestpath routing In the shortestpath routing,
the path with the leastnumberof links betweeningress
andegressnodesis chosen.The routing algorithmkeeps
track of the currentresidual capacityfor eachlink, and
only thoselinks that have sufiicient residualcapacityfor
the new flow areconsidered.The shortestpathalgorithm
is very simple,but it canalsocreatebottleneckdor future
flows, andleadto severe network underutilization. (See
examplesin SectionV.) Our new proposedalgorithmis
justasefficientandfastastheshortespathalgorithm(dur
ing the path selectionphase) but by using additionalin-
formationaboutthe network andtraffic in apreprocessing
phasewe cansignificantlyreducethe numberof requests
thatmightberejecteddueto inappropriateouteselection.
Insteadof a full-fledged shortestpath algorithmthat has
to dealwith weights,which have undegoneheary manual
tuning by the network operatorgo achieve justthedesired
traffic distribution, our algorithmcould even usethe sim-
pler “minimum hop” algorithm (which is just a breadth-
first search}o selecta pathin the online phasethanksto
the powerful preprocessing).

Guerinet al [7] proposea variantof the shortestpath
algorithm, calledwidestshortestpath (WSP),wherethey
choosea feasibleshortestpath path that hasthe largest
residualcapacity—inotherwords,the smallestink resid-
ual capacityalongthepathis maximized.While WSPcer
tainly improves on the shortestpath routing, it also has
a myopic behaior—since the algorithm doesnot make
useof theingress-gresspairsor thetraffic characteristics,
it cancreatebottlenecks. More significantly neitherthe
shortespathnorthewidestshortespathroutingalgorithm
imposeary form of admissioncontiol. Thus,thesealgo-
rithmswill alwaysaccepta flow if thereis a feasiblepath

REVIEW OF EXISTING ALGORITHMS

ing algorithm” (MIRA) of Kodialamand Lakshman[8].

MIRA is quite a bit more sophisticatedalgorithm than
either shortestpath or WSPR andit takes critical adwan-
tageof ingress-gresspairs. The basicobserationin [8]

is that routing a flow along a path can reducethe maxi-
mumpermissibleflow betweensomeotheringress-gress
pairs. They call this phenomenorfinterference. Their
thesisis thatif pathsthatreducealargeamountof possible
max-flov betweenotheringress-gresspairsare avoided,
creationof bottleneckscanalso be avoided. Their algo-
rithm performsmultiple max-flov computationgo deter

minethe pathof leastinterference.

Theideaof minimizing interferencds a goodone, but
we believe it hasseveral limitations. First and foremost
is the obsenration that MIRA focusesexclusively on the
interferenceeffect on singleingress-gresspairs. It is not
able to estimatethe bottleneckcreatedon links that are
critical for clustes of nodes.(Seeexamplesn SectionV.)
SecondMIRA considersimply thereductionin the max-
imum flow betweenra pair, without regardto the expected
bandwidthbetweenthat pair. Thus,MIRA mightrejecta
flow requesteven thoughthe network retainedsuficient
residualbandwidthto routethe flow betweerthe affected
pair. Finally, MIRA is computationallyvery expensve.
While shortespath,widestshortespath,andour new pro-
posedalgorithm all performa single shortestpath com-
putationto route a requestMIRA performshundeds of
maximumflow computationseachof which is several or-
dersof magnitudemore expensve thanthe shortestpath
calculation.

IV. PROBLEM STATEMENT

We modelthenetwork asagraphG = (V, E), whereV/
is the setof routersand E is the setof links. The current
residualcapacityof alink e € E is denotedcap(e)—this
is theadditionalbandwidththatcanberoutedonlink e. A
subseDf routersareassumedo beingress-gressrouters,
betweerwhich label switchedpaths(LSPs)canbe setup.
We assumethat the ingress-gresspairs are known, and
that this information is quasi-static/meaningit changes
veryinfrequently An exampleis shavnin Figurel, which
is borroved from Kodialam-Lakshmaf8]. We call this
network theKL-graph,andit is oneof theseveralnetworks
onwhichwe reportour simulationresults.



Fig. 1. An examplenetwork, showving ingress-gressnodes.
This network borrovedfrom [8] is referredto asKL-graph
in our paper

A requestfor an LSP setupis definedby a quadruple
(id, s;,d;, b;), whereid is therequestD, s; is theingress
(source)router d; is the egress(destination)router and
b; is thebandwidthrequestedor the LSP. (Thereasorfor
having a separated for eachrequestis thattherecanbe
multiple requestor the same(s;, d;) pair) As mentioned
earlier all QoSrequirementdor the flow areassumedo
have beenfolded into the bandwidths;. Givena request
(id, s;,d;, b;), thealgorithmcaneitheracceptt, in which
caseit mustfind a pathin the network from s; to d; along
which eachlink hasresidualcapacityatleasts;, or theal-
gorithmmayrejecttherequest.Theadmissiorcontrolfea-
ture allows our algorithmto rejecta requestevenif there
is afeasiblepath—thismayhappenf thealgorithmdeter
minesthat acceptingthis requestmay createa significant
bottleneckfor future requestgbasedon its knowledge of
the ingress-gresspairs andtheir traffic profile). We as-
sumethat all LSP setup requestsarrive online, oneat a
time, andthe algorithmdoesnot know anything aboutin-
dividual future requeststheir bandwidthrequirementsor
theirtime of arrival.

