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Abstract

With the increasingpopularity of firewalls, virtual pri-
vate networks(VPNs)and Quality of Service(QoS)rout-
ing, padet classificationbecomesdncreasinglyimportant
in the Internet. The high-performancesolutionsknownso
far stronglyrely on certain propertiesof thefilter database
to matd against, sud as a small numberof distinct pre-
fixesor the absenceof conflicts. In this paper we present
Line Searchasatwo-dimensionagienealizationoftheone-
dimensionabinary seach on prefixlengthg21], exploiting
theadvantage givenby the differentapproach therein. This
algorithm also works beston the filter databaseghat are
expectedo occurmostoften,but degradesgracefullywhen
theseassumptionaolonger hold. We alsoshowhowto effi-
cientlyextendthe algorithmto a completdive-dimensional
InternetProtocol (IP) andtransportheadematd.

1. Intr oduction

With the gaining popularity of the Internet, additional
servicesare requestedr installedby usersto fulfill their
particularrequirements.Suchdemandgsangefrom under
standingthe network (through network monitoring) over
better QoS (lateng, throughput, paclet loss) to privacy
andsecurity(encryptedVPNs, firewalls and Network Ad-
dressTranslatordNATs [7])). Whattheseserviceshave in
commonis their requiremenfor somenetwork flows and
thustheir constituentdatapacletsto be treateddifferently
from others,basedon any combinationof static and dy-
namicrules: Firewalls drop pacletsor let thempass VPN
gatevaysadditionallyen- or decryptthem,andQoS-avare
routersselectthe paclet’s next hopalongthe path,it’s out-
put queueandqueuingparametersTheserulesareknown
asfilters andthe procesof identifying therule bestmatch-
ing agivenpacletis known asclassification

Despiteseveral efforts to limit the complexity of per
forming QoS functionality in core routers,suchas intro-
ducedby DifferentiatedServiced?2], still mary routers,es-

peciallyborderrouters areexpectedo performpacletclas-
sification. To provide advancedservices,including QoS
routing,which not only decideuponthe priority of a paclket
or flow, but alsoon the optimal route, every single router
needgo performsomeform of pacletclassification.Today,
settingup flow labelsin the context of Multiprotocol Label
Switching(MPLS [18]) is expectedto simplify packet pro-
cessingin the core by pushingthe full-blown paclet clas-
sificationto the border but requiresthe additionalburden
of settingup and distributing flow labels, which are also
a comparablyscarceresource.This giveshopethat paclet
processingtmary routerswill besimplified. Nevertheless,
pacletswill needto be classifiedin a large andincreasing
numberof network devicesto satisfythe needdor security
andquality. Recentwork by Shaikhetal. [19] indicateghat
dynamicrouting of individual long-livedflowsin theInter-
nethassignificantadvantages.

In all the firewalls androuterswherepaclketsneedto be
classified,all packetswill needto be classified. At line
speedf currently 10 Gb/s, this is not an easytask. At
an averagepaclket length of about2000 bits [13], this re-
sultsin anaveragepacletarrival rateof 1 every20ns. Even
with thefastestvailablestaticRAM, this only allows for a
handfulof memoryaccessebeforethe next packetneeddo
beprocessedTo someextent,this narrav timelimit canof-
tenbeextendedby usingmultiple parallelpacketprocessing
enginesor pipeliningthe process As the routersof the fu-
ture continueincreasingdink speedcandthe numberof ports
perrouter, hardwaredesignspacegetstighterandtighter.

Besidesthrowing additional hardware at the problem,
the algorithmsneedto be improved. To improve the al-
gorithm, we needto know more about paclet classifica-
tion. Backgroundknowledgeis givenin Section2. Two-
dimensionaline Searchis presentedn Section3 andan-
alyzedin Section4d. The mechanismwill be extendedto
more dimensionsn Section5. Relatedwork is discussed
Section6, beforethe paperis concludedn Section?.



