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ABSTRACT

Application-level multicast is a new mechanism for enabling
multicast in the Internet. Driven by the fast growth of net-
work audio/video streams, application-level multicast has
become increasingly important for its efficiency of data de-
livery and its ability of providing value-added services to
satisfy application specific requirements. From a network
design perspective, application-level multicast differs drasti-
cally from traditional IP multicast in its network cost model
and routing strategies. We present these differences and for-
mulate them as a network design problem consisting of two
parts: one is bandwidth assignment in the overlay network,
the other is load-balancing multicast routing with delay con-
straints. We use analytical methods and simulations to show
that our design solution is a valid and cost-effective ap-
proach. Simulation results show that we are able to achieve
network utilization within 10% of the best possible utiliza-
tion while keeping the session rejection rate low.

Keywords
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1. INTRODUCTION

IP multicast and its various companion problems such as
reliable transport and multicast security, have been hot re-
search topics in recent years. Although many innovative
approaches have been developed, the deployment of IP mul-
ticast in the Internet has not been easy. In fact, except
for the Mbone [6], there is no global multicast infrastruc-
ture available. The most cited problems preventing ISPs
from deploying a multicast-enabled network include: the
complexity of most multicast routing protocols and their
implementations; the lack of a scalable inter-domain rout-
ing protocol; and the lack of support in access control and
transport services.
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Despite these difficulties, it is undeniable that multicast
is an efficient transmission mechanism to reduce network
load for very large groups and save transmission time and
bandwidth for data sources even in small multicast groups.
Recently, research efforts have emerged in two areas: one
is to simplify the IP multicast model to enable very large
scale single source multicast [12,13]; and the other is to
build an overlay multicast tree among session participants
(end-systems or proxy servers) and unicast data along tree
links. We categorize the latter as application level multicast®
[1,2,7,14].

Besides the push from content distribution networks, ap-
plication level multicast also suits other multicast applica-
tions such as video conferencing, data replication services,
etc. These applications typically have many-to-many se-
mantics and/or interactive sessions, and session entities can
vary widely in their processing power and network connec-
tivity. In [16], we proposed AMcast as a common service
layer to facilitate multipoint applications without the need
of native network support. The key idea in AMecast is to
deploy application servers to aggregate datagrams from end
users and tunnel packets to servers in other domains. Logi-
cally, servers create a virtual multicast tree among all server
participants of a session, and spawn a star topology from
each server to its end users. The advantage of such an
architecture is that end users send or receive exactly one
copy of all packets disseminated over the session, and the
work of duplicating packets is shifted from data sources to
all session servers. Given the fast development of optical
communication infrastructure, the capacity of backbone or
core networks are progressing much faster than interconnec-
tions from home-users or business corporations to their ISPs.
Meanwhile, server clusters, such as web servers, caching
servers and others are also speeding up their network con-
nections into gigabit ranges, thereby creating incentives for
our AMcast model.

In this paper, we focus on the network design aspects of
multicast overlay networks. In AMcast, bandwidth in the
backbone network is assumed to be plentiful, while the lim-
itations on server processing power and network interface
bandwidth are system bottlenecks because servers behave
as application-level routers, which have to both forward and
duplicate packets. For the purpose of this study, we also as-
sume that these servers have enough cpU power for process-

! Although data relay does not necessarily happen purely at
the application layer, we use it as a general term referring
to self-organizing multicast overlay network



ing packets and saturating their interfaces at link rate, but
they may not have enough access bandwidth when traffic
load is heavy. This assumption is typically true for most of
today’s server clusters which negotiate with ISPs for service
level agreements at certain prices.

The design process described in this paper includes two
components: one is to quantify traffic load at servers ac-
cording to a session traffic model and assign proper access
bandwidth to each server site. We refer to this step as the
dimensioning process; the other component is to devise mul-
ticast routing algorithms that make the best use of the above
dimensioned network, subject to routing constraints such as
end-to-end delay bounds. We show that by closely combin-
ing the dimensioning process with a load balancing routing
algorithm, we can achieve high overall network utilization of
within 10% of the theoretical lower bound with low session
rejection rate, i.e. only a small fraction of sessions fail to
satisfy the delay constraint.