The traffic profile information usedby our algorithm
recordsthe expectedflow betweerpairsof ingress-gress
routers,and representan aggrgateddemandprofile be-
tweeningress-gresspairs. Suchinformation can be ei-
thermeasurement-basedit canbecalculatedrom SLAs
that have beenenteredby a service provider with its
clients. Eachtraffic profile is alsodefinedby a quadruple:
(classID, s;,d;, B;), whereclassI D is the traffic class,
s;, d; arethe ingressand egressnodes,and B; is the ag-
gregatetraffic to be expectedfor this classbetweens; and
d;. Betweenthe sames;, d; pair, therecan be multiple
traffic classegcorrespondindo differentservicetypesof-

feredby theprovider). EachLSPrequestanbemappedo
a uniquetraffic profile class.(Corversely atraffic profile
classactsasan aggregateproxy for all the LSP requests
mappedo it.)

The traffic profile is a roughindication of the amount
of traffic thatcanbe expectedbetweenra pair; the LSP set
up requessequencéowever arrivesonline. A corvenient
way to think aboutthisis thattotal sumof all LSPrequests
betweens; andd; for theclassi is arandomvariablewith
meanhB;. Butthetime of arrival of individual requestand
their bandwidthrequirementsare entirely unpredictable.
Thus,asfor asour routing algorithmis concernedthere-
guestsequencés completelyonline.

For simplicity, we assumehereis a route sener that
knows the currentnetwork topologyandavailablelink ca-
pacities.Insteadof dedicatinga singlemachingo perform
route computationsthis job could alsobe sharedamong
all ingressnodeswithout changedo the framework.

V. EXAMPLES ILLUSTRATING LIMITATIONS OF
EXISTING ROUTING ALGORITHMS

In this sectionwe informally describeheshortcomings
of existing routing algorithmsusingsomesimpleillustra-
tive examples.Our basicthemeis thatalgorithmsthatdo
not adaptto the traffic distribution in the network (taking
advantageof ingress-gresspairsandsomeroughestimate
of the traffic flow betweenpairs)will alwaysleadto sub-
optimal network utilization, which canbe quite severein
somecases.In particular the routing by algorithmslike
shortespathandWSPthatdo notimposeary form of ad-
missioncontrolcanoccasionallfeadto significantbottle-
necks.Simply having moreinformationaboutthe network
or traffic doesnot guarantedetterrouting. Our proposed
framavork assumesninimal information aboutthe net-
work andtraffic, which we believe canbe easilyobtained.
Ouralgorithm,thoughassimpleandcomputationallyeffi-
cientasshortespath,leadsto fewer rejectedrequestsand
betternetwork utilization.

We usethreesimpleexampledo illustratetheshortcom-
ingsof existing routingalgorithms.In orderto drive home
thepoint, theseexamplesarenecessarihartificial looking,
but their generalform is not at all unusual. In fact, real
networksarequitelikely to containssubgraphsesembling
the concentator or the distributor example. The parking
lot topologyis commonaswell, but alsodependon the
selectiorof ingress-gresspairs. Sincepair selections of-
tenoutsidethe influenceof the ISP, the occurrenceof this
pathologicakaseis likely to appeain therealworld.

« [Parking Lot] Figure 2 shavs a simple network with
3n 4+ 3 nodes. The ingress-gresspairs for the LSP set
up requestsare(Sy, Do), (S1, D1), ..., (Sn, Dy), andthe

’



bandwidthrequestedor eachLSPis 1. All link capacities
in thenetwork areeitherl or 1 + &, asshawvn.

S1 S2 S3
1 1+e 1+e 1+e 1
SO @—— - ® DO
1 1 1 1
[ J [ ] - [ J [ J
D1 D2 Dn-1 Dn

Fig. 2. Theparking lot topologyPL.

Sn

Supposeheonlinesequencef LSPrequestarrive in the
order(Sp, Do), (S1,D1), - .., (Sn, D). Acceptingthere-
quest(Sy, Dy) completelycholes off the networks—no
otherLSPrequestanbe satisfied.However, sinceneither
the shortespathnor WSPrejectsflow requestsf thereis
afeasiblepath,they will accept(Sy, Dy), resultingin the
total network utilization of 1. An optimal algorithmwill
reject (Sp, Dyp), andwill accept(Sy, D1),...,(Sn, Dy),
for atotal network utilization of n.

Thechoiceof capacityl + ¢ for thelinks alongthespineof
the parkinglot alsofoils MIRA—sincethesdlinks arenot
in themin cutfor ary (S;, D;) pair, andarenotconsidered
critical. Thus, MIRA alsoacceptghe first flow request,
andendsuprejectingall otherrequests.