2. Inter net Packet Classification

Before we starttalking aboutmulti-dimensionalpaclet
classificationwe introducethe conceptby looking at just
a single dimension. Wheneer an Internet Protocol (IP)
paclet arrivesat a router, this router matcheshe paclet’s
destinatioraddressgainstts routingdatabasanddecides
which directly connectechode (anotherrouter or the ulti-
matedestination}thepaclet shouldbe sendto, to getcloser
to thedestinatiorwith theultimategoal of reachingit.

While this soundsrather simple, a complex process
is hiddenbehindthe phrase“match a destinationaddress
againstthe routing databasé. To avoid having to continu-
ously storeandupdateeachof the mary million addresses
in useatary giventime, theentriesareheaily aggreyated:
Nodesconnectedo the Internetwhich areneighbordn the
network topology (e.g., connectedto the sameEthernet,
within the sameorganizationpr dialingin to the samelSP)
areallocatedaddressesharingacommonprefix Theseare
typically represente@sbit strings,wherethe leftmostbits
areall fully specifiedwhile theremainingbitsareall don’t-
cares.Thenumberof significantbits is known asthe prefix
length For everydestinatioraddresshatis to belookedup
againsthis databasef prefixes,therouterhasto determine
amatchingentry. In casemultiple entriesshouldmatch,it
hasto returnthemostspecific(i.e.,longest)match.Thisen-
tire processs known asa prefixmatd andis usedto match
paclet sourceanddestinatioraddresses.

Two-dimensional prefix  matching is  very
similar to it's one-dimensional cousin, but in-
stead of having a database of prefixes such as
{1111.00%,0110%, ...}', we have a databaseof pre-
fix pairs, e.g., {(1%,0000.00%),(1111.11%,0%), ...}.
Thesepairs are orderedtuples, with eachof the tuple’s
fields representinga range of coordinatesin the cor-
respondingdimension. This databaseis consultedfor
fully-specified tuples, such as—assumingdL2 bit address
length—(1100.0000_1111,0000_1111_1111).  Extending
thisto d > 2 dimensiongs straightforward, but insteadof
2-tuplesd-tuplesarebeingused.

Obviously, eachprefix (or prefixtuple)canalsoberepre-
sentecby thesetof addressefor addressuples)it matches.
In one-dimensionaatching,whenmultiple matchingen-
triesexist in thedatabasethe setsrepresentingheseentries
canalwaysbe completelyorderedby a subsetrelation. In
otherwords,from eachpair of matchingentries,oneof the
representingetswasa subsewf the other Thereforethe
mostspecificentry could be determinedeasily and unam-
biguously

lUnderscoresire usedas a group separatoandthe asteriskindicates
thattheremainingbits aredont-cares.

For d-dimensional matching (with 4 >  2),

ambiguities may—and in general, will—exist.
Assume again  our two-dimensional  prefix
database {(1x,0000.00%), (1111_11x,0%)}. If we

would search this database for entries matching
(111111111111, 0000-0000-00000), both entrieswould
match. Neither of them can be considerednore specific:
The secondentry is more specificin the first dimension,
but the first entryis morespecificin the seconddimension.
Also, the size of the setsrepresentedtby eithertupleis the
same.Thereforejt is impossibleto find a naturalordering
betweerthetwo; theambiguitycannotberesohed.

If it is known in advancethatonly few entrieswill con-
tain ambiguities,it may be possibleto split the entry into
several sub-entriedo resole ambiguities,as describedn
[1].

To resole ambiguity several solutionshave beenpro-
posed:

Unspecified Thereis no simpleway to know in advance
which of the matchingentrieswill be returned. This
is thesimplestsolution,but seldomsatisactory unless
ambiguitiescanbepreventedto appeain thedatabase
in thefirst place([1]). Unfortunately a generalsolu-
tion requiresO(N?) memory with N the numberof
filters andd the numberof dimensions.

Priorities of Dimensions The dimensionsare prioritized
againsteachother Without lossof generality it can
be assumedhatthe dimensionsaresortedin orderof
decreasingoriority. Whenresolvingambiguities,the
prefix lengthsof the individual numbersare concate-
natedasdigitsin a W + 1-ary numberandthe entry
with thehighesthumberwins. W is thenumberof bits
in agivendimension.

