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Abstract

Many current problems demand efficient best matching algorithms. Network
devices alone show several applications. They need to determine a longest
matching prefix for packet routing or establishment of virtual circuits. In inte-
grated services packet networks, packets need to be classified by trying to find
the most specific match from a large number of patterns, each possibly con-
taining wildcards at arbitrary positions. Other areas of applications include
such diverse areas as geographical information systems (GIS) and persistent
databases.

We describe a class of best matching algorithms based on slicing perpen-
dicular to the patterns and performing a modified binary search over these
slices. We also analyze their complexity and performance. We then introduce
schemes that allow the algorithm to “learn” the structure of the database and
adapt itself to it. Furthermore, we show how to efficiently implement our al-
gorithm both using general-purpose hardware and using software running on
popular personal computers and workstations.

The research presented herein was originally driven by current demands
in the Internet. Since the advent of the World Wide Web, the number of users,
hosts, domains, and networks connected to the Internet seems to be explod-
ing. Not surprisingly, network traffic at major exchange points is doubling
every few months. The Internet is a packet network, where each data packet is
passed from a router to the next in the chain, until it reaches destination. For
versatility and efficient utilization of the available transmission bandwidth,
each router performs its decision where to forward a packet as independent of
the other routers and the other packets for the same destination as possible.
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ii Abstract

Five key factors are required to keep pace if the Internet is to continue to
provide good service: (1) higher link speeds, (2) better router data throughput,
(3) faster packet forwarding rates, (4) quick adaptation to topology and load
changes, and (5) the support for Quality-of-Service (QoS). Solutions for the
first two are readily available: fiber-optic cables using wavelength-division
multiplexing (WDM) and switching backplane interconnects. We present
longest matching prefix techniques which help solving the other three fac-
tors. They allow for a high rate of forwarding decisions, quick updates, and
can be extended to classify packets based on multiple fields.

The best known longest matching prefix solutions require memory ac-
cesses proportional to the length of the addresses. Our new algorithm uses
binary search on hash tables organized by prefix lengths and scales very well
as address and routing table sizes increase: independent of the table size, it re-
quires a worst case time of log2(address bits) hash lookups. Thus only 5 hash
lookups are needed for the current Internet protocol version 4 (IPv4) with 32
address bits and 7 for the upcoming IPv6 with 128 address bits. We also in-
troduce mutating binary search and other optimizations that, operating on the
largest available databases, reduce the worst case to 4 hashes and allow the
majority of addresses to be found with at most 2 hashes. We expect similar
improvements to hold for IPv6.

We extend these results to find the best match for a tuple of multiple fields
of the packet’s header, as required for QoS support. We also show the versa-
tility of the resulting algorithms by using it for such diverse applications as
geographical information systems, memory management, garbage collection,
persistent object-oriented databases, keeping distributed databases synchro-
nized, and performing web-server access control.



Kurzfassung

Viele aktuelle Probleme erfordern effiziente Algorithmen zur Bestimmung
der besten Übereinstimmung zwischen einem Suchwort und einer vorgege-
benen Datenbank von jokerbehafteten Mustern. Allein der Netzwerkbereich
liefert bereits diverse Anwendungen dafür. Die Geräte müssen den längsten
passenden Präfix bestimmen, um Pakete weiterzuleiten oder virtuelle Verbin-
dungen zu erstellen. In dienstintegrierenden Paketnetzwerken müssen die Pa-
kete darüberhinaus noch feiner klassiert werden. Dies wird erreicht, indem
bestimmte Felder aus den Paketen mit einer grossen Menge von Vergleichs-
mustern verglichen wird, wovon jedes Joker an möglicherweise beliebigen
Positionen beinhalten kann. Aus den passendsten Mustern wird das mit der
grössten Übereinstimmung gewählt. Neben dem Netzwerkbereich werden sol-
che Algorithmen auch in vielen anderen Bereichen benötigt, so fuer geografi-
sche Informationssysteme oder persistente Datenbanken.

In dieser Arbeit beschreiben wir eine Klasse von Algorithmen zur Bestim-
mung des längsten passenden Präfixes. Sie alle basieren auf demselben Algo-
rithmus, der eine gegebene Musterdatenbank, senkrecht zur Orientierung der
Vergleichsmuster, in parallele Schichten zerteilt. Über diese Schichten wird
dann eine modifizierte binäre Suche durchgeführt. Danach führen wir Sche-
mata ein, welche es dem Basisalgorithmus erlauben, aus der Struktur der Da-
tenbank zu “lernen” und sich ihr anzupassen. Desweiteren zeigen wir, wie
unsere Algorithmen effizient implementiert werden können, sowohl mittels
Standardkomponenten in Hardware als auch in Software auf beliebten Perso-
nalcomputern und Workstations.

Die hier vorgestellte Arbeit wurde durch aktuellen Forderungen im Inter-
net initiiert. Seit der Einführung des World Wide Web ist die Zahl der Benut-
zer, Rechner, Domänen und Netzwerken, welche am Internet angeschlossen
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iv Kurzfassung

sind, am Explodieren. Es überrascht deshalb nicht, dass der Netzwerkverkehr
an den wichtigen Austauschknoten sich alle paar Monate verdoppelt. Das In-
ternet ist ein Paketnetzwerk, in welchem jedes Datenpaket von Router zu Rou-
ter weitergeleitet wird, bis es sein Ziel erreicht. Aus Gründen der Vielseitigkeit
und effizienten Ausnützung der vorhandenen Übertragungsbandbreite leitet
im Internet jeder Router jedes Paket möglichst unabhängig von den anderen
Routern und anderen, auch gleich adressierten, Paketen weiter.

Damit das Internet weiterhin mit den steigenden Bedürfnissen Schritt hal-
ten kann, müssen fünf Punkte erfüllt werden: (1) höhere Geschwindigkei-
ten auf den Datenleitungen, (2) besserer Durchsatz innerhalb der Router, (3)
schnellere Entscheidung über die Paketweiterleitung, (4) rasche Anpassung
an Topologie- und Laständerungen und (5) die Unterstützung von Dienstgüte
(QoS). Lösungen für die ersten beiden Punkte sind bereits verfügbar: Glas-
faserkabel mit Wellenlängenmultiplexing (WDM) und Paketvermittlung an-
stelle von Datenbussen in den Routern. Wir stellen Techniken zur Bestim-
mung des längsten passenden Präfixes vor, die bei der Lösung der letzten drei
Faktoren mithelfen. Sie ermöglichen eine schnelle Festlegung des nächsten
Wegstückes eines Paketes, rasche Aktualisierung und können erweitert wer-
den, und so Pakete auch aufgrund mehrerer Felder gleichzeitig zu klassieren.

Die Anzahl Speicherzugriffe der besten bekannten Techniken zur
Präfixbestimmung ist proportional zur Länge der verglichenen Adressen. Un-
ser neues Verfahren benutzt eine binäre Suche über Hashtabellen, welche
nach Länge der Präfixe aufgeteilt ist. Es skaliert sehr gut mit dem Wachstum
der Adresslängen und Routingtabellen: unabhängig von der Tabellengrösse
werden maximal log2(Adressbits) Hashzugriffe benötigt. Dadurch werden
beim aktuellen Internetprotokoll Version 4 (IPv4) mit 32 Bit langen Adres-
sen nur 5 Hashzugriffe gebraucht, oder 7 für das bevorstehende IPv6 mit 128
Adressbits. Wir führen ebenso mutierende binäre Suche sowie weitere Opti-
mierungen ein, welche es erlauben, den schlechtesten Fall auf 4 Zugriffe zu
limitieren sowie die Mehrzahl der Adressen in maximal 2 Zugriffen zu finden.
Wir erwarten ähnliche Verbesserungen für IPv6.

Wir erweitern diese Verfahren zur Suche nach den beste Übereinstimmung
für Tupel von mehreren Felden des Paketkopfes, welche für QoS-
Unterstützung benötigt wird. Darüberhinaus zeigen wir die Vielseitigkeit der
resultierenden Algorithmen, indem wir sie für so unterschiedliche Anwen-
dungen einsetzen wie geografische Informationssysteme, Speicherverwaltung,
Garbage Collection, persistente objekt-orientierte Datenbanken, Synchronisa-
tion in verteilten Datenbanken und Zugriffskontrolle von Webservern.
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Chapter 1

Introduction

Many current problems demand efficient best matching algorithms. Network
devices alone show several applications. They need to determine a longest
matching prefix for packet routing or establishment of virtual circuits. In
integrated services networks, packets need to be classified by trying to find
the most specific match from a large number of patterns, each possibly con-
taining wildcards at arbitrary positions. Other areas of applications include
such diverse areas as geographical information systems (GIS) and persistent
databases.

We describe a class of best matching algorithms based on slicing perpen-
dicular to the patterns and performing a modified binary search over these
slices. We also analyze their complexity and performance. We then introduce
schemes that allow the algorithm to “learn” the structure of the database and
adapt itself to it. Furthermore, we show how to efficiently implement our al-
gorithm both using general-purpose hardware and using software running on
popular personal computers and workstations.

1.1 The Internet

The Internet is becoming ubiquitous: everyone wants to join in. Since the
advent of the World Wide Web, the number of users, hosts, domains, and net-

1



2 Chapter 1. Introduction

works connected to the Internet seems to be exploding [Gra96]. Not surpris-
ingly, network traffic at major exchange points is doubling every few months.
The proliferation of multimedia networking applications and devices is ex-
pected to give traffic another major boost.