Although the links are dravn as directed, path selection
andblockingbehaior would remainthe samefor bidirec-
tional links. In the following two examples,someof the
links needto beunidirectional. Eventhoughunidirectional
links arerare (i.e., satellite downlinks and downstream-
only cable modeminstallations), unidirectionalremain-
ing capacityis quite common. Due to asymmetriclinks
or loads,the remainingcapacityin the oppositedirection
couldbecomeoo smallto be useful.

« [Concentrator] Figure 3 shaws a network, which we
call a concentator graph—one node C' actsas a feeder
for n ingressnodessS;, .. ., S,. TheconcentratonodeC'
is connectedo a high capacitylink, fat pipe of capacity
n + 1, whoseotherendpointis aegressnode D. Onehigh
bandwidthingressS, is alsoconnectedo theconcentratqr
throughacapacityn link. Sy is alsoconnectedo D viaan
alternatve 3-hoppath,of capacityn.

In this example,anonline sequenc®f n + 1 requestar
rive (So, D), (S1,D),...,(Sn, D). Thefirst requesthas
bandwidthrequirement:, while all othershave bandwidth
requirementl. Using eitherthe shortespathor the WSP
onewould routethefirst requesthroughthe concentrator
node(using2 hops).This leavesresidualcapacityl along
thelink C D, andso of the remainingn requestsat most
onecanbe satisfied.

This examplealsoillustratesthe shortcomingof MIRA—

Fig. 3. TheconcentratotopologyCN.

the fat link C'D is not in the minimum cut for ary in-

dividual ingress-gresspair. Thus saturatingit doesnt

seemharmfulto MIRA. So,the MIRA algorithmwill also
choosencorrectpathsin this scenario.The optimal algo-

rithm will routethe (Sp, D) requestalongthetop alterna-
tive path,andusethefatlink to routethen 1-unitrequests
from S; to D.

« [Distrib utor] While the precedingexampleshavs why

it may be a goodideato not usethe fat pipe sometimes,
our next exampleshaws thatthe corverseis alsotrue.

1
S1@——>

Sn

n
S0 @—>- 0@
Fig. 4. ThedistributortopologyDS.

In thisexample we getn requestbetweenS, andD, each
of bandwidthl. In addition, we also getn requestde-
tweeneach.S; and D, also of bandwidthl. Again, the
shortespathalgorithms(shortespathandWSP)will use
thetwo-hoppathsfor eachof thefirst n requestsgchoking
off the1 + ¢ links. Thus,eachof theremainingn requests
betweensS; and D arerejected. The routesselectedby
MIRA arealsothe same sincethelinks of capacityl + &
arenotin theminimumecutfor ary S;, D pair. By contrast,
the optimal algorithmwill routeall the requestdrom Sy
alongthe bottomfat path (3 hops),leaving the top 2-hop
pathsfor S; to D requests.

The precedingexamplesare meantto illustrate how a
badpathselectionfor oneflow cancreatesignificantbot-
tlenecksfor futureflows. An onlineroutingalgorithmthat
doesnot have ary additionalinformationaboutthe flows
canperformquitepoorly in theworstcase As the parking
lot exampleshaws, in somecaseghesealgorithmscannot
guaranteghat even 1% of the network bandwidthis uti-
lized, whereaghe optimal algorithmachieres 100%. We



build onthework by KodialamandLakshmar{8] andpro-
poseanew algorithmaswell asgeneraframewnork, where
we exploit informationaboutthe ingress-gressnodesas
well asameasuredor estimatedjraffic profile to perform
both pathselectionandadmissioncontrol. Our algorithm
is both simplerthan MIRA andit alsoperformsbetterin

mary caseswhereMIRA falls into the sametrapsasthe
shortespathor widestshortespathroutingalgorithms.

VI. MULTI-COMMODITY FLOWS

We bggin with the obseration that even if the exact
sequencef tunnelrequestsvere knowvn in adwance,the
problemis intractable. In particular given an offline se-
guenceof LSP setup requestsijt is NP-Completeo de-
terminewhatis the maximumnumberof requestghatcan
besimultaneouslyouted.Thus,thedifficulty is notneces-
sarily in the online natureof the problem—ratheit liesin
having to choosewhich of mary pathsto selectfor routing
a flow. We turn this difficulty aroundby formulatingthe
offline problemasa multi-commodityflow problem on a
modified network. We usethe traffic profile datafor the
ingress-gresspairsasthe offline aggrgatedata. The so-
lution to the multicommodity flow problemis thenused
to pre-allocatelink capacitiego variousflows, which are
thenusedby the online algorithmto performpath selec-
tion. Whentheallocatedcapacityfor aflow becomesero
(or was assignedzero from the beginning), that flow re-
guestis rejected—een thoughthere might be suficient
capacityin the network to routethat flow. Let us begin
with somepreliminariesaboutmulticommodityflows. In-
terestedeadercanfind a comprehensk treatmenbf net-
work flowsin thebook[2].