The rest of the paper is organized as follows: in section 2,
we describe our design objectives and steps taken in our
design approaches; in sections 3 and 4, we formalize the
problems and present our algorithms for multicast routing
and bandwidth dimensioning, respectively. In section 5, we
use simulation to evaluate these algorithms; in section 6, we
compare our work to other related works and then conclude
in section 7.

2. DESIGN OBJECTIVES AND APPROACHES

Overlay multicast networks differ from traditional net-
works in several ways, leading to differences in how they
are best configured and operated. These main differences
are:

e Network reachability: The overlay network among

end points in application-level multicast is a fully meshed

network, as each node is able to reach everybody else in
the network via unicast connections. Therefore, unlike
in IP multicast where a path from one router to an-
other is defined by its physical connectivity, an n-node
application multicast session could have n™~2 different
spanning trees.

e Network cost: Historically, the cost of a network is
determined largely by the summation of individual link
costs. This is certainly true for network providers who
have to physically deploy the links or lease them from
others. But from an application or application server’s
point of view, network cost is actually the total amount
paid to gain access bandwidth at each service provider’s
site to the backbone network. This divergence of cost
metric has a deep impact on both design and routing
strategies.

e Routing constraints: Traditional IP multicast routes
through a shortest path tree to minimize average de-
lay from source to members, i.e. reducing the number
of links needed to carry session traffic. Building the
network at the application layer gives the flexibility of
matching routing strategies to application needs. For
applications such as streaming media or conferencing,
a routing strategy that produces bounded delay be-
tween any pair of participants results in significantly
higher quality from an application’s perspective.

This paper addresses two problems. First, given a server-
network topology and a set of traffic assumptions, we want
to find an assignment of network access bandwidth to each
server subject to a fixed overall bandwidth constraint. Sec-
ond, given the above dimensioned server network, we want
to devise a routing algorithm that dynamically routes mul-
ticast sessions and makes the best use of the available net-
work resources so as to accommodate the maximum number
of sessions as well as satisfying the application delay con-
straint. The two problems interact. The dimensioning pro-
cess must know the intrinsic property of a routing algorithm
such as the possible traffic concentration points, and assign
bandwidth to servers accordingly. On the other hand, the
performance of a routing algorithm is significantly affected
by the difference between the bandwidth assignment in the
underlying network and the actual traffic load.

It is reasonable to question the network efficiency of our
approach vs. traditional IP multicast. It is obvious that
by tunneling multicast packets through unicast connections,
there are duplicated packets on physical links, notably from
a server’s local interface to the branching point of two uni-
cast connections in the network. This discrepancy in effi-
ciency is potentially significant if the size of multicast ses-
sion is very large [3]. However, for AMcast virtual network,
we envision the number of server clusters is within the range
of tens or hundreds to at most lower thousands world-wide,
with each cluster consisting of a large number of processing
units. In [14], we have quantified through simulation the
efficiency ratio of virtual overlay multicast trees vs. IP mul-
ticast trees. In a 6000 node network, the cost of a virtual
multicast tree on 50 randomly distributed nodes, is within
1.5 times the cost of a IP multicast tree, where the cost is
measured as the number of links traversed by each packet.
While it would certainly be more efficient to provide mul-
ticast as a native IP service, in the absence of a widely de-
ployed IP multicast service, the overlay approach can be
useful.

3. MULTICAST ROUTING ALGORITHMS

In this section, we present two multicast routing algo-
rithms for the AMcast overlay network. There are two main
performance objectives for the routing algorithms. First,
they should use network resources efficiently, in order to
carry as much traffic as possible; Second, they should keep
the end-to-end delay as low as possible, i.e. keeping the tree
diameter small. Unfortunately, these two objectives are or-
thogonal: a small diameter tree creates traffic concentration
on nodes that are at the center of the topology, and conse-
quently these nodes become bottlenecks of the system; on
the other hand, increasing overall utilization typically means
to distribute load more evenly across servers which results
in longer path and longer delay. Although it is impossible
to optimize both parameters at the same time, we can in-
stead fix a target bound for one objective while optimizing
on the other. This leads us to design two alternative routing
algorithms.