The increasing traffic demand requires four key factors to keep pace if
the Internet is to continue to provide good service: higher link speeds, better
router data throughput, faster packet forwarding rates, and quick adaptation to
routing changes. Readily available solutions exist for the first two factors: for
example, fiber-optic cables can provide faster links and switching technology
can be used to move packets from the input interface of a router to the corre-
sponding output interface at multi-gigabit speeds [PC+98]. We deal with the
other two factors: Forwarding packets at high speeds while still allowing for
frequent updates to the routing table.

The Internet resulted out of the first packet-switched networks. Unlike the
then-predominant circuit-switched networks, such as the public telephone net-
work, and other packet-switched networks such as X.25 [IT96], every packet
travels across the network independently of all others. While this makes opti-
mal use of the available bandwidth through the inherent high-resolution multi-
plexing, it also requires that each packet is almost self-sufficient. Each packet
must be able to be treated independently of all the other packets in its stream.
This usually implies that each packet is labelled with both a globally unique
source and destination address, which it must carry along.

In a router, the major step in packet forwarding is to lookup the destination
address of an incoming packet in the routing database. While there are other
chores, such as updating time-to-live (TTL) fields and checksums, these are
computationally inexpensive compared to the major task of address lookup
(see Section 2.2.1). Data link bridges have been doing address lookups at
100 Mbps [Spi95] for many years. However, bridges only do exact matching
on the destination (MAC) address, while Internet routers have to search their
database for the longest prefix matching a destination IP address. Thus, stan-
dard techniques for exact matching, such as perfect hashing, binary search,
and standard Content Addressable Memories (CAMs) cannot directly be used
for Internet address lookups. Also, the most widely used algorithm for IP
address lookups, BSD Patricia Tries [Skl93], have bad worst-case behavior.

Prefix matching was introduced in the early 1990s, when it was foreseen
that the number of endpoints and the amount of routing information would
grow enormously. Then, only address classes A, B, and C existed, giving in-
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dividual sites either 24, 16, and 8 bits of address space, allowing up to 16
Million, 65,534, and 254 host addresses, respectively. The size of the network
could easily be deducted from the first few address bits, making hashing a pop-
ular technique. The limited granularity imposed by the three address classes
turned out to be extremely wasteful on address space. To make better use of
this scarce resource, especially the class B addresses, bundles of class C net-
works were given out instead of class B addresses. This would have resulted in
massive growth of routing table entries over time. Therefore, Classless Inter-
Domain Routing (CIDR) [RL93, FLYV93] was introduced, which allows for
aggregation of networks in arbitrary powers of two to reduce routing table en-
tries. With this aggregation, it was no longer possible to identify the number of
bits relevant for the forwarding decision from the address itself, but required
a prefix match, where the number of relevant bits was only known when the
matching entry had already been found in the database.

The use of best matching prefix in forwarding has allowed IP routers to
accommodate various levels of address hierarchies, and has allowed parts of
the network to be oblivious of details in other parts. Given that best matching
prefix forwarding is necessary for hierarchies, and hashing is a natural solution
for exact matching, a natural question is: “Why can’t we modify hashing to
do best matching prefix?” However, for several years now, it was considered
not to be “apparent how to accommodate hierarchies while using hashing,
other than rehashing for each level of hierarchy possible” [Skl93]. In 1997,
we started the race for faster lookups by introducing a technique which will
perform significantly better than that [WVTP97, WVTP98]. This thesis covers
and extends on the work started then.

1.2 Beyond Packet Forwarding

As the Internet became more popular, the applications demanding the major-
ity of the bandwidth moved from bulk file transfer and e-mail to interactive
browsing of the World Wide Web and audiovisual broadcasts or conferenc-
ing. For the latter, delays and packet drops due to congestion are much more
noticeable. Therefore, the user demands for a network serving these appli-
cations are much higher, leading to requests for bandwidth reservation and
preferential treatment.
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To meet these demands, several approaches have been proposed, all requir-
ing packet classification at several or all routers within the network to function
properly. Packet classification defines the process of matching packets against
a pre-defined database of often partially defined header fields, such as source
and destination addresses, protocol, and even application-specific parameters.

Another application requiring packet classification in increasing demand
are firewalls, devices which block or allow packets based on their matching
against a database.

1.3 Claims

This thesis addresses several topics, which are listed below and revisited in
Chapter 10.

1. Fast and Scalable Longest Prefix Matching
We introduce a fast and scalable, yet generic algorithm which allows for
matching query items against a large database of possibly overlapping
prefixes.

2. Fast Forwarding
We apply this algorithm to Internet packet forwarding and analyze its
performance using the largest available databases.

3. Adaptivity
We extend the generic algorithm to a scheme which can self-adapt to
structures discovered in the search database, resulting in a further per-
formance boost.

4. Efficient Building and Updating
We present efficient algorithms for building both the generic and the
self-adapting data structures. We also show how to update them both
quickly and efficiently.

5. Fast Hashing
We explain and analyze practical schemes for fast hashing. This scheme
is required for the operation of the presented algorithms. We also show
that the search structures and hashing can be efficiently combined to
yield even better results.
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6. Two Dimensions
We extend the scheme to perform two-dimensional prefix-style packet
classification. This is required for basic packet classification on source/
destination address pairs.

7. Packet Classification
We further enhance the algorithm to an efficient full-fledged five-
dimensional Internet packet classification, thanks to known properties
of the additional three dimensions.

8. Versatility
We show that our algorithm is not limited to theory and Internet. In-
stead, the availability of our prefix matching scheme makes a series of
other applications practical for the first time or improves them signifi-
cantly.

1.4 Overview

This thesis is structured as follows. Chapter 2 introduces the basics of packet
networks, forwarding lookups, packet classification, and hashing. Chapter 3
discusses related work in these fields.

Chapter 4 describes how to efficiently search a forwarding database,
Chapter 5 explains build and update procedures and documents practical tech-
niques for fast hashing, Chapter 6 implements efficient software searches and
presents cheap hardware for multi-gigabit lookups. The results are evaluated
in Chapter 7.

Chapter 8 first describes multi-dimensional packet classification and then
introduces additional matching problems. Chapter 9 presents further appli-
cations for the algorithms and techniques presented herein. Chapter 10 con-
cludes this thesis.





Chapter 2

Background

In this chapter, we will give some background on the Internet Protocol and
then state the underlying problems of prefix matching and packet classification
in more detail. We will also mention the classical algorithms on which this
work builds.

2.1 The Internet Protocol

2.1.1 History and Evolution

In 1961, Kleinrock [Kle61] proposed and analyzed the use of packet switched
networks. This work resulted 1969 in the ARPANET, from which our current
Internet evolved. Since its inception in 1978 [Rob97], the Internet protocol
is dubbed “version 4” [Pos81a]. The reasons for starting with version 4 are
obscure, but the version numbers below 4 have never been officially assigned
or are reserved. With the years, it turned out that the Internet developed dif-
ferently from what the original protocol designers had thought. That the In-
ternet in fact bloomed much better than the designers had imagined even in
their wildest dreams turned out to be a major problem. Through the immense
growth, address space was getting extremely scarce. Also it was predicted
that quality of service and security would become issues in the near future.
To support them and any other issues that might show up, the protocol should

7
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be designed in an extensible, yet efficient way. Items such as these were put
on the agenda for proposals for designing and engineering the next generation
Internet (IPng) [BM93].

Among the different proposals, the one which had been assigned the ex-
perimental version number 6, received most attention and started to evolve
and integrate promising features from the other proposals. The result is now
known as Internet Protocol Version 6 (IPv6) [DH98]. Version number 5 had
been allocated for the experimental Stream Protocol [Top90, DB95], which is
not part of the official Internet protocol family, but was also designed as an
evolution from IPv4.

2.1.2 Internet Protocol Layer

In Tables 2.1 and 2.2, the headers of the IP version 4 and 6 protocols, re-
spectively, are depicted. In all the protocol figures in this thesis, each row
represents four bytes, and the important fields are set in bold.

0 1 2 3

Vers HLen ToS Packet Length
IP ID Fragment Info/Offset

TTL Protocol Header Checksum
Source Address

Destination Address
... IP Options (optional, variable length)

...

Table 2.1: IP Version 4 Header Format

Probably the most important field to determine packet handling in IPv4
(Table 2.1) is the destination address. Each router between source and desti-
nation will have to look at this field and determines the direction to send the
packet to based on its contents. This is the normal forwarding operation. For
packet classification, the source address is also looked at. This address pair to-
gether define a flow in its coarsest possible notion. This so-called “host-based”
association groups all uni-directional traffic between the two hosts. Another
important field is the protocol ID, which defines the transport-level protocol
that is encapsulated within this IP packet. The most common values for it are
TCP (used for reliable and well-behaving traffic) and UDP (used for real-time
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services and group communication). In addition to these two, a number of
other protocols are defined, mostly for control and management purposes, with
ICMP (for control messages, such as “your packet could not be delivered”) as
the main representative. The type-of-service field (ToS) was created to iden-
tify the packet’s priority, it’s queueing, throughput, and dropping behavior to
the routers. Several applications (e.g., telnet [PR83] and ftp [PR85]) do set
these flags. Nevertheless, they were only used seldomly for packet classifica-
tion in routers. With Differentiated Services (DiffServ, Section 2.2.3) being
explored right now, two previously reserved bits in the ToS field may be used
in core routers to determine packet treatment without classification.