Although this clear hierarchy of dimensionsseems
sensibleat a superficialinspection,the problemis ef-
fectively reducedo a singledimension:A seconddi-
mensioris only evaluatedf inspectinghefirst dimen-
sionresultsin atie. Thisgreatlyreducegsheusefulness
andgeneralityof thefilters, requiringdfiltersto bemade
unambiguoudbeforeinsertingtheminto the database,
which leadsto the samememoryexplosionproblem.

Filter Priorities Eachentry in the filter databases as-
signedan explicit priority, which can be considered
constantduring the presenceof that entry in the
databaseThis priority is thenusedto resolve ambigu-
ities. We assumehat entrieshaving a subsetrelation
will have priorities setsothey do not conflict with the
subsetelation. If they everdo,i.e., if amorespecific
entry shouldhave a lower priority thana lessspecific
entry, thelower priority entrywill never be consulted.
Insteadof solvingthis problematsearchime, it canbe



avoidedat databaséuild time by ignoringthe hidden
entry,

This schemas thethe mostflexible of thesethree,and
includestheothersassubsetsProviding a solutionfor
thisproblemthereforemplieshaving asolutionfor the
others.

In thefollowing, wewill assumeéhatexplicit prioritieshave
beenassignedindprovide solutionsfor this case.

3. Line Search

[21] introducedbinary searchon prefix lengthsto match
a single addressagainsta databaseof one-dimensional
prefixes using just O(log W) hash table probes (typi-
cally equivalentto the numberof memory accessesand
O(N log W) storage.The paperalsodiscussesereralim-
provementswhich reducethe searchtime even further in
currentrouting databasesUnlike most other approaches,
which were derived from binary tries, this solution stores
prefixesin hashtablesorganizedby prefix length,allowing
foranO(1) membershigest.

If weview thesehashtablesassetstwo orderedcompar
isonswith theoperatorg C y andx > y canbedefinedor-
deringthembothin gestaltandpriority. Incidentally these
two relationsreturnthe sameorderingfor both criteria. It
seemghatthis definitionis bothnecessarandsuficientto
enablebinary searchover hierarchicaprefixes.

Thealgorithmto performsuchabinarysearctoverthese
hashtablesorganizedby prefix lengthsis simple: On a
hit, the hashtablescontainingshorterprefixescanberuled
out, whereason a miss, the longer tableswere ruled out.
For correctnessa routing table entry would requireup to
(log W) — 1 helperentriesto directthesearchgcalledmark-
ers.

How canthis definition be appliedto two or evenmore
dimensionsFigurel shavstheincreasindengthsandthus
specificity for one-dimensionaimatchingon the left-hand
side. Eachsquarerepresents hashtablewith all the pre-
fixesof lengthi. Moving up resultsin a morespecificpre-
fix. A naturalplacemenbf thelengthpairscanbe seenon
theright-handside. Again, thetuplesrepresenthe number
of significantbits in eachof the two dimensionsandlabel
the hashtable representedby the enclosingsquare. Mov-
ing right or up in this matrix resultsin amorespecificentry
(one of the prefixesbecomeanore specific). Moving left
or down resultsin a lessspecificentry. Moving two steps,
oneleft andoneup (or oneright andonedown), resultsin
a more specificentry along one dimension,andin a less
specificentryalongthe other, resultingin ambiguity

As seenin Section2, ambiguity cannotbe avoided in
structuralways. We thereforeapply the proven divide
and conquerstratgy. Eachof the columns(or rows) in

4 0,4) | (1,4) | 24)| (3.4)| (4.9)
3 0,3) | (1,3) | (2.3)| (3.3)| (4.3)
2 02| (12| 22| 3.2 | (42
1 01| Wy | @1 @1 @41
0 0,0) | (1,0) | (2,0) | (3.0) | (4,0)
Figure 1. One- vs. Two-Dimensional Search.

Each square represents a hash table contain-
ing all the prefix es (prefix pairs) with the pre-
fix length (prefix length pair) indicated.