3.1 Algorithm for Delay Optimization

We first formulate the routing problem to minimize the
end-to-end delay of a multicast tree while satisfying each
server’s access bandwidth constraint. Each link in the mul-
ticast tree is assumed to require some specific amount of
bandwidth b, so if a server has degree d in the multicast



tree, it will require at least d * b units of access bandwidth.
This leads to the following problem formulation.

DEFINITION 1. Minimum diameter, degree-bounded
spanning tree (MDDBST)

Given an undirected complete graph G = (V, E), a degree
bound dmae(v) € N for each vertex v € V; a cost c(e) € zZt
for each edge e € E. Find a spanning tree T of G such that
for each v € T, degree of v satisfies dr(v) < dmaz(v) and
the diameter of T dia(T), which is the cost of the longest
simple path in T, is minimized.

Much previous research has been done on related prob-
lems. In [11], Ho et al. proved that in geometric space, there
exists a minimum diameter spanning tree in which there are
at most two interior points (non-leaf nodes) and the optimal
tree can be found in O(n®) time. Hassin and Tamir estab-
lished in [10], that for a general graph, a minimum diameter
spanning tree problem is identical to the absolute 1-center
problem introduced by Hakimi [9] and as such, a solution can
be found in O(mn+n?logn), where n is the number of nodes
and m the number of edges. In [11] and [15] respectively,
they prove that minimum diameter, minimum spanning tree
and minimum maximum degree, minimum spanning tree are
both NP-complete.

THEOREM 1. The decision version of MDDBST— finding a
spanning tree with diameter bound B and a degree constraint
dmaz (V) for each node, is NP-complete, for 2 < dmaz(v) <
V] —1.

Proof:  Clearly, the problem is in NP, since we can ver-
ify in polynomial time if a candidate solution satisfies both
the diameter and degree constraints. For the special case
where dmaz(v) = 2 for all v € V, the problem is the same
as the Traveling Salesman Problem(TSP) [8]. We reduce
from the TSP problem for the general case of dmaz(v) > 2.
Let G = (V, E) be the graph of a TSP instance. We trans-
form G to G' = (V',E’) by adding dmaz(v) — 2 vertices
ULy .oy Uy, (v)—2 10 €ach v € V. We join each of these new
vertices u; to v with an edge length of 0; All other edges
from wu; have length B + 1, so that G’ is still a complete
graph. Now, the MDDBST instance in G’ has a spanning tree
of diameter B if and only if the TSP instance in G has a
path joining all the vertices of length B. [

3.1.1 Heuristic Algorithm for MDDBST

We have developed a heuristic algorithm for the MDDBST
problem, which is a greedy algorithm similar to Prim’s algo-
rithm for Minimum Spanning Tree [4]. Figure 1 shows the
steps of the algorithm. We denote d(v) as the longest path of
v to any other nodes in 7. Similarly to Prim’s algorithm, we
start from a single root node. At each step when adding a
new node u to the existing component T', we select the node
that has the smallest 6(u). Then, we update the nodes in
the existing component that have changed their longest path
because of the new node, §(v) = maxz(§(v), distr(u,v)). Fi-
nally, for each node v not in the component, we update its
parent to node ¢ which, without violating the degree con-
straint, gives v the smallest longest path.

The algorithm fails when it finishes with some vertices
having é(v) = co, meaning that we cannot build a spanning
tree with the specified set of degree constraints. There are
two occasions for this to happen: one is that the total de-
gree constraints can be less than 2 * (|]V| — 1), which is the

minimum total degree required for a session spanning tree;
the other is that during the progress of the algorithm, a leaf
node maybe added to the current tree component and con-
sumes all the spare degrees of the component, leaving the
rest of the nodes disconnected. Both of these failures do not
occur very often in a real system, as the degree constraints
for each session are usually generous enough to avoid them.
Only when the system is extremely highly loaded, some or
all of the nodes may have stringent degree constraints which
cause the algorithm to fail. We can perform a simple fea-
sibility test on the summation of the degree constraints to
identify the first type of failure. To remedy the second type
of failure, we can add a count of the spare degree of the tree
component and defer the addition of a leaf node if it reduces
the count to zero.

