
Fast Incremental CRC Updates
for IP over ATM Networks

Florian Braun Marcel Waldvogel

Department of Computer Science
Washington University in St. Louis

<{florian,mwa}@arl.wustl.edu>

Abstract—In response to the increasing network speeds, many oper-
ations in IP routers and similar devices are being made more efficient.
With the advances in other areas of packet processing, the verification
and regeneration of cyclic redundancy check (CRC) codes of the data
link layer is likely to become a bottleneck in the near future. In this pa-
per, we present a mechanism to defer CRC verification without compro-
mising reliability. This opens the possibility of incremental updates of the
CRC. We introduce a new high-speed technique and present efficient im-
plementations, speeding up CRC processing by a factor of 15. Although
the paper and analysis focuses on IP over ATM, the scheme applies to a
much wider set of network protocols.

I. INTRODUCTION

The Internet is growing rapidly in terms of number of users
and amount of bandwidth used, requiring size, speed, and
network equipment to concur. Besides the transmission and
switching speeds, the per-packet operations necessary for In-
ternet Protocol (IP) packet forwarding are the current limiting
factors. As transmission speeds are continually increasing,
thanks to advances in optical technology, switching speeds
and, to a greater extent, IP packet processing overheads have
become the main bottlenecks.

Often, IP packets are encapsulated in Data Link layer
frames protected by a cyclic redundancy check (CRC) code,
as used when IP runs over Ethernet or ATM’s AAL5. Since
IP packets need to be modified at every router, the classical
approach has been to check and then recreate these CRCs at
every hop. At speeds achievable soon, this calculation also
tends to become a bottleneck. This paper addresses improv-
ing the speed of this forwarding operation by eliminating most
of the duplicate CRC calculations. We use AAL5 as our ex-
ample, but the method can be generalized to upcoming multi-
gigabit/s Ethernets. It applies to both the current version of
the Internet Protocol, IPv4, as well as to the upcoming IPv6.

II. IP PROCESSING

In the Internet, each packet passing through a router is
subject to at least the following operations at the network
layer[Bak95]:

1. verifying the remaining packet lifetime (Time-to-Live in
IPv4, Hop Count in IPv6, “TTL”),

2. updating (decrementing) the TTL/Hop Count,
3. updating the IP header checksum (IPv4 only),
4. selecting an appropriate next router or ultimate destina-

tion (“forwarding decision”),
5. forwarding the packet to this next hop.

Each of these operations had the potential to become a bot-
tleneck. Most of these are no longer a threat:

Verifying the remaining TTL and decrementing it are sim-
ple, straightforward operations. Updating the IPv4 header
checksum is necessary, since it covers the TTL field, which
has just been changed. Originally, IP routers verified the
header checksum and recreated a new header checksum.
As wire speeds increased, the two checksum operations on
20 . . . 64 bytes became too expensive: an incremental update
mechanism became necessary. At the fact that only the third
Internet RFC [Rij94] finally got the procedure right in all pos-
sible cases, it can be seen that this operation is non-trivial.

For a long time, the speed at which forwarding decisions
could be made used to be a major limitation of router speeds.
Recently, two papers [DBCP97], [WVTP97] initiated a flurry
of activity, which resulted in a significant improvement of the
speed of IP forwarding decisions. Switching fabrics used for
forwarding the packet to the output port have also been able
to increase performance at adequate rates. The emergence of
purely optical switching technologies promises a further quan-
tum leap in this area. Several methods try to avoid per-packet
routing lookups in parts of the network, such as label switch-
ing techniques [Met98], [RVC01]. Many routers are still re-
quired to perform full packet processing, including CRC up-
dates, at very high speeds.

In ATM networks, IP packets are encapsulated in AAL5
frames, since the basic transmission unit only has a payload
size of 48 octets. At the end of a frame, a cyclic redundancy
check (CRC) code is used to guarantee the integrity of the
data which is spread over several ATM cells. If you change
the header of an IP packet, you invalidate the CRC and have
to update this as well. This document deals with updating the
CRC of AAL5 frames in a highly efficient way. Its primary
intention is to use this method in router hardware such as the
Field-programmable Port eXtender (FPX) [LTT00], which is
used to turn Washington University Gigabit Switch (WUGS)
[CFFT96] into an Internet and Active Networks router.