0 1 2 3

Vers Traffic Class Flow ID
Payload Length Next Header Hop Limit

Source Address

Destination Address

Table 2.2: IP Version 6 Header Format

The IPv6 header as shown in Table 2.2 has a structure similar to IPv4.
The most notable changes are that addresses have been extended from 32 to
128 bits, the protocol ID field has been renamed “Next Header” to stress the
improved modularity, and several fields have been removed to streamline the
protocol. The Traffic Class field is intended to extend the semantics of the
IPv4 Type-of-Service field, but its use is currently only experimental.

To simplify packet classification, a flow ID has been added. The tuple
(source address, flow ID) should uniquely identify a flow for any non-zero
flow ID. The exact definition of “flow” is left to the application, but it should
cover only packets that require homogeneous treatment in transit. Neverthe-
less, many routers will need to perform full-fledged classification. The flow
ID was not meant to entirely replace classification, only to simplify parsing of
the packets. Especially if the classification is performed for security reasons,
the flow ID does not help.
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2.1.3 Transport Protocol Layer

On the transport layer, only two protocols, UDP (Table 2.3) and TCP
(Table 2.4), provide information that is commonly used to further classify
packets: Source and destination port numbers. These numbers are used to dis-
patch packets to the receiving application and represent the fine-grained (and
more common) variety of flows. Within the network, they can be used to iden-
tify a pair of communicating applications. Thus, with appropriate signalling
support, applications can let the network know about their requirements, com-
monly in the form of resource reservations.

Many of the port numbers have a publicly known meaning. These so-
called well-known ports, have been assigned for, and are reserved to, common
services. For example, port number 80 is assigned to communicate with World
Wide Web (WWW [Wil98]) servers using the Hypertext Transfer Protocol
(HTTP), so traffic to or from port 80 will most likely be WWW traffic.

0 1 2 3

Source Port Destination Port
UDP Data Length Checksum

Table 2.3: UDP Header Format

0 1 2 3

Source Port Destination Port
Sequence Number

Acknowledgement Number
Offset — Flags Window Size

Checksum Urgent Pointer
... TCP Options (optional, variable length)

...

Table 2.4: TCP Header Format

If you desire to know more about the Internet protocol, [Ste94] is highly
recommended reading for the technically inclined reader and contains all the
information you might desire to know.
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2.2 The Problems

The Internet poses several problems related to per-packet decisions. Forward-
ing and packet classification are discussed below.

2.2.1 Internet Packet Forwarding

As we have seen in Chapter 1, it was the desire of the designers of the Internet
to keep the router’s routing and forwarding databases small. This was origi-
nally done by not requiring the routers to keep track of all individual nodes of
the network, but by grouping them in networks of different size. Each router
outside a given network only had to know about how to forward packets to
these networks, where routers with knowledge about the internal topology
would make sure the packet reached its final destination. Two additional goals
were also set up and met by the original designers:

1. To provide for several sizes of networks, as to closely fit the needs of
the organizations connected to the Internet.

2. To simplify the extraction of the part of the address that named the des-
tination network.

The first goal was met by designing the network sizes so that the individual
networks could contain up to 254, 65534, or 16 million hosts, named Class C,
B, and A, respectively. The second goal was met by having the first few bits
of the address indicate the length of the network part. This resulted in 126
Class A networks, 16382 Class B networks, and 2 million Class C networks,
leaving one eighth of the address space for future wild ideas (Table 2.5).

To achieve maximum routing table space reduction, aggregation is done
aggressively: Suppose all the subnets in a big network have identical routing
information except for a single, small subnet with different information. In-
stead of having multiple routing entries for each subnet in the large network,
just two entries are needed: one for the overall network, and one entry show-
ing the exception for the small subnet. Now there are two matches for packets
addressed to the exceptional subnet. Clearly, the exception entry should get
preference there. This is achieved by preferring the more specific entry, re-
sulting in a Best Matching Prefix (BMP) operation. In summary, CIDR traded
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Class First Bits # of Networks # of Hosts per Network

A 0 126 16777214
B 10 16382 65534
C 110 2097150 254
Da 1110 — —
Eb 1111 — —

aOriginally unassigned, later used for Multicast [DC90]
bUnassigned

Table 2.5: Classful Internet Addressing (Outdated)

off better usage of the limited IP address space and a reduction in routing
information for a more complex lookup scheme.

Today, an IP router’s database consists of a number of address prefixes. A
prefix is a specific pattern, which represents a bit sequence consisting of two
distinct areas. One area consists of bits with an exactly defined value (chosen
from either 0 or 1), which makes up the most significant bits (“left-aligned”).
The other area consists of all don’t-care bits and is “right-aligned”. Either of
the areas may be empty, but the sum of the lengths of the two areas must equal
the length of the address they should be compared with. The prefix length is
defined as the number of non-wildcard bits.

When an IP router receives a packet, it must compute which of the prefixes
in its database has the longest match when compared to the destination address
in the packet. The packet is then forwarded to the output link associated with
that prefix, directed to the next router or the destination host. For example,
a forwarding database may have the prefixes P1 = 0000∗, P2 = 0000 111∗
and P3 = 0000 1111 0000∗, with ∗ meaning all further bits are unspecified
and being used to visually group the bits. An address whose first 12 bits
are 0000 0110 1111 has longest matching prefix P1. On the other hand, an
address whose first 12 bits are 0000 1111 0000 matches all three prefixes, but
its longest matching prefix is P3. For one-dimensional prefix databases, if it
contains a match at all, there is always a single distinct prefix in this database
having the longest prefix length associated with it.

Current backbone routers have to deal with forwarding databases contain-
ing up to 40,000 prefixes. Several millions of packets per second have to be
compared against this database for each network link. Today (June 1999),
the biggest routers contain a dozen OC-192 (9.6Gb/s) links, corresponding to
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more than 300 million minimum-sized packets passing through the router each
second. The forwarding databases, the link speeds, and the link counts are still
growing, with the number of packets per link doubling every few months. Cur-
rent Internet (IPv4) addresses are 32 bits long, with 128 bits upcoming (IPv6
[DH98]) to relieve the current IP address scarcity and allow for further growth.

Besides the forwarding decision, routers have to perform other tasks when
forwarding a packet [Bak95]:

Checksum verification The standard makes it a requirement to check the
header checksum of any IPv4 packet before performing looking at any
other field. But hardly any router verifies the checksum, because the
checksum calculation is considered to be too expensive, despite the
speed optimizations possible to the naı̈ve algorithm [BBP88]. Check-
summing is omitted under the assumption that (1) packets hardly ever
get corrupted in transit with current technology, especially fiber-optics,
and (2) end systems (hosts) will recognize the corruption. IP version 6
[DH98] therefore no longer has an IP header checksum, the relevant
header fields (source and destination address) are only checked by in-
clusion into the transport protocol checksum (already the IPv4 transport
protocols include the IP addresses into their checksum).

Fragmentation A packet may need to be fragmented, because the outbound
link cannot handle the size of the packet. This is very unusual for high-
speed links, since they are designed to handle large enough packets.

Time-to-Live The Time-to-Live (TTL) field is used to detect packets looping
in the network. A host sending a packet typically initializes the TTL
with 64 (recommended by [RP94]) or 255 (the maximum). Each router
then decrements it. The packet is discarded and an error message gen-
erated when the TTL reaches zero before reaching the destination.

Checksum update Since a header field—the TTL—was changed, the check-
sum needs to be recalculated. [MK90] describes how to efficiently do
this incrementally, if only the TTL was decremented. Using incremen-
tal updates also allows end systems to recognize corrupted headers and
does not run the risk that routers unknowingly overwrite the unchecked
bad checksum with a good one.

Although there are a lot of chores to be performed, in almost all cases, they are
reduced to decrementing and checking the TTL and incrementally updating
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the checksum. These two operations combined are much cheaper than making
a forwarding decision.

2.2.2 Multicast Packet Forwarding

Multicast routing in the Internet is currently being done based on either a
Distance-Vector algorithm [DPW88, DC90, Dee91] or so-called Core-Based
Trees [Bal97b, Bal97a].

For core-based trees, a shared spanning tree is established for each multi-
cast group, containing all the group’s recipients, including those who are also
senders. Routers within the group’s tree determine, which spanning tree to
use based on an exact match of the destination (multicast group) address with
their forwarding database. There are also routers outside the tree, those serv-
ing the nodes which only send to the group. These routers forward all packets
addressed to the group towards a router within the tree, called core. All for-
warding is done using exact prefix matching on the destination address, and
thus, there is no need to perform any prefix matching. A similar scheme is also
used for Protocol Independent Multicast–Sparse Mode (PIM-SM [EFH+98]).

The most popular multicast scheme utilized in the current Internet is
distance-vector multicast routing (DVMRP). Each sender is allocated its own
multicast distribution tree. This results in the fastest and most ressource-
efficient delivery of messages. Unfortunately, with many senders, this ap-
proach also requires a lot of state at all multicast routers: For each pair of
sender and multicast group this sender transmits to, the router needs to main-
tain the list of outgoing interfaces the packets need to be multicast. To sup-
press loops in the routing and build and update the initial distribution tree, it
also needs to store the interface the packets are expected to come in on.