Given a directedgraphG = (V, E), with positve ca-
pacity cap(u,v) for eachedge(u,v), a flow on G is a
real-waluedfunction f on node-pairdhaving thefollowing
properties:

o [Skew Symmetry] f(v,w) = —f(w,v). If f(v,w) >
0, thenwe thereis aflow from v to w.

« [Capacity Constraint] f(v,w) < cap(v,w). If (v,w)
is notanedgeof G, thenwe assumehatcap(v, w) = 0.

+ [Flow Consewation] For every vertex v, otherthanthe
sourceor thesink (i.e. ingressor egress) the flow is con-
sened: ", f(v,w) = 0.

It is straightforvard to prove thatthe problemof deter
mining whethera given (offline) setof LSP requestan
beroutedis NP-Complete.

THEOREM VI.1. Givena networkG = (V, E), whee
ead link hasa positivecapacity and a setof k LSPre-
questyid, s;,d;, b;), fori = 1,2, ... k, decidingwhether
it is possibleto simultaneouslyouteall k£ requestsn G is
NP-Complete

Indeed,the LSP routing problemis a generalizatiorof
thesimpletwo-commodityintegral flow problem,whichis
known to be NP-Completg5]. The2-commodityintegral
flow problemaskswhetherit is possibleto find two flow
functionsthatdeliver somerequiredsetof flows from two
sourcenodesto two sink nodes.Specifically supposeve
aregivenadirectedgraphG = (V, E), nodepairs(sy, di),
(s2,d2), positive integral capacitycap(e) for eachedge
e € F, andbandwidthrequirement$; andb,. Then,it
is NP-Completeao decideif thereareflow functionsfi, fo
suchthat(1) for eachlink e € E, fi(e) + f2(e) < cap(e),
(2) for eachnodeotherthansy, so, d1, do, flows f; and f5
areconsered,and(3) thenetflow to d; underf; is atleast
b;.

We are now readyto describethe detailsof our algo-
rithm.

VII. PROFILE-BASED ROUTING

Examiningthe problemmore closely we find that the
intractability of LSP setup problemstemsfrom two re-
quirements:unsplittability of the flows, and separatele-
mandfunctionsfor eachflow. In otherwords,if flows are
allowedto be split, andif the objectve is to maximizeto-
tal flow ratherthanto satisfyeachindividual flow, thenthe
problemcanbe solved efficiently throughlinear program-
ming. Unfortunatelyin the LSP problem,we do notwant
flows to be split, andwe do wantto enforcesomekind of
fairnessso asto admitasmary flow aspossible. Fortu-
nately we areableto finessethe problemon both counts
by usinga multi-commodityflow framewvork onthetraffic
profiles ratherthanindividual flows. First, the individual
flow requestsizesaretypically muchsmallerthanthelink
capacities—fomstancethelink capacitiesnightberange
from OC-12to OC-192,while atypical requesimight be
just afew megabitspersecond.Secondwe usethe multi-
commodityflow in the preprocessinghasewhere“com-
modities” correspondo highly aggreatedtraffic profiles,
andnot individual LSP requests.So, whena commodity
is split, it doesnot meanthata flow is split; ratherit just
meanghata“group” of flowsis routedon a differentpath
thananothergroup. An individual LSP requestis never
split—our algorithmeitherfinds a single pathto routeit,
or rejectit.

Our algorithmhastwo phases:a preprocessinghase,
wherewe solve a multicommodityflow problemto pre-
allocatelink capacitiesfor varioustraffic classesandan
online routing phase,where eachLSP requestis routed
online using a shortestpath like algorithm. Let us first
describehepreprocessinghase.



A. Multi-CommodityFlow Preprocessing

Theinputto thepreprocessinghasasthenetwork G =
(V, ), with capacitycap(e) for eachedgee € E. We are
given a setof traffic profiles(classID, s;,d;, B;), where
classI D isthetraffic class,s;, d; aretheingressandegress
nodesand B; is the aggrgatebandwidthrequirementor
this classbetweens; andd;. We treateachtraffic classas
a separateommodity Supposdhereare £ commodities,
numberedl throughk. The goalis to find routesin the
network to sendas much of eachcommodityas possible
from its sourcenodeto the destinatiomode.

As notedearlier satisfyingall bandwidthrequirements
however may not be possible.We thereforeput additional
edgesn thenetwork, calledexcessdges sothattheprob-
lem always have a feasiblesolution, and use edge costs
to distinguishbetweenthe network edgesandthe excess
edges. In particular we add an infinite capacity excess
edgebetweeneachingress-gresspair, asshavn in Fig-
ure 5. Thus, cost(e) 1if e € E, and cost(e)
cap(e) oo if e is an excessedge,wherecc is an ap-
propriately large number The large cost of the excess
edgedorcesasmuchof thefeasibleflow aspossibleto go
throughoriginal network edges.Let G’ denotethe graph
obtainedby addingtheseexcessedges.