III. CRC OPERATION

A detailed discussion of cyclic codes and reliability in error
cases is given in [PW72]. An easier to understand introduction
can be found in [Tan96], [Wil96]. For sake of completeness,
a short overview will be given here. To put it simple, a CRC
is a glorified version of the old “nines check,” where a check
digit is added, representing the value of the number modulo 9.

In CRCs, a message is considered to be a polynomial M(x)
in an unknown variable x, with the ith bit of the message hav-
ing a factor of xi. The least significant bit of the message
is numbered 0, and has thus an associated factor of x0 = 1.
All other polynomials used are formed similarly from their
binary counterparts. G(x) is the predefined generator poly-
nomial (divisor) of degree r. The polynomial division takes
place in GF(2), the Galois field of size two, indicating that all
operations are modulo 2.

The check value C(x) is calculated as

C(x) = x
r
M(x) mod G(x).1

Subtracting this remainder from the dividend (xrM(x)) yields
a polynomial T (x) = xrM(x)−C(x), which is evenly divis-
ible by G(x). T (x) is then transmitted to the receiver, which
will divide the (potentially corrupted) T ′(x) by G(x). A non-
zero remainder indicates corruption of the message.

Implementation is not as hard as it sounds: The poly-
nomial division in GF(2) can be implemented using simple
operations, with addition and subtraction replaced both by
exclusive-or, and multiplication or division by powers of two
using left or right shifts, respectively.

Let us consider a short example. Given the divider polyno-
mial x3 + 1, which is obviously of degree 3, and given a 4-bit
data stream 1101. First we construct the dividend by adding
3 zeros to the data stream, resulting in 1101000. The division
in the following example is done almost as we know it from
school, with subtraction replaced by XOR.

1 1 0 1 0 0 0 / 1 0 0 1 = 1 1 0 0
1 0 0 1

1 0 0 0
1 0 0 1

1 0 0

The remainder we get is 100. The resulting data stream,
consisting of the concatenation of the original message and
the CRC, will thus be 1101100.

This technique is very robust against most known error
sources. Let E(x) be the error during transmission, i.e., each
factor in E(x) indicates a flipped bit in the data stream. The
remainder will be [T (x)+E(x)] mod G(x) and the error will
only be undetected if E(x) is divisible by G(x). If you choose
a suitable polynomial, all bit errors with an odd number of
flipped bits, two bit errors, burst errors with less than or equal
to s bits and most with greater than s bits are detected, where
s is the number of factors in G(x). In many applications (in-
cluding the AAL5 frames), the CRC-32 is used which uses the
divider polynomial

G(x) = x
32 + x

26 + x
23 + x

22 + x
16 + x

12 + x
11

+x
10 + x

8 + x
7 + x

5 + x
4 + x

2 + x + 1.

The basic CRC algorithm still has a weakness: leading ze-
ros of a message are always ignored. The CRC becomes non-
zero the first time, when a ’1’-bit is processed in the message.
Thus additional or lost zeros at the beginning of a message

1 Multiplying by x
r is for simplification of the verification process only.

/* implicit first 1 (xˆ32) */
#define POLYNOMIAL 0x04C11DB7L

/* lookup table */
unsigned long crc_tab[256];

/* generate lookup table */
void gen_crc_tab(void)
{

unsigned long i, j, crc_accum;

for (i = 0; i < 256; i++) {
crc_accum = i << 24;
for (j = 0; j < 8; j++) {
if (crc_accum & 0x80000000L)

crc_accum =
(crc_accum << 1) ˆ POLYNOMIAL;

else
crc_accum = crc_accum << 1;

}
crc_tab[i] = crc_accum;

}
}

Listing 1: Computing the update table

cannot be detected by the basic algorithm. Therefore the com-
mon CRC algorithms start with an initial, non-zero remainder
value C0. Additional or missing zeros do now affect the result.
The CRC-32 uses 0xFFFFFFFF as an initial remainder. How
does this affect our basic formula? Starting with a non-zero
value is equivalent to prepending a carefully crafted header to
the message, where this header gives an (intermediate) result
equal to the initial value. Let h(x) be the header, which has
the remainder C0, i.e., xrh(x) mod G(x) = C0. To prepend
this header to the message, it has to be shifted by the message
length, i.e., H(M(x)) = xmh(x), whereas m indicates the
message length, or the degree of M(x), respectively. The new
improved CRC formula is now

Cimp(x) = x
r[H(M(x)) + M(x)] mod G(x).