To reduce the information kept for DVMRP, aggregation also takes place.
Since the multicast groups (the destination address) have no exploitable struc-
ture, the senders are aggregated based on their addresses. This happens based
on the unicast routing information. For lookups, DVMRP thus requires first an
exact match on the group (destination) address, followed by a longest prefix
match on the source address. This can also be combined into a longest pre-
fix match based on the concatenation of destination and source addresses. As
such, although two addresses (“dimensions”) are involved, it can be reduced
to a one-dimensional prefix matching.
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Header Field Priority IntServ DiffServ Firewalls

Type of Service Exact — — —
Source Address (Exact) Wildcard Prefix Prefix
Destination Address (Exact) Wildcard Prefix Prefix
Protocol ID Exact Wildcard (Wildcard) Wildcard
Source Port Exact Wildcard (Wildcard) Range
Destination Port Exact Wildcard (Wildcard) Range
TCP SYN — — — Wildcard

Table 2.6: Header Field Matching

MASC/BGMP [KRT+98] extends the aggregation performed for
DVMRP. Not only are the senders grouped based on their address, also multi-
cast addresses can be tied together, if they are expected to have similar struc-
ture and their addresses were allocated to make prefix aggregation possible.
Such structural similarities across groups is e.g. caused by protocols using
multiple multicast groups to transmit related material. A prominent represen-
tative of this category is layered multicast [MJV96]. Thus, MASC/BGMP
requires two-dimensional longest prefix matching. Multi-dimensional match-
ing (“classification”) is covered in the next section.

2.2.3 Internet Packet Classification

In the recent years, we’ve seen an increasing demand for Quality of Service
(QoS) provisioning in the Internet. With more and more organizations con-
nected, they become more and more concerned about the security of their
internal network. This usually leads to the set-up of Internet firewalls, devices
that decide whether to allow or deny a packet based on a set of rules, that may
be changing dynamically.

Priority-based Forwarding

For a long time, routers supported priority-based forwarding, where the net-
work administrator could determine which packets should be treated prefer-
entially. This was usually done by performing exact matches against either
of the header fields, with type of service and the port fields used most fre-
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quently. Often, the fields could be searched in order until a match was found
(Table 2.6). The prioritization was static, inflexible, and coarse-grained, yet
still needed a lot of manual tuning.

Integrated Services

QoS is currently being used in the context of Integrated Services (IntServ)
[BCS93, BCS94, Wro97]. These schemes currently require all routers along
the path between source and destination to keep state for each individual
“flow”. For further understanding it is sufficient to think of a flow as an end-to-
end connection. Obviously, this flow-by-flow accounting does not scale well.
On the other hand, due to the missing aggregation, the matching rules are also
simple. Classically, packet filtering takes the five classical header fields into
account while comparing a packet against the database: source and destination
address, protocol ID, and potentially the source and destination port numbers,
which identify the originating and receiving application.

As is shown in Table 2.6, the current IntServ mechanisms only require
wildcard matching, signifying each of the fields is either completely speci-
fied (exact match) or left entirely unspecified (wildcard). This limited match-
ing makes it easier to implement than prefix or range matching. There
is currently research going on, which tries to aggregate reservations, thus
reducing the amount of information being kept at the backbone routers
[DWD+97, DDPP98, BV98]. Unfortunately, this will also require more com-
plex matching schemes.

Differentiated Services

Differentiated Services (DiffServ, [BBC+98, FKSS98, AFL97]) try to reduce
the amount of information being kept in backbone routers to a minimum:
none. Instead, they use a number of bits in the packet header to specify
whether the packet does not need any special treatment (i.e., should receive
“best effort” treatment) or is part of a reserved flow. For the latter, it generally
is further specified whether that packet is within the limits specified by the
traffic contract or not. According to this information, the priority of the packet
is decided upon by the router, without the need to revert to databases, keeping
additional effort to a minimum.
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Unfortunately, this scheme invites cheating: Everyone can happily set the
“high-priority” bits in the outgoing packets to get better treatment. Unfortu-
nately, those that require preferential treatment and may even have paid for
that privilege, will notice degraded traffic quality. Therefore, at each bound-
ary between administrative domains, i.e., between the end user and its Internet
service provider (ISP) or between ISPs, the receiving partner must check that
the priority bits are indeed set according to a pre-arranged traffic contract. It
is at these points, that high-speed packet classification is required to “police”
the traffic according to the contract. As can be seen from Table 2.6, they do
require prefix matching for source and destination addresses, and (depending
on the exact nature of the contract) possibly also wildcard matching on the
remaining fields.

Firewalls

Firewalls [CZ95] do require the most sophisticated pattern matching algo-
rithms (Table 2.6. Not only should it be possible to aggregate source and des-
tination addresses arbitrarily, requiring prefix matching. But we also need to
support wildcards on the protocol ID and the even more complex range match-
ing on the port numbers. Luckily, only a limited number of ranges is generally
being matched (1 . . .1023, 1024 . . .65536, 6000 . . .6099), everything else is
plain wildcard matching. Unfortunately, firewall rules usually require an ad-
ditional field, namely, whether the TCP SYN bit is set. This is necessary to
differentiate whether a connection is set up from the “inside” (trusted, pro-
tected region) or the “outside” (insecure region), increasing the number of
relevant dimensions to 6.

2.2.4 The Knowledge Meta-Problem

Although much is known about the protocol and its related algorithms, our
knowledge about traffic patterns is limited. This is partly because monitoring
the high-speed backbone networks is difficult [TMW97], and partly because
measurements cannot keep track with the pace user behavior and thus the In-
ternet traffic is changing. This lack of knowledge poses a major problem for
designers and vendors of Internet equipment.

Nevertheless, there are a few resources available providing for up-to-date
data. The Internet Performance and Measurement Project [Int] collects and
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analyzes [Lab96, LMJ97] routing information. The U.S. National Laboratory
for Applied Network Research (NLANR) keeps information on data flows,
such as packet size distributions [Nat97] and has recently started to supply
real-time packet statistics [Nat].

Until now, there unfortunately exists no paired routing and traffic data
from the same location, which would help in analyzing algorithms. Also, for
several of the advanced problems, there is only rudimentary knowledge about
the datasets available the algorithms will have to deal with in the near future.

2.3 Matching Techniques

“Matching” is most often associated with algorithms that search for a sin-
gle data item in a large string of constant data (“exact matching”, “substring
matching”). It is often forgotten, that this also applies to comparing a single
pattern against a large set of constant data (“pattern matching”). Even less
is known about the problem we face with Internet forwarding and classifica-
tion: Comparing a constant entry against a large set of patterns (“classifica-
tion”, “point location”). This is summarized in Table 2.7. Matching pattern
items against pattern databases (“best matching”) and matching inexact items
against inexact databases (“closest fit”) are out of scope of this thesis. See
[Gus97] for a discussion.

Database Entries
Fully Specified Partially Specified

Search Full Exact Matching Classification
Item Partial Pattern Matching Best Matching

Table 2.7: Classification of Matching Techniques

The following sections give an overview over some existing techniques in
these categories. The algorithms closely related to the topic of this thesis will
be discussed in detail in Chapter 3.
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2.3.1 Exact Matching

A large variety of techniques is known for exact matching in different data
structures. The number of techniques is so large, that we’re only able to men-
tion general techniques, there exists a large number of solutions, each tailored
to a specific problem. On linear memory, well-known strategies are linear
search, binary search, and hashing. Using structured memory (i.e., point-
ers), we are able to add trees and tries to the list. [Knu98] gives an excel-
lent overview over the different techniques and also explains a vast number of
specialized sub-forms.

Content Addressable Memories (CAM) add hardware parallelism to the
matching. Each memory cell is equipped with a comparator, verifying whether
the contents of its cell equals the search item. While many CAMs are used for
exact matching, often they are also capable of matching against a search pat-
tern. Modern “Ternary CAMs” even allow their memory locations to contain
wildcards, which makes them suitable for classification. For a more detailed
discussion of CAMs, see Section 3.2.4.

Hashing

Hashing is a very prominent candidate among the exact matching group,
since—on average—they can provide for O(1) access in O(1) memory per
database entry. Probably the most prominent representative is known as per-
fect hashing [FKS84], providing for O(1) worst-case access and memory. Un-
fortunately, finding a hash function which meets these criteria is very depen-
dent on the entries in the database. Thus, database build and update time can
take non-polynomial time and lead to expensive hash functions.

A more practical solution is dynamic perfect hashing [DMR+94], provid-
ing for O(1) access with modest update times. Hash methods are analyzed in
more detail in Section 5.5.

Wildcard Matching

Wildcard matching extends exact matching by providing for a “fall-back” or
“match-all” entry, which is considered to be matched if no exact match was
found. While this is trivial to implement when matching a single item against
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a database (one-dimensional matching), it adds another level of complexity,
when tuples of items are matched against a tuple database (multi-dimensional
matching), and each of the items in the tuples can be individually wildcarded.

2.3.2 Substring Matching

Substring matching is a variation of exact matching. Again, both the search
item and the database are fully defined. This time, the database does not con-
sist of several independent entries, but of a single large sequence of symbols,
a string, and the search item is to be compared with every possible substring.
Two well-known representants of solutions to this problem are the algorithms
by Knuth-Morris-Pratt [KMP77] and Boyer-Moore [BM77]. Both are also
discussed in [Knu98, Gus97], together with further algorithms.

2.3.3 Pattern Matching

Pattern matching is in wide use for matching wildcarded substrings in a large
string. The best-known solutions in this field are variations on the Knuth-
Morris-Pratt and Boyer-Moore algorithms [Gus97]. If the pattern is to be
matched against a database of individual entries and contains a non-trivial
leading prefix, trie matching schemes are also in widespread use.

Nievergelt et al. [NHS84] describe the Grid File, a way to structure multi-
dimensional data on disks so that subset queries can be answered efficiently.