Input:
G = (V, E)
Edge cost c(u,v), for u,v eV
Degree constraints dmaz(v)
Output: T with the smallest diameter
foreach r €V
foreach v eV
6(v) = c(r,v);
p(v) =73
T = (W={r}, L={});
while (W #V)
let u € V — W be the vertex with smallest §(u);
W =W U{u}; L = LU{{u, p(u)}};
foreach v € W — {u}
d(v) = maz{d(v), distr (u,v)};
foreach v eV — W
6(v) = o0;
foreach g € W
if degree(q) < dmax(q) and c(v,q) +d(q) < 6(v)
5(v) = c(v,q) +(q);
p(v) =¢;

Figure 1: Heuristic Algorithm for MDDBST

During the updating phase, it requires O(n) time to up-
date the new longest path for each v € W; and O(n?) time
to find the new parent for each v ¢ W. And the total run-
ning time of the greedy algorithm is O(n®). We analyze its
performance ratio in terms of the tree diameter. Let Agreedy
and A* denote the tree diameter constructed by the greedy
algorithm and an optimal solution, respectively. And let
d™" = min(dmaz (1)) and d™* = maz(dmaz(u)).

LEMMA 1. If the ratio of edge weights is bounded by e €
Z%, and the degree constraints satisfy 2 < d™" < d™** < d
for a constant d < |V| — 1, then Agreeay < O(k)A*, where
k = elog min d™".

Proof: ~ Without loss of generality, let the smallest edge
weight be 1 and the largest edge weight €. The optimal so-
lution achieves A* > 210g  ma- n. Now, let’s assume a simple
algorithm A for constructing a spanning tree: at each step
of adding a new node, A simply selects a node to maxi-
mize the degree of u € T without consideration of the tree
diameter. In the worst case, Ay < 2e(log min n). We ob-
serve that Agreedy < A4, since when adding a new node,
the greedy algorithm always attempts to select the one node
which will result in the smallest diameter increase. There-
fore, Agreedy < O(k)X", where k = 2elog min d™*. O



We further evaluate the MDDBST algorithm through sim-
ulation in section 5. There, we used a topology close to
a real network. We observe that the MDDBST algorithm is
capable of creating multicast tree with small delay but is
lack of the ability to distribute traffic load across servers.
Consequently, the utilization of the system is low and the
session rejection rate is high. A session request is rejected if
it arrives at a server which does not have any spare band-
width. This suggests that if we can distribute the work on
heavily loaded servers to others who are nearby but are less
loaded, we can prevent the bottleneck servers from “chok-
ing” and reduce the session rejection rate. We introduce a
load-balancing routing algorithm that utilizes this idea.

3.2 Load Balancing Routing Strategy

DEFINITION 2. Bounded diameter, residual-balanced
spanning tree (BDRBST)

Given an undirected complete graph G = (V, E), a degree
bound dmaz(v) for each v € V; a cost c(e) € Zt for each
e € E; a bound B € Z1. Find a spanning tree T of G that
dr (v) < dmaz(v), for each v € V; diameter of T dia(T) < B
and mazimize min(dmaz(v) — dr(v)).

The above problem is also NP-complete, since its special
case when every node has a degree of two, corresponds to
the decision version of the TSP problem.

The residual bandwidth of a server is dmaaz(v) — dr(v).
By maximizing the minimum of the residual bandwidth, we
give the bottleneck server a better chance to serve other ses-
sions if requested. Overall, this increases the total load that
the system can handle at the cost of increased end-to-end
delay. In order to distribute load while still satisfying the
constraint of end-to-end delay, we introduce a balance factor
M to denote the tradeoff between diameter and load balanc-
ing. We vary the previous MDDBST algorithm to take into
account this balance factor: at each step when adding a new
node, instead of selecting the one node that has the small-
est 0(v), we select a set of M smallest nodes and choose one
of them that maximizes the minimal residual bandwidth of
these M nodes and their parent nodes. If M = 1, this al-
gorithm is the same as the one shown in Figure 1. On the
other hand, if M equals the number of servers in a multicast
session, then the algorithm considers load balancing as the
sole routing criteria and serves as an approximation algo-
rithm for BDRBST. For intermediate values of M, it takes
both parameters into account. We have found that small
values of M (e.g. 5) provide good load balance while still
meeting the diameter bound.