D1

excess edge for S1-D1

Fig. 5. The excessedgesaddedto make the multicommodity
flow alwaysfeasible. The costof eachexcessedgeis o, a
large constantwhile all otheredgeshave costone.

Now, let x;(e) denotea real-valuedvariable,denoting
the amountof commodity: thatis routedthroughedgee.
Then,themulticommaodityproblemto be solvedfor graph
G'isto

minimize Z (cost(e) i xi(e))

subjectto thefollowing constraints:
« capacityconstraintsare satisfiedfor all edges—ife is
notanexcessedgethen>¥ | z;(e) < cap(e),
« theflow for eachcommodityis consered at all nodes,
exceptthe correspondingngressandegressnodes,

« theamountof commodityi reachingits destination;,
is B;.

The outputof the multicommaodityflow computationis
the valuesfor the variablesz;(e). We usethesevalues
to seta pre-allocationof e’'s capacityfor variousflows.
In otherwords, z;(e) partof e's capacitywill be usedby
the online algorithmto routeflows belongingto thetraffic
classi. In summarythe multi-commodityphaseof theal-
gorithmdeterminesadmissioncontrol thresholdgor each
traffic classandcomputegpre-allocatiorof link capacities
to maximizenetwork utilization. Theonlineroutingphase
of thealgorithmis describedhext.

B. OnlinePath Selectiorfor LSPRequests

The input to this phaseof the algorithm s the input
graphG = (V, F), wherefor eachedgee € FE, we keep
track of the residualcapacityr;(e) for eachtraffic class
j = 1,2,...,k. (Notethantheseresidualcapacitiesare
pertraffic class,not perflow.) Theinitial valuefor r;(e)
is setto z (e), whichis theoutputof the multi-commodity
preprocessinghase. The algorithmthen processan on-
line sequencef LSP setup requestsid, s;, d;, b;), where
id is the requestiD, s; is the ingress(source)router d;
is the egress(destinationyouter andb; is the bandwidth
requestedor the LSP. We assumeéhat eachLSP canbe
mappedby theingressrouters;) to auniquetraffic class.
Our online routing algorithm runs on the reducedgraph,
which usesthe pre-allocatedcapacitiescorrespondingo
thisclass.In thisreducedyraph,we selectaminimumhop
pathbetweens; andd;, if oneexists.

PROFILE BASED ROUTING

Input: Theinput graphG = (V, E). For eachedgee,
we maintainresidualcapacityr;(e) for eachcommodity
(traffic class)j = 1.2,..., k. TheLSPrequesis between
aningress-gresspair s, d, andthe bandwidthrequirement
is b. Let j bethetraffic classto whichthis LSPbelongs.

Output: A pathfrom s andd, suchthat for eachedge
e alongthis paththerehad beenr;(e) > b (during the
algorithm,r;(e) is updatedo containthe updatedesidual
bandwidth).

Algorithm:

1. Deletefrom G all edgese for whichr;(e) < b. (These
edgeshave insuficient residualcapacityfor class;.)

2. Inthereducedyraph find apath P with minimumnum-
berof hops,usinga breadthfirst searchfrom s to d.

3. For eachedgee in the path P, decreasehe residual
capacityr;(e) by b.

4. RouteLSP (s, d, b) alongthepath P.



C. Compleity Analysis

If the network has N nodesand M edgesthe breadth
first searchalgorithmcomputesa shortespathin O(N +
M) time. This is a lineartime algorithm, and shouldbe
seseral ordersof magnitudefasterthan the MIRA algo-
rithm, which needsto performseveral hundred(as mary
as the numberof ingress-gresspairs) maxflov compu-
tations. Each maxflowcomputationitself takes O(N?)
time Thus, during path selectionphase,our algorithm
hasthe samerun time compleity as the currently used
shortestpath algorithm. Our algorithmis fasterthanthe
widestshortestpathrouting algorithm,becausehatalgo-
rithm mustexecutea Dijkstra style shortespathcomputa-
tion.

Thepreprocessinghaseof our algorithmsolvesamin-
imum costmulti-commodityflow problem,which canbe
slow. But that step can be executedoffline, and does
not requirerecomputatiorunlessthe network information
changessuchasingress-gresspairs or their traffic pro-
file. Thosechangesare very infrequent. Thus, our al-
gorithm needsoccasionaheary preprocessingo build a
pre-allocationtable, which it usesto run the online path
selectionphase.

VIIl. PERFORMANCE RESULTS

Without real network topologiesand large amountsof
traffic data,it is difficult to performmeaningfulandcon-
clusive experiments. We will follow the tradition setby
otherauthors,and perform experimentson several hand-
crafted topologies, using both worst-caseand synthetic
flow data. We presentqualitatve aswell as quantitatve
evidencefor why we believe our Profile-BasedRoutingal-
gorithmshould(anddoes)performbetterthanothers.One
very attractve featureof our algorithmis thatit is com-
putationallyasefficient asthe shortespathor widestpath
routing,andsubstantiallyfasterthanMIRA.