2.3.4 Point Location

Given a database of objects in a d-dimensional space and a query point in this
space, which object(s) is this point in? This is the basic question that defines
the point location problem. Depending on the constraints of the number of
dimensions and the shape of the objects, a vast variety of algorithms has been
created to optimally tackle this field [BKOS97].

Packet classification is considered a sub-problem of the general problem
space, since a potentially large set of constraints on the form of the objects is
known in advance. As will be explained in more detail in Chapter 8, packet
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classification per se has a number of constraints which allow for more efficient
solutions. Additionally, the databases that will be fed to these algorithms often
contain a significant amount of regularities, which can additionally be used to
improve on the algorithms.

2.4 Relations Between One-Dimensional Match-
ing Problems

Another common matching problem we have already seen besides prefix
matching is range matching. Simple prefix matching problem—without
overlapping—is a special case of range matching. Prefixes are limited ranges,
whose size is a power of two and whose start and thus also its end is a multiple
of its size. Any range delimited by integer positions can be split into at most
2W prefixes, where W is the number of bits used to represent the size of the
range. This encoding is entirely independent of the remainder of the database,
as long as there are no overlaps.

As soon as we introduce overlaps into either the prefix or the range
database, we require a mechanism to differentiate between the overlaps. In
prefix matching, there is a natural way. Any two prefixes are either entirely
contained within one another or do not overlap at all. This naturally assigns
the higher priority to the contained prefix. When choosing priorities according
to another criteria, some or all of the contained prefixes would never match,
so there would be no need for them to be part of the database.

Prefix Matching

Best Matching
Prefix

Range
Matching

Overlapping
Ranges

Figure 2.1: “Inheritance Hierarchy” of Matching Problems
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On the other hand, such an inherent distinction is not apparent for overlap-
ping ranges, requiring explicit priorities in the general case. This implies that
when allowing for overlaps, the search algorithms need to more elaborate.

The relation between the different facettes of range matching is depicted
in Figure 2.1. Looking at this figure, the question of the relationship between
range matching and best matching prefix arises. As can be seen, any database
of N potentially overlapping prefixes can be split into at most 2N ranges.
Unfortunately, an addition or deletion of a single prefix can cause N ranges to
be created or deleted, which is clearly undesirable.



Chapter 3

Related Work

As our main topic is longest prefix matching, this chapter will mainly cover the
algorithms which either directly solve this problem or are easily so adapted.
We will also cover multi-dimensional longest prefix matching techniques.
Firstly, we introduce the performance metrics used.

3.1 Performance Metrics

Performance is classically measured in both time and space requirements. For
algorithms, space usually corresponds to memory consumption, while time
is based on the number of operations required on a virtual CPU (such as the
Random Access Machine (RAM) model [AHU74] model) or the number of
seconds spent on a real CPU.

We will see both time and space metrics in this chapter, discussing space
and memory complexities (O(x) notation). For the time requirements, several
different measures will be used:

Average-case search time The main unresolved goal in IP forwarding is
speed, therefore, it will obviously be one of the main factors for evalu-
ating and comparing algorithms. Since IP routers are statistical devices
anyway, i.e., are equipped with buffers to accomodate traffic fluctua-

23
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tions, average-case speed seems like an adequate measure. Unfortu-
nately, it is hard to come up with reliable average-case scenarios, since
they heavily depend on the traffic model and traffic distribution.

We believe that using publicly available backbone databases and a
uniform distribution of destination addresses across the entire address
space results in a reasonable approximation of the average case. As-
suming a uniform distribution tends to err towards shorter lookup times,
since shorter prefixes (which were typically assigned earlier, when the
address space was only sparsely populated) tend to be more sparsely
populated. In addition, most of the popular sites showing heavy traffic
are located in relatively small prefixes.

Unfortunately, the resulting skew cannot be quantized reliably. To give a
bound on the error, we often will also mention the other extreme: When
traffic per prefix is constant. These two metrics will be used below when
referring to “bounding” the average case.

Worst-case search time Unfortunately, it is unknown how prefix and traffic
distributions will evolve in the future. The Internet so far has rather
successfully tried to escape predictability. Therefore, known worst-case
bounds are important for designing a system that should work well over
the next several years, making worst-case bounds at least as important
as knowledge about the average case. In some cases, such as for im-
plementation in hardware, or together with hardware, constant time or
constant worst time lookups are a prerequisite.

3.2 Existing Approaches to Longest Prefix
Matching

We survey existing approaches to IP lookups and their problems. We discuss
approaches based on modifying exact matching schemes, trie based schemes,
hardware solutions based on parallelism, proposals for protocol changes to
simplify IP lookup, and caching solutions.
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3.2.1 Trie-Based Schemes

The classical solutions for longest prefix matching have been tries. The fol-
lowing sections explain the evolution of this scheme.

Binary Trie

The binary trie represents the simplest species in this tree-like family. The
name is apparently based on “retrieval” [Bri59, Fre60]. Unlike trees, branch-
ing in tries is not based on a ordered comparison with the key stored in the
node. Instead, bits are extracted sequentially from the search key and used to
index into a pointer table, going left or right. A simple binary trie is shown
in Figure 3.1. The grey nodes are terminal nodes, i.e., nodes that do contain
more information on what to do if the search terminates there. White nodes
only guide the search process. Assume searching for the bit sequence 011.
First, the most significant bit (0) is extracted and used to decide which way to
branch from the root to the gray node directly below it to the left. This gray
node is remembered as our current longest match, in case nothing better will
be found. Then, the next bit (the middle 1) is extracted from the search string
and branched along the path labeled “1” to its white right child node. The
third bit, another 1, cannot be used, since there is no link labeled “1” from that
node. Thus, the remembered gray node is the best match.

0 1

0 0

0

1 1

1

Root

Figure 3.1: Simple Binary Trie

This solution requires O(W ) time and O(NW ) memory. The average
case according to the current Internet is bounded by 11 and 22 trie steps.
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Path-Compressed Tries

Often, these binary tries contain long sequences of nodes without branching.
For exact matching, Gwehenberger [Gwe68] presents an algorithm to reduce
these long chains of “white” nodes (compare Figure 3.1), by introducing a skip
count in each node. This technique of using skip counts later became known as
path compression and reduces the number of trie nodes to 2N−1, independent
of the data set. At about the same time, Morrison [Mor68] independently
created a library indexing system based on the same idea, which he called
PATRICIA. This name has stuck.

The most commonly available IP lookup implementation was imple-
mented for the BSD Unix kernel by Sklower [Skl93]. It combines the idea of
path path-compression and longest prefix matching. In path-compressed tries,
not all of the intermediate bits are stored in the trie nodes traversed. Although
this optimization reduces the work required for exact matches, it increases the
cost of longest prefix matching searches: When the search reaches a terminal
node, it may turn out that the entry stored there no longer matches the search
argument. This then leads to expensive backtracking. Because the structure
of these single-bit tries closely models the aggregation hierarchy, updates are
very fast. Despite this, the search implementation requires up to 2W costly
memory accesses—64 or 256 for IPv4 or IPv6, respectively.

PATRICIA exhibits the same time complexity as the binary trie, but gen-
erally is faster. Since the average cost depends much stronger than the basic
trie on the actual prefixes stored, the average case would be too variable to
make a reasonable statement.

LC-Tries

Nilsson and Karlsson [NK98] enhance the radix trie’s path compression by
level compression. Whenever a trie node does not have terminal nodes for
the next t levels, the fan-out trie is compressed into a single array of size 2t

and t bits are used to index into this array of pointers to nodes. Unlike all the
trie variants mentioned below, this structure is still self-contained. This means
that it does not require a simpler helper trie to be built from. Unfortunately,
insertions and deletions can become expensive, if they require large fan-out
arrays to be built or destroyed. It also does not gain as much speed advantage
as the read-only tries below, yet it is quite complex to handle.
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As PATRICIA, LC-tries do not improve time complexity, although the
average search depth is reduced from 19 (binary trie) to 8 (LC-trie) in the
authors’ analysis.

Controlled Prefix Expansion

Srinivasan and Varghese [SV99a] improved binary tries by extracting multiple
bits at a time and using them as an index into an array of pointers to child
nodes. While the idea is extremely simple, the implementation is tricky. Since
there is no longer a one-to-one relation between terminal nodes and database
entries, updating can be painful and requires a conventional binary trie as a
helper structure. Also, memory consumption can be high if the number of
bits to take per step (stride) does not match the database well. But probably
the idea’s biggest disadvantage is that it does only improve search speed by a
constant factor and thus does not scale to longer address lengths.

The time complexity is O(W/S), where S is the stride, with memory
growing to O(N ∗ 2S). With S being tunable, average-case numbers cannot
be given.

Compact Tries

Degermark et al. [DBCP97] present a method for compactly encoding the
largest forwarding databases to fit into the second-level cache of DEC Alpha
[Sit92] processors. Their scheme is quite complex and shows similarities to
data compression algorithms. The search requires a large number of different
steps. As the operations are done in the cache and not in slow main memory,
they still perform well.

Again, the time complexity remains at O(W ). Due to the entirely different
per-search-step operation, an average comparison with the other tries does not
make sense.

All these trie variants improve the speed only by at most a constant factor.
The search acceleration for 32 bits is good, but they will run into performance
problems with the migration to IPv6 addresses. These schemes can also ex-
hibit bad update behavior. Many of the faster algorithms cannot be updated
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dynamically and require a traditional trie as a helper structure to rebuild the
fast search structure from. A good summary can also be found in [SV99b].