IV. FASTER CRC ALGORITHMS

The algorithm we used above is not very fast. In each it-
eration only one bit of the data stream is handled. There are
several approaches for a faster calculation of the CRC.

A. Table Lookup

As you can see above the divisor is subtracted from the
data stream, if the first bit of the stream is ’1’. Since we use
exclusive-or for the arithmetic, there are no carries and we
can easily determine the next result at this point. This result
is a function of the two topmost bits right now, but it can be
extended to have an arbitrary number of input bits. A very
suitable number is 8 [Per83], which gives us a table with 256
32-bit entries (for the commonly used CRC-32). The table
has a reasonable size and 8-bit values can be handled very
comfortable with modern computers. This approach is widely
used in software CRC implementations. Listing 1 [Hea] com-
putes the update table in C.

To calculate the CRC the first byte of the (remaining) mes-
sage and of the current remainder are xor’ed and used as the
index to the table. The table entry is exclusive-ored with the

/* compute CRC on data block */
unsigned long
update_crc(unsigned long crc_accum,

const char *data, int size)
{

unsigned long i, j;
for (j = 0; j < size; j++) {
i = ((crc_accum>>24) ˆ *data++) & 0xFF;
crc_accum = (crc_accum<<8) ˆ crc_tab[i];

}
return crc_accum;

}

Listing 2: Updating a CRC with a message

current remainder shifted by 8 bits. This gives the new re-
mainder or the CRC at the end, respectively. The message is
also shifted by one byte. Listing 2 implements an update to
the CRC with a message.

B. Hardwired Update Function

The algorithm above is well suited for software implemen-
tations. If the implementation is to be done in hardware, an-
other approach can be used. Recall that the pre-computed ta-
ble is nothing more than a function of 8 input values returning
a 32-bit value. As stated above, any number of input values
can be used. Instead of writing the results to a lookup table,
the function can also be represented in a hardware structure
of XOR gates [GJ93]. The number of gates along the critical
path determines the resulting operating speed. On the Xil-
inx VirtexE series, this accepts 32-bit words at a rate of up to
100 MHz, when several optimization tricks are used.

C. Better Polynomials

The main factor affecting the speed of hardware implemen-
tations is the number of inputs to the gates and the length of
the critical path. The CRC polynomials are not well suited
under these criteria. [Gla97] describes an approach where
the division is done by a simpler polynomial than the CRC
polynomial, which we will refer to as Gsimp(x). “Simpler”
means that it contains fewer terms. Obviously the result will
be different, so some additional constraints must be met. If
Gsimp(x) is a P (x)-fold multiple of the original polynomial
G(x), then a final division by G(x) will correct the result, as
T (x) mod G(x) ≡ (T (x) mod (P (x) × G(x))) mod G(x).
[Gla97] proposes the polynomial Gsimp(x) = x123 + x111 +
x92 + x84 + x64 + x46 + x23 + 1. The powers of this term are
at least 8 bits apart from each other, so each cycle, 8 bits can
be updated, even though the update logic only needs 2-input
XOR gates. The final division is more complicated and cannot
be computed in the same time as the update cycle. But it only
needs to be computed once per total message, amortizing its
cost.

V. INCREMENTAL CRC UPDATE

The methods described in section IV all work well at data
rates up to a few gigabits per second. Higher data rates seem
hard to achieve in the near future. We therefore propose to ap-
ply a mechanism analog to the incremental IP header check-

sum update algorithm described in [Rij94]. Not only is an
incremental update faster than calculating the checksum from
scratch, it is no longer necessary to check the sum at each and
every routing node. The low error probabilities of modern
high-speed communication lines combined with the policy of
only modifying and not rewriting an unchecked CRC makes
sure that errors introduced anywhere in the path will be de-
tected by the receiver.