We usedfour network topologiesto measurehe per
formanceof our Profile-BasedRouting (PBR) algorithm.
Thefirst threetopologiesarethe oneswe usedfor illustra-
tion in SectionV. The fourth topology calledKL, is the
oneusedby KodialamandLakshmar8] in their experi-
ments. In the parkinglot topology (PL), all link capaci-
tiesaresetto 4800(to modelOC-48).In the concentrator
(CN) anddistributor (DS) topologieswe usedn = 5, and
scaledup all link capacitiesdoy 800. Thus,all links with
capacityl in Figure3 andcapacityl + ¢ in Figure4 be-
comelinks of capacity800, while thosewith capacityn
or n + 1 becomelinks of capacity4800. In the network
KL, all light edgeshave capacityl2, while darkoneshave
capacity48 (meantto modelOC-12andOC-48links, re-

spectvely). In their paper Kodialamand Lakshmanalso
usedascaled-uprersionof their network, in which capac-
ity of links 2—-3, 2-5, and 14-15is increasedo 48, and
thenall capacitiesaremultiplied by 100. Finally, we used
a publically available implementationof the minimum
cost multi-commaodity flow algorithm, PPRN package,
for our preprocessinghase(availableat http://www-
eio.upc.es/jca st ro/p prn .h tml ).

A. Worst-CaseResults

We did not have accesgo animplementatiorof MIRA
or WSPfor our studies,sowe comparedhe performance
of our algorithmwith the shortespathrouting. In the ab-
senceof thoseimplementationsye were also unableto
compareworst-casgerformancef thosealgorithms.We
can,however, infer their behaior on thethreeconstructed
network topologiesnamely the parkinglot (PL), thecon-
centrato{CN) andthedistributor (DS). Tablel documents
theseresults.

TABLE |
WORST-CASE PERFORMANCE IMPROVEMENT.
Graph| Total | RequestfRoutedby | Factorof
Name | Req. | SPF| MIRA | PBR | Improv.
PL 1+n| 1 1 n n
CN 2n n n 2n 2
DS 2n n n 2n 2

In the parkinglot topology (PL), if the first requestis
betweenthe nodesS, and Dy, thenall threealgorithms
(shortestpath, WSR and MIRA) acceptit, which blocks
all future requestgrom beingrouted. Our new algorithm
rejectsthe first requestandis thenableto satisfyall re-
mainingn requestdetweens; andD;. As the numberof
ingress-gresspairsn increaseshepercentagef network
utilized by shortespath,WSR or MIRA goesto zero.

Kodialamand Lakshmanalsoproposea costthreshold
(total weight < W) for admissioncontrol. However, that
modificationof MIRA alsodoesnt work for thistopology
sincenoneof the edgesusedby the first pathfrom Sy to
Dy arein the minimum cut of ary S;, D; pair, andconse-
guentlytheweightsof theseedgesemainzero.

In the concentratotopology (CN), a single requestof
sizen by sourceSy will beroutedby bothshortespathand
MIRA alongthe paththat goesthroughthe concentrator
nodeC', which thenblocksall future requestbetweens;
andD. InthiscasetheedgeC D is notfoundto becritical
by MIRA becauseét doesnot belongto the minimum cut
of ary singleingress-gresspair;it is only in theminimum
cutfor aclusterof ingress-gresspairs. Thus,in this case,



PBR routesall 2n units of traffic, while the other three
algorithmrouteonly n units.

Thesameperformancés alsoobsenedin thedistributor
topology(DS).

B. SimulationResults

We next carriedout a seriesof experimentsto measure
the performanceof PBR relative to the shortestpath al-
gorithm, usingrandomlygeneratedequestsequence.ln
eachexperimentwe generateé randomsequencef indi-
vidualflow requestsandmeasuredhe performancef our
profile basedoutingaswell asthe minimumhoprouting.
The performancavasmeasuredbothin termsof thenum-
berof flows routed,aswell asthetotal bandwidthrequest
thatwassatisfied.

Following Kodialamand Lakshman[8], we variedthe
bandwidthgequestedby individual flows betweenl and4.
This wasintendedto capturethe factthatindividual flow
requestaremuchsmallerthanlink capacities.However,
we alsoranteststo evaluatethe effect of largerindividual
flow bandwidths.

The individual flow requestsare generatedn propor
tion to their traffic profile data. Thatis, if a flow belongs
to traffic classi, andthe total bandwidthof class: is B;,
thenaflow from this classwasgeneratedvith probability
B;/ >, Bj. In somecasesthetraffic profile datawasgen-
eratedmanually In others,we usedthe multi-commodity
flow algorithm to find feasibleaggrgatedflows, which
were then usedas the profile data. Becauseof the ran-
dom processthe expectedamountof traffic requestedor
atraffic classwasarandomvariable,with meansetto the
profile valueof thatclass.