3.2.2 Modifications of Exact Matching Schemes

Classical fast lookup techniques such as hashing and binary search have been
used to match network addresses for a long time [Jai89, Spi95]. Unfortunately,
they only are used for exact matching and do not directly apply to the Best
Matching Prefix (BMP) problem. We will present two of these adaptations
below.

Binary Search on Prefixes

A modified binary search technique, originally due to Butler Lampson, is de-
scribed in [Per92] and improved in [LSV98]. There, the overlapping prefixes
are expanded to non-overlapping ranges, possibly doubling the number of en-
tries. Then the entries representing either the border between to ranges, or the
limit between a range and undefined space are inserted into a large array.

To search, This method requires log2 2N steps, with N being the number
of routing table entries. With current routing table sizes, the worst case would
be 17 data lookups, each requiring at least one costly memory access, not far
from the 32 memory accesses for a straightforward implementation of radix
tries. Also, modifications to the database require O(N) time. As with any
binary search scheme, the average number of accesses is log2(n)− 1, with an
average of one less operation. n is the total number of entries for the binary
search, which is 2N when searching for prefixes, as each prefix is split into a
start and an end entry.

Linear Search on Prefix Lengths

A second classical solution would be to re-apply any exact match scheme for
each possible prefix length [Skl93]. This is even more expensive, requiring W
iterations of the exact match scheme used (e.g. W = 128 for IPv6).

When doing shortest-to-longest search, the result is only clear when the
entire table has been traversed, as a better (=longer) prefix may be ahead.
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Starting with the longest entry, the first hit can immediately end the search, as
there will be nothing better.

3.2.3 Point Location

Finding a given point’s enclosing body from a given database is one of the
most popular fields in Computational Geometry. A special case are one-
dimensional spaces, which could represent the address space. Typically, the
one-dimensional structures on which the search is performed, are subdivisions
(non-overlapping, contiguous ranges).

Probably the best algorithm for one-dimensional point location is due to
Mehlhorn and Näher [MN90], later improved by De Berg et al. [BKS95] and
bases on stratified trees [Emd75, EKZ77]. A stratified tree is probably best
described as a self-similar priority queue, where each node internally has the
same structure as the overall queue. Although starting from an entirely dif-
ferent background, the resulting data structure resembles the one used in our
basic scheme. Their scheme only works for subdivision and does not support
overlapping or priorities, both required properties for IP lookups and longest
prefix matching in general.

It seems possible to resolve the overlaps in a pre-processing step, which
translates the incoming prefixes into subdivisions. This would degrade their
scheme to O(N) update time: A single prefix insertion or deletion requires up
to N subdivision insertions or deletions. This scheme is also unable to take ad-
vantage of regularities in the (routing) databases, which our algorithm does ef-
ficiently, as shown in Section 4.2. Also, preprocessing for multi-dimensional
matching results in a possible O(N 2) explosion in memory (and thus update)
performance.

3.2.4 Hardware Solutions

Hardware solutions can potentially use parallelism to gain lookup speed. For
exact matches, this is done using Content Addressable Memories (CAMs) in
which every memory location, in parallel, compares the input key value to the
content of that memory location. A natural approach would be to use several
CAMs to parallelize the lookups for each prefix length.
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Recently, so-called “ternary CAMs” have become available, which allow
storing a mask together with the entries. It has been shown that these CAMs
can be used to do BMP lookups [MF93, MFTW95]. But these solutions are
usually very costly, because CAMs are much slower, more expensive, and
several orders of magnitude smaller than conventional memory. Updates in
ternary CAMs can also be very costly, since the priority of a filter can only be
encoded by its memory address.

Probably the most fundamental problem with CAMs is that CAM designs
have not historically kept pace with improvements in RAM memory sizes and
speeds, and the speed of general-purpose CPUs. Mostly due to the exten-
sive hardware requirements per memory cell, CAMs provide several orders
of magnitudes less storage than conventional memory and one to two orders
of magnitude longer access times. Thus, they probably will also be unable to
follow the required database growth. Thus a CAM based solution (or indeed
any hardware solution) runs the risk of being made obsolete, in a few years, by
software technology running on faster processors and memory. Known CAMs
allow priorization of entries only based on their address. Inserting entries thus
requires careful address selection, which seems to require at least O(N) effort,
another undesirable factor.

Besides using CAMs, other techniques have been developed, where cus-
tom hardware is used to accelerate trie searches. [Eat99] implements a multibit
trie heavily tuned for hardware operations, using an application-specific inte-
grated circuit (ASIC) to control dynamic RAM. [ZHMB97] uses hardware to
walk a path-compressed trie.

3.2.5 Caching

For years, designers of fast routers have resorted to caching to achieve high
speed IP lookups. This is problematic for several reasons. First, informa-
tion is typically cached on the entire address, potentially diluting the cache
with hundreds of addresses that map to the same prefix. Second, a typical
backbone router of the future may have hundreds of thousands of prefixes and
be expected to forward packets at Multi-gigabit rates. Although studies have
shown that caching in campus networks and sometimes even in the backbone
can result in hit ratios up to and exceeding 90 percent [Par96, LM97], the sim-
ulations of cache behavior were done on large, fully associative caches which
commonly are implemented using CAMs. CAMs, as already mentioned, are
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usually expensive. It is not clear how set associative caches will perform and
whether caching will be able keep up with the growth of the Internet. So
caching does help, but does not avoid the need for fast BMP lookups, espe-
cially in view of current network speedups.

3.2.6 Protocol Based Solutions

One way to get around the problems of IP lookup is to have extra infor-
mation sent along with the packet to simplify or even totally get rid of
IP lookups at routers. Today’s major proposal along these lines is Multi-
Protocol Label Switching (MPLS [RVC01]), which evolved from IP Switch-
ing [NMH97, LM97] and Tag Switching [CV95, RDK+97]. All these
schemes require large, contiguous parts of the network to adopt their protocol
changes before they will show a major improvement. The speedup is achieved
by adding information on the destination to every IP packet.

In IP Switching [NMH97, LM97], this is done by associating a flow of
packets with an ATM Virtual Circuit; in Tag Switching, this is done by adding
a “tag” to each packet, where a “tag” is a small integer that allows direct
lookup in the router’s forwarding table. Tag Switching is based on a con-
cept originally described by Chandranmenon and Varghese ([CV95]) using the
name “threaded indices”. The current Tag Switching [RDK+97] and Multi-
Protocol Label Switching [RVC01] proposals go further than threaded indices
by adding a stack of indices to better deal with hierarchies. Nevertheless, to
support these hierarchies, much more internal routing information needs to
be distributed, which previously was heavily aggregated, to allow backbone
scalability. It is therefore unclear whether these schemes will scale well and
deliver the performance improvements their inventors expect.

Neither scheme can completely avoid ordinary IP lookups. Both schemes
require the ingress router (to the portions of the network implementing their
protocol) to perform a full routing decision. In their basic form, both systems
potentially require the boundary routers between autonomous systems (e.g.,
between a company and its ISP or between ISPs) to perform the full forward-
ing decision again, because of trust issues, scarce resources, or different views
of the network. Scarce resources can be ATM VCs or tags, of which only a
small amount exist. Thus towards the backbone, they need to be aggregated;
away from the backbone, they need to be separated again.
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Different views of the network can arise because systems often know more
details about their own and adjacent networks, than about networks further
away. Although Tag Switching addresses that problem by allowing hierar-
chical stacking of tags, this affects routing scalability. Tag Switching assigns
and distributes tags based on routing information; thus every originating net-
work now has to know structural details about the possible destination net-
works. Thus while both Tag Switching and IP Switching can provide good
performance within a level of hierarchy, neither solution currently does well
at hierarchy boundaries without scaling problems.

3.2.7 Network Restructuring

A number of proposals originating in graph theory were put forward recently.
They do not address the fast lookup problem but provide some insight in
how to model the network and change the routing protocol, if nodes want
to keep minimal requiring minimum routing information, yet still delivering
well-defined performance.

Interval Routing

[Fre96] proposes to number the network nodes such that routes can be eas-
ily aggregated to intervals. Unfortunately, this requires a static network, or
alternatively, a system that allows for frequent and automatic renumbering.
Even worse is the requirement for the network to be an outerplanar graph:
While there may be several short-cut connections, all nodes are required to
be arranged in a ring, which is clearly impractical. Other research results
along similar lines using on interval routing in specific environments include
[SK85, LT86].

Smallest Spanning Trees

A related paper [Fre97] proposes an algorithm for easily maintaining a number
of minimum spanning trees, along which can be routed, even if the network
is dynamic in its nodes and links. While this is fine for maintaining connec-
tivity, it has the major disadvantage that routing is only allowed along a span-
ning tree, heavily concentrating all available network traffic along a few links.



3.3. Multi-Dimensional Packet Classification 33

While it is possible to maintain multiple spanning trees with this algorithm,
the management overhead grows with each additional spanning tree.

Compact Routing

Eilam et al. [EGP98] present an algorithm allowing for compact routing tables.
It bases on the idea that the farther away a destination is, the less accurate in-
formation has to be known for packets to reach the destination “fast enough”,
i.e. within a predetermined factor of the optimal. The relative speed is defined
as the stretch, the ratio between the path selected by their algorithm and the
shortest existing path. They prove that their algorithm achieves routing with
an average stretch of at most 3 and a worst case stretch of at most 5. Unfor-
tunately, they still require large amounts of memory: I = 2

√

N(1 + lnN)
intervals need to be stored per link. They do not provide for any network ag-
gregation, so N would be around 30 million in the current Internet. The algo-
rithm also requires complete network renumbering on every topology change.
Still, a binary search operation over I times the number of links would be
required for each packet, slower than what current algorithms provide.