A. Mathematics

As incremental updates of the IP header checksum are
widely accepted, this raises the question of applying incre-
mental updates to the CRC. Recall the basic CRC formula,
C(x) = xrM(x) mod G(x). Assume that we make a change
to the message, and the difference is I(x). The new mes-
sage M∗(x) will be M∗(x) = M(x) + I(x) (recall that + is
exclusive-or in GF(2)). The new checksum will be

C
∗(x) = x

r[M(x) + I(x)] mod G(x)

= x
r
M(x) mod G(x)

︸ ︷︷ ︸

C(x)

+ x
r
I(x) mod G(x)

︸ ︷︷ ︸

CI(x)

Obviously it is possible to just calculate a CRC of the changes
and “add” this to the CRC supplied by the message frame.

Recall that the real CRC-32 uses a non-zero initial value for
the CRC, which we model as H(M(x)):

C
∗

imp(x) = x
r[H(M(x)) + M(x) + I(x)] mod G(x)

= x
r[H(M(x)) + M(x)] mod G(x)

︸ ︷︷ ︸

Cimp(x)

+ x
r
I(x) mod G(x)

︸ ︷︷ ︸

CI(x)

As you can see the incremental CRC is not affected by either
an additional header or an initial update value, so we can ig-
nore the initial value for the incremental update.

So far there is only the advantage that we don’t have to
check the old CRC, but still the incremental update is as
expensive to compute as any other CRC. Fortunately, an IP
router changes only a few bytes of the packet. For decrement-
ing the TTL field, it is only necessary to change two fields: the
TTL field itself (8 bits) and the header checksum (16 bit). The
message update I(x) thus contains mostly zeros. Only at the
fixed positions of these changed fields, the update is nonzero.

While the offset of the header fields from the beginning of
the message is well-known and constant, the effect on the
CRC depends on the number of message bits following the
modified fields. Since ATM cells come in one-size-fits-all
(48 bytes), and the position of the fields in the first cell are
known, the offset from the end is also known (modulo 48).

B. Implementation

Remember that updating the IP header will result in mod-
ifications to 3 bytes. We can treat these bytes as three inde-
pendent updates and combine the resulting CRC updated at
the end. So we create three lookup tables for each of the up-
dated bytes. The result will be the CRC as if it were at the end

/* generate an incremental
lookup table */

void
gen_inc_tab (unsigned long* tab,

int offs)
{

unsigned i, j, update;

for (i=0; i<256; i++) {
update = i << 24;
for (j=0; j<offs; j++) {

update = (update << 8)
ˆ crc_tab [(update>>24)&0xFF];

}
tab[i] = update;

}
}

/* update tables */
unsigned long crc_ttl_tab[256], ...;

void gen_tabs()
{

gen_crc_tab();

/* ttl update table */
gen_inc_tab (crc_ttl_tab, 36);
/* ... other tables */

}

Listing 3: Computing incremental update tables

of the first ATM cell. So far, we can immediately update all
IP packets which are smaller than or equal to 40 bytes (recall
that 8 bytes in the last cell are used for AAL5 control bytes
and CRC). The resulting CRC update is again a 4 byte update
of the message. So we precompute another 4 lookup tables for
these bytes which give us the CRC update for the next ATM
cell, imitating the effect of appending 48 bytes of zeroes to the
message. Note that an IP router makes no changes to any cell
other than the first and that the update message of the second
and all further cells is therefore a constant zero.2 With this
approach we can update the CRC of an AAL5 frame with 3 or
4 lookups and one XOR operation with 3 or 4 inputs for each
ATM cell.

Listing 3 generates a table to update the CRC if the TTL
field of an IPv4 header is changed. Note that the field is
36 bytes ahead of the end of the cell. Tables for other fields
can be computed in a similar way.

To get the update value for the first cell, one lookup for each
changed field is required, in our example three. For the suc-
ceeding cells, four lookups are necessary to update the CRC
field.

Listing 4 demonstrates the use of the update tables. Note
that only one function call is necessary per cell. Also note
that the parameters to first cell() contain the difference
between the old and the new value, i.e., old XOR new.

The resulting 7 tables at 256 32-bit words each require only
7 KB, easy to store in first-level cache of a CPU or static
RAM.