We have also considered a slightly different version of the
BDRBST algorithm which maximizes the proportional resid-
ual bandwidth at each server. We define it as follows.

DEFINITION 3. Bounded diameter, residual fraction-
balanced spanning tree (BDRFBST)

Given an undirected complete graph G = (V, E), a degree
bound dmaz(v) for each v € V; a cost c(e) € Z1 for each
e € E; a bound B € Z1. Find a spanning tree T of G that
dr (v) < dmaz(v), for each v € V; diameter of T dia(T) < B

dinos (v)—d7 () )

and mazimize min (=2 o)
max

However, in most of the simulations, BDRFBST consistently
performs worse than BDRBST, as shown in Figure 11. There-
fore, we will not discuss it any further in the rest of the
simulations.

4. DIMENSIONING SERVER ACCESS
BANDWIDTH

In this section, we describe the dimensioning process. The
main objective is that given a topology and a traffic model,
we want to assign access bandwidth to individual servers
(subject to a fixed total), such that a specific routing algo-
rithm will best utilize the allocated bandwidth. In other
words, the dimensioning process creates the degree con-
straints, as described earlier in the routing algorithms, for
individual servers.

There are two important parameters involved in the pro-
cess: a) the location, or the topology of AMcast servers;
and b) the traffic model used for bandwidth dimensioning.
For the purpose of this study, we have made statistical as-
sumptions on these parameters since closely modeling them
as they are in the real networks is a separate and complex
issue beyond the scope of this paper.

4.1 Dimensioning to Minimize Delay

When there is no degree constraints on servers, the quality
of a multicast tree is characterized by its diameter, which is
to provide the best possible multicast tree for applications.
Therefore, we construct the multicast tree as a minimum-
diameter spanning tree.

Figure 2 shows an example of a dimensioned server net-
work. The topology is derived from a geographic map of 50
largest metropolitan areas in US [17] and link delay is calcu-
lated as the geographical distances between cities. We model
session requests as a Poisson process and session fanout as a
Binomial distribution with mean equal to 10. We compute
the average traffic load of each server during the whole simu-
lation time. The total network bandwidth capacity is 10,000
units, which is allocated to individual servers proportional
to its traffic load. There are two factors impact the traffic
load distribution across the servers. One is the number of
sessions that a server will participate in (a server partici-
pates in a session if one of the users in its service area is a
participant); the other is the location of a server which de-
cides the degree of a server in a multicast tree. A geocentric
server typically has a larger degree since it acts as a transit
hop for nodes on both sides. Therefore, the traffic load on
servers in larger metro areas and servers in the center of the
topology is expected to be heavy. Figure 2 illustrates this
effect.

The servers are ordered on x-axis by their population. The
overall trend is that servers in larger areas receive higher
bandwidth, while servers at the center of the US continent
also receive significantly more bandwidth. For example,
Chicago has about 43% of New York’s population but re-
ceives 1.3 times more bandwidth.

4.2 Dimensioning for Specific Routing Algorithms

For a specific routing algorithm to perform well, we need
to allocate bandwidth as close as possible to how the rout-
ing algorithm will use them under the presumptive traffic
load. The previous delay-based dimensioning has created a
configured network, over which we can route the traffic once
more using the actual load balancing routing algorithm.

Respectively, let C; and C; be the capacity assigned to
each server after one (delay-based dimensioning) and two
(routing algorithm specific dimensioning) rounds. We re-

assign bandwidth capacity C] = L§ + Z—nRgL, where n is the
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Figure 2: Dimension of Server Access Bandwidth

number of servers, L{ the carried load of each server dur-
ing the second round of dimensioning and R the average
residual bandwidth of server 7 in the second round. Intu-
itively, the algorithm converges since the load balancing al-
gorithm always tries to equalize the residual bandwidth of
each server by adding more transit traffic to servers with
available capacities while offloading smaller servers, and the
dimensioning algorithm also reduces the excess capacities of
big servers and add them to those whose bandwidth are less
abundant.