3.3 Multi-Dimensional Packet Classification

As we have seen in Section 2.3.4, multi-dimensional matching is a special-
ization of the generic point location problem known from computational ge-
ometry. Table 2.6 showed that typical rulesets require five or six dimensions.
Unfortunately, the best known general point location algorithms require ei-
ther space or time exponential to the number of dimensions, which is clearly
impractical.

Since some of the possible constraints of the rules for packet classifica-
tions are a priori known, a number of adapted solutions have been published
recently [SVSW98, LS98, DDPP98, SSV99, GM99, BSW99]. Before pub-
lication of these algorithms, linear search along the database was considered
state of the art. Since network administrators were not willing to sacrifice
speed for some features which were considered mere cosmetics, these tables
were generally very small. This led to a kind of self-sustaining prophecy:
Since the majority of users didn’t need more complex filter databases, no ven-
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dor would work on improving the database lookups, further discouraging users
to take advantage of filter functions.

But with the upcoming demand for QoS support, this barrier is being bro-
ken. Researchers are proposing practical ways to support large filter databases
at high speeds, vendors are thinking of incorporating them into their product
line, and users start considering to take advantage of them. Unfortunately, the
resulting lack of real-world data makes it hard for researchers and vendors to
tune their algorithms to the sort of databases that will be used a few years from
now.

Most of the current solutions

• require incredible amounts of hardware parallelism: Very wide ternary
CAMs (not currently available) or the multi-dimensional scheme in
[LS98],

• have slow performance and possibly require some amount of backtrack-
ing: Cecilia [FT91], [DDPP98],

• suffer from memory explosion: Cross-producting [SVSW98] (traded
off against speed using a caching scheme),

• are limited to two dimensions: Grid-of-tries [SVSW98], [LS98], or

• suffer from a combination of the above problems.

3.4 Summary

In summary, all existing schemes have problems of either performance, scala-
bility, generality, or cost. Lookup schemes based on tries and binary search are
(currently) too slow and do not scale well; CAM solutions are expensive and
carry the risk of being quickly outdated; Tag and IP Switching solutions re-
quire widespread agreement on protocol changes, and still require BMP look-
ups in portions of the network; finally, locality patterns at backbone routers
make it infeasible to depend entirely on caching.

We now describe a scheme that has good performance, excellent scalabil-
ity, and does not require protocol changes. Our scheme also allows a cheap,
fast software implementation, and is also amenable to hardware implementa-
tions.
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Scalable Longest Prefix
Matching

4.1 Basic Binary Search Scheme

Our basic algorithm is based on three significant ideas:

• First, we use hashing to check whether an address D matches any prefix
of a particular length;

• second, we use binary search to reduce number of searches from linear
to logarithmic;

• third, we use pre-computation to prevent backtracking in case of failures
in the binary search of a range.

Rather than present the final solution directly, we will gradually refine these
ideas in Section 4.1.1, Section 4.1.2, and Section 4.1.4 to arrive at a working
basic scheme. We describe further optimizations to the basic scheme in the
next section.

35



36 Chapter 4. Scalable Longest Prefix Matching

4.1.1 Linear Search of Hash Tables

Our point of departure is a simple scheme that does linear search of hash tables
organized by prefix lengths. We will improve this scheme shortly to do binary
search on the hash tables.

Length Hash

5

7

12

01010

0101011
0110110

011011010101

Hash tables

Figure 4.1: Hash Tables for each possible prefix length

The idea is to look for all prefixes of a certain length l using hashing and
use multiple hashes to find the best matching prefix, starting with the largest
value of l and working backwards. Thus we start by dividing the database
of prefixes according to lengths. Assuming a particularly tiny routing table
with four prefixes of length 5, 7, 7, and 12, respectively, each of them would
be stored in the hash table for its length (Figure 4.1). So each set of prefixes
of distinct length is organized as a hash table. If we have a sorted array L
corresponding to the distinct lengths, we only have 3 entries in the array, with
a pointer to the longest length hash table in the last entry of the array.

To search for destination address D, we simply start with the longest
length hash table l (i.e. 12 in the example), and extract the first l bits of D
and do a search in the hash table for length l entries. If we succeed, we have
found the longest match and thus our BMP; if not, we look at the first length
smaller than l, say l′ (this is easy to find if we have the array L by simply
indexing one position less than the position of l), and continuing the search.

4.1.2 Binary Search of Hash Tables

The previous scheme essentially does (in the worst case) linear search among
all distinct string lengths. Linear search requires O(W ) time (more pre-
cisely, O(Wdist), where Wdist ≤ W is the number of distinct lengths in the
database.)
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A better search strategy is to use binary search on the array L to cut down
the number of hashes to O(logWdist). However, for binary search to make
its branching decision, it requires the result of an ordered comparison, return-
ing whether the probed entry is less than, equal, or greater than our search
key. When searching among hash tables, it seems only possible to know the
result of this comparison whenever we have found a match containing further
information. We will see that the insertion of guiding entries containing such
additional branching information, called markers, plays an important role.

But where do we need markers, and how many are there? Naı̈vely, it
seems that for every entry, there would be a marker at all other prefix lengths;
maybe even multiple markers in the tables associated with longer prefixes, to
cover the same range which is covered by a shorter prefix. Recall that shorter
prefixes have more “don’t care” bits, thus covering a larger area. Luckily,
this “marker explosion” does not need to happen when parameters are chosen
wisely.

(a) Binary search tree
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5 7

0* 1111*

(b) Hash Tables including Markers
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bold: Prefixes italic: Markers

Figure 4.2: Branching Decisions

First of all, markers do not need to be placed at all levels. Figure 4.2(a)
shows a binary search tree. At each node, a branching decision is made, going
to either the left or right subtree, until the correct entry or a leaf node is met.
Clearly, at most log W internal nodes will be traversed on any search, resulting
in at most log W branching decisions. Also, any search that will end up at a
given node only has a single path to choose from, eliminating the need to place
markers at any other levels.
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Secondly, we observe that detecting the absence of a marker at any given
level may also convey information, this being another key point we rely on.
Directing the search by absence or presence of a marker at the current length
gives two possibilities: markers could direct the search either towards longer
or shorter prefixes.

Shorter Directing from longer towards shorter prefixes would require the
placement of many longer prefixes (each covering a smaller area) to
cover the whole range of the shorter prefix. Figure 4.2(b) shows some
entries (in bold) and the necessary markers (in italics) when branching
according to the binary search tree (a). The arrows show which level a
successful marker match directs the search to.

Longer Guiding the search the other way round, from shorter towards longer
prefixes, as depicted in Figure 4.2(b), does not suffer from this marker
multiplication, it even allows multiple prefixes to share the same marker.

To limit memory utilization, we define the comparison rule as follows: finding
marker when searching for an entry means that the search has to continue
towards longer prefixes, and the absence directs the search towards shorter
prefixes. This results in the pseudo-code as illustrated in Figure 4.3 to perform
the search. Let L be an array of records, with L[i].length being the prefix
length of the ith distinct length and L[i].hash the corresponding hash table
(see also Figure 4.1).

Function NaiveBinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
While R is not a single entry do

Let i correspond to the middle level in range R;
Extract the most significant L[i].length bits of D into D′;
Search(D′, L[i].hash); (* search hash table for D′ *)
If found then set R← lower half of R (*longer prefixes*)

Else set R← upper half of R; (*shorter prefixes*)
Endif

Endwhile

Figure 4.3: Naı̈ve Binary Search
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4.1.3 Problems with Backtracking

Unfortunately, the algorithm shown in Figure 4.3 is not correct as it stands and
does not take logarithmic time if fixed straightforwardly. The problem is that
while markers are good things (they lead to potentially better prefixes lower
in the table), can also cause the search to follow false leads which may fail. In
case of failure, we would have to modify the binary search (for correctness)
to backtrack and search the upper half of R again. Such a naı̈ve modification
can lead us back to linear time search. An example will clarify this.

1

2

3

1*

00*

111*11*

Figure 4.4: Misleading Markers

First consider the prefixes P1 = 1, P2 = 00, P3 = 111 (Figure 4.4). As
discussed above, we add a marker to the middle table so that the middle hash
table contains 00 (a real prefix) and 11 (a marker pointing down to P3). Now
consider a search for 110. We start at the middle hash table and get a hit; thus
we search the third hash table for 110 and fail. But the correct best matching
prefix is at the first level hash table — i.e., P1. The marker indicating that
there will be longer prefixes, indispensable to find P3, was misleading in this
case; so apparently, we have to go back and search the upper half of the range.

The fact that each entry contributes at most log2 W markers may cause
some readers to suspect that the worst case with backtracking is limited to
O(log2 W ). This is incorrect. The worst case is O(W ). The worst-case
example for say W bits is as follows: we have a prefix Pi of length i, for
1 ≤ i < W that contains all 0s. In addition we have the prefix Q whose
first W − 1 bits are all zeroes, but whose last bit is a 1. If we search for
the W bit address containing all zeroes then we can show that binary search
with backtracking will take O(W ) time and visit every level in the table. (The
problem is that every level contains a false marker that indicates the presence
of something better below.)
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4.1.4 Pre-computation to Avoid Backtracking

We use pre-computation to avoid backtracking when we shrink the current
range R to the lower half of R (which happens when we find a marker at the
mid point of R). Suppose every marker node M is a record that contains a
variable M.bmp, which is the value of the best matching prefix of the marker
M . M.bmp can be precomputed when the marker M is inserted into its hash
table. Now, when we find M at the mid point of R, we indeed search the lower
half, but we also remember the value of M.bmp as the current best matching
prefix. Now if the lower half of R fails to produce anything interesting, we
need not backtrack, because the results of the backtracking are already sum-
marized in the value of M.bmp. The new code is shown in Figure 4.5.