2 Generalization of our approach to changes in other cells is
straightforward.

unsigned long
first_cell (int ttldiff,

int checksumdiff)
{

return crc_ttl_tab[ttldiff]
ˆ crc_hcshi_tab[checksumdiff>>8]
ˆ crc_hcslo_tab[checksumdiff&0xFF];

}

unsigned long
update_cell (unsigned long update)
{

return update
ˆ crc_inc_tab0[update &0xFF]
ˆ crc_inc_tab1[(update>> 8)&0xFF]
ˆ crc_inc_tab2[(update>>16)&0xFF]
ˆ crc_inc_tab3[(update>>24)&0xFF];

}

Listing 4: Updating a CRC cell-by-cell

succ_update

first_update

update_out

Entity inc_update

update_in

hcs_in

ttl_in
first

table

lookup

successive

table

lookup

M
U

X

u
p

d
ate

first_cell

en
ab

le
C

L
K

update

Fig. 1. Schematic view of an incremental update entity

C. Updating in Hardware

If the CRC update is to be done in hardware, the lookups
can be done in parallel, because the tables are all indepen-
dent of each other. A schematic with a register to buffer the
value can be seen in Fig. 1. The synthesized code runs with
110 MHz on a Xilinx VirtexE, while utilizing only 123 CLB
slices of logic, occupying about 2% of a Virtex 1000E. The re-
sulting 7 tables use an additional 7× 256× 32bits = 56kbits

of on-chip memory, about 15% of the Virtex 1000E’s block
memory. Although the operating frequency is comparable to
that achieved by a full CRC (see section IV-B), it processes an
entire ATM cell in one clock cycle, not just 4 bytes, resulting
in a speedup of 13. An ATM cell can be handled in less than
10 ns, which corresponds to a line speed of 43 Gbps. Unfor-
tunately, other routing jobs as IP lookup can’t operate at this
speed (on the same hardware), but the CRC update is now no
longer the bottleneck in the system.

Is it possible to avoid using table lookup ROM? As the
lookup is nothing more than a function with 8 input bits and
32 output bits, it must be possible to get the same result from
a logic function as from a table. A program transforming
the lookup tables into logic functions, i.e., generating VHDL

0 31

..1..1.1.1.1..11.1..11..111...1. 14 3
1

.11.11111111.1.111.1.1.1..1..11. 20
11111.1.1.111...111..11.1.1.111. 20
1111.1.1.111...111..11.1.1.111.1 20
11..11111.11....11.1.11..1.11... 17
1.111.1...11..1.111......1.1..11 15
.111.1...11..1.111......1.1..11. 14
11..11.11..11...11..11.11.1.1111 19
1.11111..11...1.11.1.1111.1111.. 20
.11111..11...1.11.1.1111.1111... 19
11.111..11.11......1..1....1..1. 13
1..111..111...11.11.1...11...111 17
...111..1..1.1.11..111.1.11.11.. 16
..111..1..1.1.11..111.1.11.11..1 17
.111..1..1.1.11..111.1.11.11..1. 17
111..1..1.1.11..111.1.11.11..1.. 17
111.11......1.1.1..11.1...1.1.1. 14
11.11......1.1.1..11.1...1.1.1.. 13
1.11......1.1.1..11.1...1.1.1... 12
.11......1.1.1..11.1...1.1.1...1 12
11......1.1.1..11.1...1.1.1...11 13
1......1.1.1..11.1...1.1.1...111 13
..1..1111111.1.111...11..11.11.. 18
.11.1.1.1.111...11........111.1. 14
11.1.1.1.111...11........111.1.. 14
1.1.1.1.111...11........111.1... 13
.111....1..1.1.1.1..11.1..11..11 15
111....1..1.1.1.1..11.1..11..111 16
11....1..1.1.1.1..11.1..11..111. 15
1....1..1.1.1.1..11.1..11..111.. 14
....1..1.1.1.1..11.1..11..111... 13
...1..1.1.1.1..11.1..11..111...1 14 0

TABLE I
XOR WIRING TABLE FOR UPDATING CRC FIELD

code, is straightforward. The schematic above (Fig. 1) still
applies, since we only replace the ROM lookup by these logic
functions. A hardwired CRC update like this uses 173 CLB
slices and performs at 120 MHz. It uses 40% more CLB
space, but eliminates the need for lookup memory. In addi-
tion, it is slightly faster, resulting in a theoretical line speed of
47 Gbps.