Figurel’s matrix fulfills the non-ambiguitycriteria, when
taken by itself. An obvious solution would be to search
eachof the columns(or rows) using the one-dimensional
binary searchscheme.For two addressesf W bits each,
this would requiresearching (W + 1) x (W + 1) matrix,
usingbinary searchin onedimensionand linear searchin
theother Thus,thenumberof stepswouldbe O(W log W)
or, moreconcrete(W + 1) - [logs (W + 1)]. For W = 32,
thiswouldamountto 198searctstepstoo muchfor modern
routers.

Fortunately thereis hope. Not only is a bettersolution
available,we alsoexpectthe classificationdatabaset ex-
hibit alargeamountof structurewhich canbe exploited.

Pleasenote, that unlike the one-dimensionatasedis-
cussedn [21], therow (andcolumn)correspondingo pre-
fix lengthzerois necessarin themulti-dimensionakearch.
This is due to the fact that—exceptfor the prefix length
pair (0, 0)—the other prefix lengthis non-zero,providing
for non-zeranformation.

3.1 Faster Than Straight

To improve on therow-by-row schemepresentedbove,
recallthatthenumberof memoryaccessefor binarysearch
growslogarithmicallyto thenumberof prefix pairscovered.
It is thusbetterto usefewer binary searchesgachcovering
moreground.

Furtherrecall that the entriesget more specificboth in
vertical (up in Figurel) andin horizontaldirection (left).
By combininga pathin bothdirectionsit is possibleto cre-
atea sequencef completelyorder prefix lengthswhich is
longerthanasinglerow or column.Figure2 shavs a setof



suchlongestpaths.Let uscall sucha pathcollectingunam-
biguousprefix lengthpairsaLine.

By

9 7 5 3 1

Figure 2. Long est Possible Lines in a 5 x5
Matrix

In the naive solution,a 5 x 5 matrix was coveredby 5
Linesof length5 each,eachrequiring3 searctstepstotal-
ing 15searctsteps Now, thematrixis coveredwith 5 Lines
of varyinglength,summingupto4 +3+3+2+1=13
searchsteps.Larger matricesallow for a higheryield. So
theratiofor an8 x 8 matrixequals32 : 24.

Againstthe intuition presentecearlier makinglines as
long aspossibleis not the optimal solution. Recallthatthe
numberyv of binary searchstepsrequiredto cover C' prefix
lengthpairsis v = [log,(C + 1)]. Goingfrom aLine of
length7 to onecovering 8 cells alsoincreaseshe number
of stepsfrom 3 to 4, goingfrom a coverageof 7/3 cellsper
searchstepdown to 8 /4.

Therefore,it is not only advisableto make the lines as
long aspossible put alsoto cut someoff justbelow powers
of two. Figure3 shovs anexamplewith a betterline con-
figuration. The longestline hasbeencut off atlength7 to
sa/e a searchstep,the secondline is kept at that size, but
changepathto keepnestlingup againsthefirst. Thethird
line is extendedto length7 to cover thetwo cellsfreedby
the othertwo lines, at no additionalcost. Thus, the total
numberof searctstepsamountdo3+4+3+2+1 =12,
afurtherimprovement.

£
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Figure 3. Optimal Lines in a5 x 5 Matrix

It canbe shown thatthis solutionis optimal. Lineswith
optimal length can be built by the algorithmin Figure4.
“Spare”cellsarecellsthatcouldbecoveredatnoadditional

cost,if thecurrentlineswould beextendedo themaximum
length

Function OptimalLines{%) (* Build Linesfor SizeW *)

(* Calculatememoryaccessefor eachLine *)

Initialize s to O; (* sparecells*)

Forl+ 1toW do
(* CalculatdongestlLine alongthe outerborderof a square")
(* of lengthl, takinginto accountandupdatingsparecells.*)
(* 21 — 1 is borderlength,¢; is coveragemn; is searchsteps )
¢; + smallest(powerof 2) —1,< 2] — 1 —s;
my < [logy(c; + 1)];
(* Updatesparecounterby surplus/borravedcells*)
s+<s+¢—(2l-1)
If cellswereborrovedthen