Through simulation, we show that by tightly coupling the
dimensioning process to the routing algorithm, we improve
on the overall network utilization.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the two
routing algorithm in two aspects: one is the tree diameter,
the other is the network utilization. We have selected the 50
most populated metropolitan areas in the United States [17]
as the server network topology. Throughout the simulation,
we also used geographic distance between cities as edge cost.

5.1 Performance on Tree Diameter

Figure 3 shows the simulated multicast tree diameter of
MDDBST by restraining a node’s degree as a binomial ran-
dom distribution with mean p. In each simulation run, we
randomly select over the 50 cities a fixed fanout (or session
size), shown as x-axis. The y-axis shows the ratio between
multicast tree diameter and the geographical distance of two
furthest apart cities in a session, which is also the optimum
of end-to-end delay for the session. The results clearly shows
that our heuristic algorithm works very well with the largest
end-to-end delay no more than 1.25 times the optimum. For
smaller degree bound, the spanning tree is more likely to be
long legged, thus longer diameter. On the other hand, as the
density of the session increases, closeby nodes are connected
to each other if its degree bound allows, which results in a
shorter diameter.

Figure 4 shows the performance on tree diameter of the
BDRBST algorithm. We use the same 50-city network as de-
scribed previously, and we use a binomial distribution with
mean = 7 as degree bound for each node and a diameter
bound of 8,000 kilometers (or roughly 40ms one-way delay).
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Figure 4: BDRBST Performance on Tree Diameter

By varying the balance factor M, we illustrate the tradeoff
between load-balancing and tree diameter in the BDRBST al-
gorithm. Clearly, we can see that the more we lean towards
load balancing, i.e. a larger M, the longer the tree diame-
ter. Nevertheless, we are able to construct a spanning tree
to meet the diameter bound for all M. This is partly due to
that 8,000 km is a generous bound enough to cover coast-to-
coast propagation delay for the entire nation, yet it is also a
reasonable bound from an application stand point of view.
Therefore, for the rest of simulation sets, we mainly focus on
the load balancing part of the algorithm and merely ensure
that the diameter bound is always satisfied.

5.2 Performance on Load Balancing

In this simulation, we assume traffic density on a server is
proportional to the population of its service area and accord-
ingly, we select the probability of a server participating in
a given AMcast session. Although such assumption is quite
simplistic and may not reflect the actual traffic pattern, it
sets up a traffic model that we can apply consistently in
both the dimensioning and routing process. Neither of the
two algorithm’s operation depends on the traffic model, and



we also demonstrate network performance when the pro-
jected traffic in network dimensioning differs from the ac-
tual routed traffic. We model the dynamic session requests
and removals as Poisson session arrivals with Pareto session
service time. We generate session fanout as a binomial dis-
tribution with mean equals to 10. Each session is assumed
to consume one unit bandwidth per tree link.

In order to focus on more important aspects of the sim-
ulations, we have fixed several parameters through various
simulations, shown in appendix A.

e Value of load balancing factor M. We found that with
a small M, typically 2 or 5, the load balancing achieves
full-fledged performance gain, while further increase of
M only has diminishing effects. As a small M also has
advantage in reducing the complexity of the algorithm,
we chose M equal to 5 in following simulations.

e Overall bandwidth capacity. This parameter affects
directly the session rejection rate, the larger the total
capacity the smaller rejection rate. From Figure 11,
we chose to use the mid-range capacity of roughly 200
session bandwidth unit per server for further simula-
tion.

5.2.1 Performance under Different Dimensioning Strate-
gies

We evaluate AMcast network performance by examine
session rejection rate under a dynamic traffic load. The
network is configured using the dimensioning algorithm de-
scribed in section 4. We show the performance of BDRBST
algorithm over two differently dimensioned network, one is
delay-based dimensioning, the other uses BDRBST-specific di-
mensioning strategy.
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Figure 5: Performance Comparison of Dimensioning
Strategies

Figure 5 shows the performance of MDDBST and BDRBST
algorithms. Additionally, we computed a theoretical lower
bound of the whole system. The lower-bound is computed
by emulating a single queuing system where the total server
bandwidth amounts to the queue size and each session cor-
responds to a message whose size equals to the session size.
Although this lower bound is not very tight, it gives an in-
dication of the best achievable utilization for any routing
algorithm.