Now instead of computing the table for whole words, we
can also do this for a single bit. Each change of a bit will
result in a unique change of the CRC. Again the values from
all bit positions have to be exclusive-or-ed. This is shown in
Table I. Each column represents the effect of one single bit
position on the CRC. The ones in each row indicate the bit
positions, which have to be wired together to compute a single
update bit of the CRC. In the second column you can see the
number of XOR gates necessary for this structure. The speed
stays almost the same, but the circuit is reduced to 118 CLB
slices now. The reason for this improvement is that the Xilinx
configurable logic blocks use lookup tables instead of wiring
gates. Therefore, XOR functions are as cheap as other gates.
For this application, XOR is more suitable than AND and OR
gates. Only the number of logic levels limits the speed of this
circuit.

VI. CONCLUSIONS

This paper describes a new method of calculating CRCs
after modifying ATM AAL5 frames using incremental up-
dates. The paper also discusses hardware implementation

techniques, resulting in a speedup of almost 15, compared to
efficient implementations of other current approaches. As a
result, network messages can be updated at very high speeds,
especially if only a few fields of the data have to be changed.
This holds true for decrementing the TTL-field in IP headers
and updating the IPv4 header checksum. CRC calculations
are thus no longer at risk to become the next bottleneck for IP
routers.

REFERENCES

[Bak95] Fred Baker, editor. Requirements for IP version
4 routers. Internet RFC 1812, June 1995.

[BW01] Florian Braun and Marcel Waldvogel. Fast incre-
mental CRC updates for IP over ATM networks.
In Proceedings of 2001 IEEE Workshop on High
Performance Switching and Routing, May 2001.

[CFFT96] Tom Chaney, J. Andrew Fingerhut, Margaret
Flucke, and Jonathan S. Turner. Design of a gi-
gabit ATM switch. Technical Report WU-CS-96-
07, Washington University in St. Louis, 1996.

[DBCP97] Mikael Degermark, Andrej Brodnik, Svante
Carlsson, and Stephen Pink. Small forwarding
tables for fast routing lookups. In Proceedings
of ACM SIGCOMM ’97, pages 3–14, September
1997.

[GJ93] René J. Glaise and X. Jacquart. Fast CRC calcu-
lation. In Proceedings of the IEEE International
Conference on Computer Design (ICCD), pages
602–605, Boston, MA, USA, 1993.

[Gla97] René J. Glaise. A two-step computation of cyclic
redundancy code CRC-32 for ATM networks.
IBM Journal of Research and Development, 41,
November 1997.

[Hea] Charles Michael Heard. Charles Michael Heard’s
CRC-32 code. http://cell-relay.indiana.edu/cell-
relay/publications/software/CRC/32bitCRC.c.

[Irv89] David R. Irvin. Preserving the integrity of cyclic-
redundancy checks when protected text is inten-
tionally altered. IBM Journal of Research and
Development, 33(6):618–626, November 1989.

[LTT00] John W. Lockwood, Jonathan S. Turner, and
David E. Taylor. Field programmable port ex-
tender (FPX) for distributed routing and queuing.
In Proceedings of FPGA 2000, pages 137–144,
Monterey, CA, USA, February 2000.

[Met98] Christopher Metz. Ingredients for better rout-
ing? Read the label. IEEE Internet Computing,
2(5):10–15, September–October 1998.

[Per83] Aram Perez. Byte-wise CRC calculations. IEEE
Micro, 3(3):40–50, June 1983.

[PW72] W. Wesley Peterson and E. J. Weldon, Jr. Error-
correcting codes. MIT Press, 2nd edition, 1972.

[Rij94] Anil Rijsinghani, editor. Computation of the In-
ternet checksum via incremental update. Internet
RFC 1624, May 1994.

[RVC01] Eric C. Rosen, Arun Viswanathan, and Ross Cal-

lon. Multiprotocol label switching architecture.
Internet RFC 3031, January 2001.

[Tan96] Andrew S. Tanenbaum. Computer Networks.
Prentice Hall, 3rd edition, 1996.

[Wil96] Ross N. Williams. A painless guide to CRC er-
ror detection algorithms. ftp://ftp.rocksoft.com/
papers/crc v3.txt, 1996.

[WVTP97] Marcel Waldvogel, George Varghese, Jon Turner,
and Bernhard Plattner. Scalable high speed IP
routing table lookups. In Proceedings of ACM
SIGCOMM ’97, pages 25–36, September 1997.