C. SPFRoutingvs. PBR

Clearly whenthenetwork is lightly loaded the shortest
pathrouting, or ary otherrouting, is expectedto do well.
The beneficialeffectsof admissioncontrolandgood path
selectionbecomeevidentonly whenthe network is atleast
partially congested.Towardsthis end, we first generated
enoughrequestghatalmostall pathsbetweerall ingress-
egresspairsweresaturatedThe numberof requestsatis-
fied atthis pointis usedasanindicationof how important
pathselectionandadmissioncontrolarein improving the
network utilization. In eachexperiment theresultsareav-
eragedover severalrunssoasto smoothoutary effectsof
randomrequesgeneration.

Tablell shavs the resultsof this experiment,by mea-
suringthe total amountof bandwidththatis routedby the
two algorithms.

Tablelll shavs the resultsof the sameexperiment,but
this time measureshe total numberof flow requestghat

TABLE 1
TOTAL BANDWIDTH ROUTED BY THE SHORTEST PATH
ALGORITHM VS. PBR.

| Graph| SPF| PBR| Improvement|
CN 7,323 | 8,799 20.16%
DS 6,474 | 7,200 11.21%
KL 7.013 | 8,400 6.15%
KL2 | 7,863 | 8,400 6.83%
PL 14,686 | 23,999 63.41%

wereacceptedy the two algorithms. Thus,evenfor ran-
dom requeststhe PBR seemdo consistentlyoutperform
the shortespathalgorithm.

TABLE I
TOTAL NUMBER OF REQUESTS ROUTED BY THE SHORTEST
PATH ALGORITHM VS. PBR.

| Graph| SPF| PBR| Improvement|

CN 2,921 3,509 20.13%
DS 2,616 | 2,896 10.70%
KL 3,193 3,392 6.23%
KL2 3,137 | 3,355 6.95%
PL 6,017 | 9,570 59.05%

Our next experimenttried to evaluatethe effect of in-
creasinghesizeof the maximumbandwidthrequestedby
anindividual flow. In this experiment,theindividual flow
requestsveregeneratedvith arandombandwidthrequire-
mentin therangefrom 1 to 48 (thatis, the largestrequest
sizebeing1% of thelink capacity). The numberof flows
was proportionatelyreducedto keepthe total bandwidth
requestedhe same. The increasedandwidthsizedidn’t
malke muchdifference. TableslV and V shav thesere-
sults.

TABLE IV
TOTAL BANDWIDTH ROUTED: SHORTEST PATH VS. PBR
WHEN THE LARGEST BANDWIDTH REQUESTED BY AN
INDIVIDUAL FLOW IS 48.

| Graph| SPF| PBR]| Improvement||
CN 7,463 | 8,757 17.34%
DS 6,570 7,153 8.87%
KL 7,837 8,396 7.14%
KL2 7,907 8,399 6.22%
PL 15,319 23,991 56.61%
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TABLE V TABLE VI

TOTAL NUMBER OF REQUESTS ROUTED BY SHORTEST PATH FRACTION OF LINK CAPACITIES THAT CAN BE
ALGORITHM VS. PBR WHEN THE LARGEST BANDWIDTH POTENTIALLY WASTED DUE TO FRAGMENTATION, AS A
REQUESTED BY AN INDIVIDUAL FLOW IS 48. FUNCTION OF THE MAXIMUM SIZE OF INDIVIDUAL

REQUESTS. THE PERCENTAGE WASTE IS MEASURED AS THE
REDUCED AMOUNT OF TOTAL BANDWIDTH ROUTED AS
COMPARED TO THE OPTIMAL.

| Graph| SPF| PBR | Improvement||

CN 313 | 367 17.13%
DS 276 | 301 9.04% :
KL 322 | 347 7.64% Max. Flow Size
KL2 | 334| 354 6.08% Graph| 4| 12| 48] 192
PL 655| 990 50.99% CN 0|0.10| 0.49| 1.32
DS 0|0.26| 0.26| 3.57
KL 0 0| 0.012| 0.43
Thenumberof flow set-uprequestsatisfiedby bothal- KLz |0 0| 0.01]051
gorithmsarecomparedn TableV. Fragmentatiomf edge PL 0]0.01| 0.03]|0.38

capacitiesdoesnot seemto have ary significantimpact.
Theimprovementshavs a similar form asfor smallerre-
questsasseernin above tables.Theissueof fragmentation E. Toacceptor notto accept?