As described earlier, MDDBST generates the multicast tree
without any consideration of server load balancing but only
considers the maximum server capacity constraint. Clearly,
it does not have any adaptiveness to load variance across
servers and performs poorly as expected. If we expect our
system to operate at rejection ratio of 1 every 10,000 ses-
sions, we can only carry traffic amounts to 44% of total
network capacity using vanilla MDDBST. On the other hand,
BDRBST outperforms MDDBST significantly. For the network
to operate at the same rejection ratio, BDRBST gives a 50%
gain over MDDBST and allows the network to operate at a
more reasonable load. This suggests that it is worthwhile to
endure a little higher delay in order to achieve a higher sys-
tem utilization. Additionally, the different bandwidth allo-
cation strategies also indicate that the closer the dimension-
ing process is tied with the routing algorithm, the better the
performance. When dimensioned with BDRBST-specific as-
signment, the performance of BDRBST algorithm approaches
within 10% of the lower bound.

5.2.2 Performance of Handling Traffic Noise

The real challenge of designing a robust routing algorithm
is when the assumed traffic pattern does not agree with the
actual load. This is certainly the case here as our assumption
of traffic proportional to city population is quite simplistic.
In order to examine the network performance under varied
conditions, we have added Gaussian noise to each city’s pop-
ulation, thus changing their probabilities of participating a
multicast session and traffic intensity across the network.
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Figure 6: MDDBST Algorithm Under Traffic Noise

Figure 6, 7 and 8 depict the performance of the two algo-
rithms when handling traffic noise. For the desired network
operation point of 10™% rejection ratio, a 50% noise results
about 15% performance drop at most for both algorithms.
The relative performance across two network configurations
is also preserved as traffic noise increases.

6. RELATED WORK

Application-level multicast is a general term referring to
self-organization of overlay multicast network. It is also a
very young area with much potentials, both for research and
commercial users, and thus has received increasing attention
recently. Previously, we have proposed a version of AMcast
at end systems called ALMI [14], which employs centralized
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Figure 7: BDRBST Over Delay-based Dimensioned
Network with Traffic Noise
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Figure 8: BDRBST Over Specifically Dimensioned
Network with Traffic Noise

control and focuses more on value added middleware func-
tions. The goal then was to allow small groups create inter-
active sessions with low to moderate bandwidth. AMcast
is a logical extension after that to provide an infrastructure
service for the Internet. There are several other overlay mul-
ticast architecture in the recent literatures, which we discuss
below.

Yallcast [7], aims to extend the Internet multicast archi-
tecture and defines a set of protocols for host-based content
distribution either through tunneled unicast connections or
IP multicast wherever available. It uses a rendezvous host
to bootstrap group members into the multicast tree. The
functionality of the rendezvous host is to inform new mem-
bers about several current members in the tree but the ren-
dezvous host is not connected to the multicast data paths.
Yallcast creates a shared multicast tree using a distributed
routing protocol. It also maintains a mesh topology among
group members to ensure that the multicast group is not
partitioned. Overall, Yallcast envisions the deployment of
IP multicast within small “network islands” and provides a
rudimentary architecture for global multicast.

In contrast to Yallcast, Endsystem Multicast [2] is aiming
towards small and sparse group communication applications

much like ALMI does. In Endsystem Multicast, group mem-
bers are self-organized into multicast trees using a routing
protocol similar to DVMRP [5] that creates source-based
multicast tress. It require members to periodically broad-
cast refresh messages to keep the multicast tree partition
free. A companion protocol of Endsystem Multicast is called
Narada, which focuses on optimizing the efficiency of the
overlay in terms of delay bounds based on end-to-end mea-
surements.

Scattercast [1] is an application-level infrastructure ser-
vice engineered for content distribution. It uses shortest
path routing to build source-rooted distribution trees. In
order to build a routing table at the application level, a
mesh is first built among multicast proxies using a proto-
col called Gossamer for neighbor discovery. Additionally, a
customizable transport is defined in Scattercast, which pri-
oritizes application data based on their content, for example
text data is prioritized for reliability, while losses in image
data are ignored to some extent.