Extendthe mostrecentl_ineswhich cancover morecells
(m? — 1 > ¢;) until borrovs aresatisfied;

Endif

Endfor

Figure 4. Build Optimal Lines For Full Matri-
ces

Now we havereachednegoal,makinglineslonger But
we haven't yet reducedhe numberof lines. Unfortunately
the numberof elementson the co-diagonalis the limiting
factorfor any fully populatedmatrix. Sinceall of the prefix
lengthpairsontheco-diagonabreambiguoudo eachother,
they provide a lower boundfor the numberof Lines. Sodo
the other cuts parallelto the co-diagonaland generallyall
othersetsof mutuallyambiguougrefixlengthpairs.

3.2 Lines for SparseMatrices

In Figure4, we have seerhow to build optimalLinesfor
full matrices. For sparsematrices,no algorithmfor build-
ing optimalLinesis known, shortof exhaustive searchWe
have deviseda numberof heuristics.Eachof thesetriesto
build thelargestpossiblelines, but someof themcutLines
down.

Tofind thelongest_ines,adirectedacgyclic graphof sub-
setrelationsis built. By labelingeachvertex with its depth
in the graph,the vertex with the highestnumberis the end
of thelongestLine. This Line is removed,andthe process
repeateduntil thegraphis exhausted.

Thealgorithmsfor cuttingLinesareasfollows:

Simple No cuttingis done thelongestLinesareused.

Log All Lines are cut to the maximallengthin the form
2% — 1, optimizingthe coveragepersearctstep.



AlmostLog Only Lines “just above” an optimal length
are cut down, i.e., those with lengths of the form
2% ...15---27%,

3.3 Expected Two-Dimensional Classification
Databases

Until very recently no approachfor multi-dimensional
classificatiorwasavailable,shortof slow andtedioudlinear
searchthroughtheentiredatabaseThisalgorithmcouldnot
supportmorethanafew filters exceptfor very high process-
ing powerto line speedatios. Thereforeno onehasstarted
creatinglarge classificationdatabasesThe only databases
in useare small firewall databaseswhich are not openly
available due to security concerns. Neverthelesswe ex-
pectdemandor usingsuchdatabaset becomeealwithin
the next few years. Until then,we cannotbut generateour
own sampledatabases.To provide for a wide variety of
databases;overing a large part of the possiblespectrum,
we devisedfour benchmarlscenariosgdescribedelow.

Full This s the simplestscenariobut the mostexpensve
to solve: All possibleprefix lengthpairswill shawv up
in thedatabasegiving afull (W +1) x (W +1) matrix.

Chess In the mannerof a checlerboard,only every alter
nating matrix cell of prefix pair lengthscontainspre-
fixes.

CIDR This pattern consistsof the prefix lengths that
are most likely to appear so all (z,y), where
z,y € {0,8...30,32} are assumedo containpre-
fixes. Lengthsl...7 areexcludedsincethey arenot
part of the CIDR [16, 9] specification. Length31 is
not part of the set since most of the checled one-
dimensionalrouting databaseslo not containentries
of thatlength. This is dueto thefactthatthe two ad-
dressesncludedin that rangecover morethana sin-
gle host,but notenoughto cover areasonabl@etwork
(the first and last addressn eachnetwork cannotbe
assignedo machines).

Random Thisis actuallybasedon realentries,andcomes
in two flavors,Random100@ndRandom5000To cre-
ate this database1000 (5000) randomprefixes were
picked from the Mae-Eastdatabase.Of these,1000
(5000) randompairswere constructed.10% of these
pairshadoneentry prefix replacedby a default prefix
(with zerolength). This is basedon the assumption
that classifierswill be biasedtowardssomeprefixes,
andthattuplesonly specifyingeithersourceor desti-
nationfilters will alsobe common. Additionally, the
databaseontainghe“default” prefix pair with a (0,0)
lengthtuple.

Thesefive benchmarkgFull, ChessCIDR, Random1000,
andRandom5000yvill beusedfor analysisbelow.