of edgecapacitiess discussedh detail later PBR imposesan admissioncontrol andjudiciously re-
jectsflow requestshatmight createsignificantbottlenecks
in the network. The obvious hope (and expectation)is
Assumingthatthe network traffic shavs shortor long- that the flows whose bottleneckwe are trying to avoid
term persistenpattern,the profile datashouldbe a good Will eventuallyberequestedWhathappensf thoseflows
predictorof theactualobseredtraffic. Let ussupposdor —arenotrequesteddn thatcase,PBR might have a lower
aminutethatthe flow requestsloselymatchedhetraffic  network utilization thata moremyopicroutingalgorithm,
profile usedby the algorithm. How closeis the perfor ~suchas the shortestpath algorithm. In order to evalu-
manceof PBR comparedo anoptimal (but offline) algo- ate this aspectof PBR, we decidedto take performance
rithm? The multi-commodityflow solutiongivesanupper Shapshotsat intermittenttimes during the online run of
boundon howv muchflow is routable,which may not be the algorithm. In otherwords, we measuredvhat frac-
achieved by our online algorithmdueto bandwidthfrag- tion of the incoming requestsvere acceptedat intenals
mentation The pre-allocations:;(e) areportionsof each 0f 10%, 30%, 50%, 70%, 90% of the total traffic. If PBR
link thatareresered for atraffic class but becaus¢hein- aggressiely imposesadmissioncontrol in the beginning
dividual flows have arbitrarybandwidthrequirementswe ~and saves network resourcedor flows that do not arrive
may endup resered capacitieon differentlinks thatare for a long time, its performanceshould be lower in the
insufiicient to routeanindividual requeswithoutsplitting ~ €arlydurationof therun. As TableVIl belov shavs thatit
it. How severeis the effect of this bandwidthfragmenta- doesnottake longfor theadmissiorcontrolof PBRto pay
tion? A measuremendf this may indicatehow closeto Off. Exceptfor oneminusculedropin theKL topology the
optimaldoesPBR come? numberof requestsacceptedy PBR alwaysseemdo be
In this experiment, we generatedndividual requests morethanthe numberacceptedy the shortespathalgo-
with randombandwidthrequirementsn the rangefrom 1 rithm.
to max. Fourvaluesof max, namely 4, 12,48 and 192,
wereusedandfor eachvalue,thetotal numberof requests
generatedvasscaleddown so asto keeptotal bandwidth ~ We presenteda nenv Profile-BasedRouting algorithm
requestedhboutthe same. Table VI shaws theseresults. for dynamicrouting of bandwidthguaranteegbaths. The
As expectedthe amountof bandwidthpotentiallywasted onlineroutingphaseof thealgorithmis assimpleandcom-
dueto fragmentationincreasesvith largerrequestshutthe putationallyefficient asthe commonlyusedmin hoprout-
degradationis quite small for even very large individual ing or the widestshortestpathrouting, andit is substan-
flow requestg4% of thelink capacity). Eventhen,there tially fasterthantherecentlyproposedninimum interfer
remainsasubstantiahetgainfor Profile-BasedRoutingin  encerouting algorithm[8]. Our algorithmimproves net-
all thescenarios. work utilization, andacceptanore flows thantheseother

D. Curseof BandwidthFragmentation

IX. CONCLUDING REMARKS AND EXTENSIONS



TABLE VII
PERFORMANCE IMPROVEMENT OF PBR OVER THE
SHORTEST PATH ALGORITHM AT VARIOUS POINTS DURING
THE RUN OF THE ALGORITHM.

Fractionof requests
Graph O.1| 0.3| O.5| O.7| 0.9
CN 0 0 0| 15.03| 25.79
DS 0| 241| 6.82| 14.22| 20.14
PL 0 0 0| 23.02| 62.32
KL 0 0|-0.38| 854| 6.34
KL2 0 0 0| 6.11| 7.19

algorithms becausef its improved pathselectionandad-
missioncontrol. The algorithmtakes adwantageof quasi-
staticinformation aboutthe network andtraffic in an of-
fline preprocessinghase,whoseoutputis usedto both
guide our online path selectionalgorithm aswell asim-
poseadmissiorcontrol. In particular ouralgorithmis able
to spotpotentialbottlenecKinks thatmaybein themin cut
of “clusters” of ingress-gresspairs(cf. concentratoand
distributor topologies),as opposedo single pairsidenti-
fied by MIRA.

The multi-commodity preprocessingramavork pro-
posedin our paperis quite powerful and admitsnumer
ous extensionsand generalizationwhich can be usedto
implementadditional policies and requirements. Justto
illustratetheideas we mentiontwo suchextensions.

o [Minimum ServicelLevell Supposea serviceprovider
wantsto ensurethat a bursty traffic classrecevesat least
a guaranteedaninimum level of service. In otherwords,
while the expectedbandwidthof a traffic classi might be
B;, the serviceprovider wantsto ensurethat at least M;
level of bandwidthis guaranteediuring a certaintime pe-
riod. We canimplementthis requiremenby usinga dif-
ferentcostfunctionin the objectve functionof our multi-
commodity formulation. The objective function is aug-
mentedby anadditive term C' which kicksin if morethan
B;— M; unitsareroutedalongtheexcessedge correspond-
ing to thistraffic class.

e [Imposing Fairnesp A flow routing algorithm can
achieve large network utilization, but may unfairly punish
someclientsby rejectinga disproportionateshareof their
flows. Serviceproviderscanimplementa minimum level
of fairnessby ensuringthat a given set of traffic classes
eachrecevesa proportionateshareof total bandwidth.For
atraffic classj, we adda?i =i to our objective function,
whichis exponentiain thebandwidthnotrouted for atun-
ableparametery. Thisguaranteethatoneclassreceving
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anunfairly low bandwidthallocationleadsto a steepcost,
andwill beavoided.
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