All three of the above schemes try to leverage the existing
multicast routing protocols and re-apply them at the appli-
cation level. Although, at the application level, the com-
plexity of IP routing is greatly reduced, since the number of
nodes involved is much fewer than the number of routers all
over the Internet, there is additional complexity introduced
by the sensitivity of end host measurement and the potential
of end host unreliability. Additionally, the cost of building
an application-level multicast tree differs greatly from the
cost of building a network level multicast tree and results in
very different network design and routing perspectives. And
it is these aspects that we try to address in this paper.

7. CONCLUSION AND FUTURE WORK

In this paper, we have taken a systematic approach for
designing an overlay network for application-level multicast.
We first defined the unique network cost metric and routing
constraints different from conventional networks. Accord-
ing to these performance criteria, we then provisioned the
network assuming certain traffic characteristics. Last, we
devised routing strategies which take advantage of our di-
mensioning process to maximize network utilization and to
satisfy application service requirement. Through simulation,
we evaluated the performance of our routing algorithms un-
der various traffic distributions.

As part of future work, we are looking into other net-
work configurations to further prove the validity of our ap-
proaches. Specifically, it is worthwhile to look at more
controlled network topology such as geocentric and equal-
distance topology as they emphasizes or deemphasizes the
importance of geographical location, respectively and can
let us further understand the intrinsic characteristics of the
routing algorithms.

We are currently underway defining a complete AMcast
architecture including schemes for multicast addressing, ini-
tialization and interaction between end users and servers.
In order to put these algorithms into use, we also need to
define a distributed routing protocol and exploit various is-
sues in routing procedures, such as update frequency, forms
of information exchanges and etc. Furthermore, one of the
advantages of using servers instead of routers is the fea-
sibility and flexibility of providing value-added service for
applications. We are looking into issues in providing such a
service platform.



APPENDIX

A. SIMULATION FOR PARAMETER SELEC-
TIONS IN THE BDRBST ALGORITHM

A.1 Matched Projected Traffic and Routed Traffic

As a first step to understand the performance of our algo-
rithms, we generates routed traffic exactly the same as we
projected. Ideally, this should give a utilization close to the
offered load. Figure 9 shows the network utilization for this
case. The main parameter we used to cause traffic variation
is the session size. In Figure 9, we used a binomial distribu-
tion on session size with mean equal to 10 for both projected
and routed traffic load.
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Figure 9: Network Utilization of Matched Traffic

When the network is less loaded, all sessions are accepted
and a delay-bounded multicast tree can be successfully con-
structed for each of them. When the offered load increases,
the network utilization lags the offered load when no load-
balancing (M = 1) is considered. With the increase of the
balance factor M, the overall utilization improves.

A.2 Varying Traffic with Session Fanout

In Figure 10, we vary the traffic load by using different
distribution on session size. Again, with the increase of the
balance factor M, the total network utilization is improved.
Especially for small M, the gains of load balancing is already
noticeable.

A.3 Impact of Total Network Capacity

Figure 11 shows session rejection rate vs. offered load.
Generally, the higher the overall capacity, the lower the re-
jection rate. Assuming each session has unit bandwidth,
and we dimension network with different capacity ranging
from 5,120 bandwidth units to 25,600 bandwidth units. If
each session transmits at rate of 10 Mb/s, a total of 25,600
units amounts to 5 Gb/s access bandwidth per server, which
can be cost-effectively provisioned using Gigabit Ethernet or
corresponding leased lines.

Session fanout * Arrival rate
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(a) Projected traffic load for network dimensioning uses
Binomial distribution of session size with mean = 10;
the offered traffic load is 0.75 and the session fanout dis-
tribution is Binomial with mean = 5, 20 and a Pareto
distribution, with shape = 0.5 and scale = 5.
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(b) Projected traffic load for network dimensioning uses

a Pareto distribution of session size; the offered traffic
load is 0.75, and the session size is Binomial distribution
with mean = 5, 10 and 20.

Figure 10: Network Utilization Under Varied Traffic
load
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