4. Evaluation
4.1 PerformanceAnalysis

In the previous sectionsfive benchmarldatabase§ull,
chess,CIDR, Random1000and Random5000have been
introduced.Table1 compareghe performanceof different
Line selectionalgorithmsfor thesebenchmarkscenarios.
The algorithmsare called Original (Lines are parallel, ei-
therall rows or all columns),Optimal (Figure4), andthe
threeheuristicsfor sparsematrices(Simple, Log, and Al-
mostLog).

As canbe seen,Selectionaccordingto the AlmostLog
criteriais up to 25% fasterthan our first, naive idea, es-
pecially on the randomdistributions, thosewe deemmost
representatie for future classificatiordatabases.

Notethatfor reasonablysparsenatrices suchasthere-
sultsfrom the randomdistributions, two-dimensionatlas-
sificationis only anorderof magnitudemoreexpensvethan
thefastesbne-dimensionabokups.We expectthata two-
dimensionalgeneralizationof the Rope paradigmwould
give anadditionalperformancéoost.

Benchmark| Full | Chess| CIDR | Rnd1000| Rnd5000
DB Size 1089 544 625 1001 5001
Prefix Pairs || 1089 544 625 88 141
Original 198 165 125 42/40¢ 56
Simple 168 140 119 30 46
Log 164 132 111 31 48
AlmostLog 159 130 111 30 45
Optimal 159 Unknown

242 wasachiezed whensplitting alongthe columns 40 whensplitting
alongtherows. This is the only testwheredataorganizationmadea dif-
ference.

Table 1. Line Search Performance (Memory
Accesses)

4.2 Memory Consumption

By using the algorithm from [21], memory require-
mentsare very much alike: Eachentry canleadto up to
log W markers, leadingto a total memoryrequiremenof
O(NlogW). The hashtable optimizationsdescribedin
[22] alsoapply.



| HeaderField | Matchingtype |
SourceAddress Prefix
DestinationAddress Prefix
ProtocollD Wildcard
SourcePort Range
DestinationPort Range
Typeof Service/Taffic Class| Wildcard
Flow ID Wildcard
TCPSYN Wildcard

Table 2. Header Field Matching. The top five
fields are often used tog ether, the remaining
fields are typicall y only used for one specific
purposes, combined with atrue subset of the
other fields.

5. Mor e Dimensions

Analogousto adding a seconddimension, further di-
mensionamay be added. Unfortunately the lower bound
on the numberof Lines grows impracticable. In the two-
dimensionalcase,we have seenthat the numberof oc-
cupiedcells in the co-diagonal,ary of its parallels,and
in factarny group of cells which are mutually ambiguous
imposesa lower bound on the numberof Lines. Simi-
larly, the co-diagonalplanein the three-dimensionatube
and all its relatives provide a lower bound for three di-
mensions.Thus,with all prefix lengthtriplesin use,there
are O(W?2) lines of O(log W) searchstepseach,totaling
O(W?log W), clearlyimpractical,evenif mary databases
will perform much betterthanthat. Generally for d di-
mensions,0 (W2~ !log W) effort is required. If the di-
mensionsshoulddiffer in size,with W; the numberof bits
necessaryto representhe addressrangein dimensions,

Olog W 15 W),

5.1 Collapsing Additional Packet ClassificationDi-
mensions

As canbeseerfrom theprevioussectionaddingdimen-
sionsafter the seconddoesapparentlynot leadto efficient
solutions.Thereforewe try to changeour goalandreduce
thenumberof dimensionsieededinsteadf addingdimen-
sionswe cansupport.

5.1.1 Collapsing a Wildcard Matching Dimension

As canbeseenfrom Table2, full prefix matchingis only
requiredfor thesourceanddestinatioraddressed-or all the
otherfields,muchmorelimited matchingmethodsaresuffi-
cient: Wildcard matchingallows afilter to eitherspecifyan

exactmatchfor a field or a don't-careandrangematching
extendsthis with ranges.

Assumethe addition of the wildcard fields, suchasthe
protocol ID. Insteadof addingthis as full-fledged dimen-
sionin its own right, we addit asanadditionallayerto dis-
patchbetweermultiple two-dimensionakearchstructures.
To dispatch,all the valid protocolIDs are storedin an ar-
ray or a hashtable. Eachof theseentriespointsto a Line
searchstructure to performthe source/destinatioaddress
matching.Eachof theseline searchstructurenly contain
the entriesof the databasevhich containthe appropriate
protocol ID. Additionally, thereis a Line searchstructure
containingall entrieswherethe protocolID is a wildcard.
Given a paclet, it is classifiedasfollows. First, the pro-
tocol ID is looked up in the initial arrayor hashtable. If
found,thereferencedwo-dimensionastructurds searched
andthe bestmatchrememberedindependentf the execu-
tion of the previous step,the additionalstructurefor wild-
cardprotocolsis searchedThen,the searctresultwith the
higherpriority is usedto further procesghe paclet.

In theworstcase this approactonly doublesthe search
steps,comparedo an eightfold slow-down if the protocol
ID were considereda full-fledged eight-bit prefix dimen-
sion. By sacrificingsomememory the additionof thethird
dimensiommaynotevenaffectthe performanceBy includ-
ing all the relevant datafrom the wildcard structureinto
the individual fully-specifiedsub-databaseshe additional
searchof the wildcard structurecan be avoided entirely.
Although no large databasesre available to supportthis
claim, we believe thatthe searchstructuresassociatedvith
thedefinedprotocollDs will not be extendedsignificantly

5.1.2 Collapsing a Limited RangeMatching Dimension

Somefields, such as the port fields, do not only re-
quire exact matchingand wildcard fall-back, they alsore-
quire a small numberof ranges. The universallyaccepted
rangesusedfor ports are [1,1023] (privileged ports and
well-known serviced15, 17]) and[6000, 6063] (X Window
System(X11) [14, 17]).? Extendingwildcard matchingto
supporttheseis straight-forvard. After searchinghe exact
match(if it exists),arangeis searchedif appropriate)and
thenthe wildcard default is searched. This requiresonly
threetimes as mary searchess a plain two-dimensional
classification.

Since the numberof supportedrangesis a small con-
stant,it makessenseo avoid the third searchin the wild-
carddatabasedhy includingtherelevantentriesinto the two
rangedatabasesacrificinga smallamountof memoryfor
a significantworst-casespeedmprovement.

2Somesourcesefer to the X11 resered rangeas [6000, 6100]. Ac-
cordingto both[17, 11], the authoritatve sourcedor Internetnumberas-
signmentspnly thefirst 64 portsarein factreseredfor X11.



5.2 Collapsing Multiple Dimensions

Obviously, this strateyy canalsobe extendedto match-
ing multiple of thesefields. The classicalproblemin Inter
netpaclet classificationis the five-tuplematching:source/
destinationaddressesprotocol ID, and source/destination
ports.Oneof thefactorsthatsimplify this five-tuplematch-
ing is thatonly two protocols,UDP and TCR, do have port
numberdefined.All othershave no notionof protocols,so
portmatchingis notnecessarywhensearchinghewildcard
protocol ID. Instead,theseentriesare just addedto both
the UDP and TCP databasesgainsacrificinga negligible
amountof memoryfor a significantspeedup.

Figure5 shovsthedecisiontreethatis to be used limit-
ing thetwo-dimensionakearches$or any pathto at most5.
If eachof thesedimensionsveretreatedasprefix matches,
thethreefieldsof length8, 16, and16 bits (protocol,source
port, destinatiorport, respectrely), would have resultedin
anincreasen the numberof searchstepsby severalorders
of magnitude. Although Figure5 shows the lookup steps
in sequentiabrder, the branchingdecisionsdo not rely on
ary lookupresults.Also, thelookupsdo notdependneach
otherand may thusbe parallelizedor pipelinedefficiently,
making the algorithm both suitablefor implementationin
hardwareandsoftware.

Match Only ... Match Exact Protocol and ...

Exact Source, Dest
Range Dest Range?

Exact Source,
Wildcard Dest
Wildcard Source,
Wildcard Dest

Wildcard Source,
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Wildcard Source,
Range Dest

Wildcard Source,
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TCP g
UDR | Exact Source/
?
Protocol? Dest Port

Other Range Source,
¥ Exact Dest
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Range Source,
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Range Source,
Range Dest
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Figure 5. Collapsing Multiple Dimensions

Range Source,
Range Dest

Exact Source,
Range Dest

Figure5 clarifiesandextendsthe ideafirst publishedin
[20] to allow for a limited amountof rangeson port num-
bers.

6. Related Work

Multi-dimensional matchingis a specializationof the
genericpoint location problemknown from computational
geometry Table2 shavedthattypical rulesetsrequirefive
or six dimensions. Unfortunately the bestknown gen-
eral point location algorithms,suchasthe two- andthree-

dimensionalsolution given in [4], requireeither spaceor
time exponentialto the numberof dimensions,which is
clearlyimpractical.In addition,the datastructuresisedare
often complicatedto handle,making them asymptotically
optimal, but very expensve for mostpracticalpurposes.

Recently paclet classificatiorresearcHinally startedto
bloom. The solutionsfound can be groupedas follows:
Directed Acyclic Graphs (DAGSs) are usedby [8, 5, 23].
Dependingon the implementationthey suffer from back-
trackingor memoryexplosion problems. [8, 23] dynami-
cally selectthebit(s) which narron the solutionspacedown
most. [5] heaily relieson cachingto reducethe number
of full-blown paclet classifications\eededwhich doesnot
performwell in the backbone.

Grid of tries [20] cleverly meshedwo tries,onefor each
supportediimension Althoughonedimensioncouldbere-
placedby amoreefficientalgorithm,atleastonedimension
mustbea purebinarytrie, whichis slow anddoesnot scale
well to largeraddressizes suchasfor thelnternetProtocol
version6 (IPv6) [6].

Quadteesolutiong 3] areeasyto update but suffer from
asimilar problem thatthey needto belinearin thenumber
of addresdits.

Hardware solutionsinclude the main proposalgivenin
[12]. Unfortunately its requiremenfor logical operations
on extremely wide RAM (N bits wide) and memoryre-
quirementsapproaching)(N?) bits for fastresponseen-
dersit impracticalfor largefilter databases.

Combinationis the key to [10]: Eachfield is lookedup
individually andthe resultsof theselookupsare combined
pairwiseanditeratively, narronving the equivalenceclasses
until thefinal solutionis found.

7.Conclusionsand Futur e Work

In this paper we have shonvn an efficient techniqueen-
abling efficient two-dimensionalongestprefix matchingin
general.To testits performancewe developedmodelsfor
possiblefuture two-dimensionatlassificatiorpatterns For
morethantwo dimensionsa native three-dimensional-
gorithm hasbeenintroducedthat is able to perform fast
searchesvhenthesizesof setsof mutuallyambiguouspre-
fix lengthtuplesremainssmall. More importantly we have
shavn anefficient schemdo match5-tuplesusedfor Inter-
net paclet classification. The algorithmslend themseles
very well to parallelization,pipelining, andthusto imple-
mentationin hardware. Unlike other approachesthe re-
sultsalsodo notrely too muchonthe propertieof thedata
setandarethuslargelyimmuneto changesn the database.
Thanksto the underlyingalgorithm,Line searchalsohasa
strongperformanceomponentogarithmicallyto the num-
ber of bits in the prefix length. We thereforeexpectit to



scalebetterto the longeraddressem IPv6 thanotherap-
proaches.

Many of thebenchmarksbove donotdealwith prefixes,
but only with the utilized prefix lengths. We are working
on improving our modelto seehow future classification
databasesould look like. We will also seewhetherthe
adaptve searchusing Ropes[21] can be usedto improve
searchspeedby narraving down the solution set much
faster Preliminaryanalysissuggestshattheimprovements
in thetwo-dimensionatasewill besignificantlyhigherthan
thosefor one-dimensionalookups. While we believe in
the representatienesf the prefix length pair simulations
above,we doubtthatRopesearchresultshasedn our syn-
theticdatawould bearary resemblancéo realdata.
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