Function BinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
Initialize BMP found so far to null string;
While R is not empty do

Let i correspond to the middle level in range R;
Extract the first L[i].length bits of D into D′;
M ← Search(D′, L[i].hash); (* search hash for D′ *)
If M is nil Then set R← upper half of R; (* not found *)
Else-if M is a prefix and not a marker
Then BMP←M.bmp; break; (* exit loop *)
Else (* M is a pure marker, or marker and prefix *)

BMP←M.bmp; (* update best matching prefix so far *)
R← lower half of R;

Endif
Endwhile

Figure 4.5: Working Binary Search

The standard invariant for binary search when searching for key K is:
“K is in range R”. We then shrink R while preserving this invariant. The
invariant for this algorithm, when searching for key K is: “EITHER (The
Best Matching Prefix of K is BMP) OR (There is a longer matching prefix in
R)”.

It is easy to see that initialization preserves this invariant, and each of the
search cases preserves this invariant (this can be established using an inductive
proof.) Finally, the invariant implies the correct result when the range shrinks
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to 1. Thus the algorithm works correctly; also since it has no backtracking, it
takes O(log2 Wdist) time.

4.2 Refinements to Basic Scheme

The basic scheme described in Section 4.1 takes just 7 hash computations, in
the worst case, for 128 bit IPv6 addresses. However, each hash computation
takes at least one access to memory; at gigabit speeds each memory access is
significant. Thus, in this section, we explore a series of optimizations that ex-
ploit the deeper structure inherent to the problem to reduce the average number
of hash computations.
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Figure 4.6: Histogram of Backbone Prefix Length Distributions (log scale)

4.2.1 Asymmetric Binary Search

We first describe a series of simple-minded optimizations. Our main opti-
mization, mutating binary search, is described in the next section. A reader
can safely skip to Section 4.2.2 on a first reading.

The current algorithm is a fast, yet very general, BMP search engine. Usu-
ally, the performance of general algorithms can be improved by tailoring them
to the particular datasets they will be applied to. Figure 4.6 shows the prefix
length distribution extracted from forwarding table snapshots from five major
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Prefixes Wdist Wdist≥16

AADS 24218 23 15
Mae-East 38031 24 16
Mae-West 23898 22 14
PAIX 5924 17 12
PacBell 22850 20 12
Mae-East 1996 33199 23 15

Table 4.1: Forwarding Tables: Total Prefixes, Distinct Lengths, and Distinct
Lengths longer than 16 bit

backbone sites in January 1999 and, for comparison, at Mae-East in December
1996 [Int]. As can be seen, the entries are distributed over the different prefix
lengths in an extremely uneven fashion. The peak at length 24 dominates ev-
erything by at least a factor of ten, if we ignore length 24. There are also more
than 100 times as many prefixes at length 24 than at any prefix outside the
range 15 . . .24. This graph clearly shows the remnants of the original class
A, B, and C networks with local maxima at lengths 8, 16, and 24. This dis-
tribution pattern is retained for many years now and seems to be valid for all
backbone routing tables, independent of their size (Mae-East has over 38,000,
while PAIX has less than 6,000 entries).

These characteristics visibly cry for optimizations. Although we will
quantify the potential improvements using these forwarding tables, we believe
that the optimizations introduced below apply to any current or future set of
addresses.

As the first improvement, which has already been mentioned and used in
the basic scheme, the search can be limited to those prefix lengths which do
contain at least one entry, reducing the worst case number of hashes from
log2 W (5 with W = 32) to log2 Wdist (4.1 . . .4.5 with Wdist ∈ [17, 24], ac-
cording to Table 4.1). Figure 4.7 applies this to Mae-East’s 1996 table. While
this numerically improves the worst case, it harms the average performance,
since the popular prefix lengths 8, 16, and 24 move to less favorable positions.

A more promising approach is to change the tree structure to search in
the most promising prefix length layers first, introducing asymmetry into the
binary tree. While this will improve average case performance, introducing
asymmetries will not improve the maximum tree height; on the contrary, some
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Figure 4.7: Search Trees for Standard and Distinct Binary Search

searches will make a few more steps, which has a negative impact on the worst
case. Given that routers can temporarily buffer packets, worst case time is not
as important as the average time. The search for a BMP can only be terminated
early if we have a “stop search here” (“terminal”) condition stored in the node.
This condition is signalled by a node being a prefix but no marker (Figure 4.5).

Average time depends heavily on the traffic pattern seen at that location.
Optimizing binary search trees according to usage pattern is an old problem
[Knu98]. By optimizing the average case, some data sets could degenerate
towards linear search (Figure 4.8), which is clearly undesirable.

To build a useful asymmetrical tree, we can recursively split both the up-
per and lower part of the binary search tree’s current node’s search space, at
a point selected by a heuristic weighting function. Two different weighting
functions with different goals (one strictly picking the level covering most ad-
dresses, the other maximizing the entries while keeping the worst case bound)
are shown in Figure 4.8, with coverage and average/worst case analysis for
both weighting functions in Table 4.2. As can be seen, balancing gives faster
increases after the second step, resulting in generally better performance than
“narrow-minded” algorithms.
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4.2.2 Mutating Binary Search

In this subsection, we further refine the basic binary search tree to change or
mutate to more specialized binary trees each time we encounter a partial match
in some hash table. We believe this a far more effective optimization than the
use of asymmetrical trees though the two ideas can be combined.

Previously, we tried to improve search time based on analysis of prefix
distributions sorted by prefix lengths. The resulting histogram (Figure 4.6)
led us to propose asymmetrical binary search, which can improve average
speed. More information about prefix distributions can be extracted by further
dissecting the histogram: For each possible n bit prefix, we could draw 2n

individual histograms with possibly fewer non-empty buckets, thus reducing
the depth of the search tree.
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Steps Usage Balance
A P A% P%

1 43% 14% 43% 14%
2 83% 16% 46% 77%
3 88% 19% 88% 80%
4 93% 83% 95% 87%
5 97% 86% 100% 100%

Average 2.1 3.9 2.3 2.4
Worst case 9 9 5 5

Table 4.2: Address (A) and Prefix (P) Count Coverage for Asymmetric Trees

1 2 3 4 5 6 7 8 9
AADS 3467 740 474 287 195 62 11 2 1
Mae-East 2094 702 521 432 352 168 53 8 1
Mae-West 3881 730 454 308 158 70 17 3 —
PAIX 1471 317 139 56 41 31 1 — —
PacBell 3421 704 442 280 168 42 9 — —
Mae-East
1996 5051 547 383 273 166 87 27 3 —

Table 4.3: Histogram of the Number of Distinct Prefix Lengths ≥ 16 in the
16 bit Partitions

When partitioning according to 16 bit prefixes1, and counting the number
of distinct prefix lengths in the partitions, we discover another nice property
of the routing data. We recall the whole forwarding databases (Figure 4.6 and
Table 4.1) showed up to 24 distinct prefix lengths with many buckets contain-
ing a significant number of entries and up to 16 prefix lengths with at least 16
bits. Looking at the sliced data in (Table 4.3), none of these partial histograms
contain more than 9 distinct prefixes lengths; in fact, the vast majority only
contain one prefix, which often happens to be in the 16 bit prefix length hash
table itself. This suggests that if we start with 16 bits in the binary search and
get a match, we need only do binary search on a set of lengths that is much
smaller than the 16 possible lengths we would have to search in naı̈ve binary
search.

1There is nothing magic about the 16 bit level, other than it being a natural starting length for
a binary search of 32 bit IPv4 addresses.



46 Chapter 4. Scalable Longest Prefix Matching

In general, every match in the binary search with some marker X means
that we need only search among the set of prefixes for which X is a prefix.
Thus, binary search on prefix lengths has an advantage over conventional bi-
nary search: on each branch towards longer prefixes, not only the range of
prefix lengths to be searched is reduced, but also the number of prefixes in
each of these lengths. Binary search on prefix lengths thus narrows the search
in two dimensions on each match, as illustrated in Figure 4.9.

Thus the whole idea in mutating binary search is as follows: whenever we
get a match and move to a new subtrie, we only need to do binary search on
the levels of new subtrie. In other words, the binary search mutates or changes
the levels on which it searches dynamically (in a way that always reduces the
levels to be searched), as it gets more and more match information.

X

Root

New Trie on Failure

m = Median Length
among all prefix
lengths in trie

New Trie on Match
(first m bits of
Prefix = X)

Figure 4.9: Showing how mutating binary search for prefix P dynamically
changes the trie on which it will do binary search of hash tables.

Thus each entry E in the search table could contain a description of a
search tree specialized for all prefixes that start with E. The optimizations
resulting from this observation improve lookups significantly:

Worst case: In all the databases we analyzed, we were able to reduce the
worst case from five hashes to four hashes.

Average case: In the largest two databases, the majority of the addresses is
found in at most two hash lookups. The smaller databases take a little
bit longer to reach their halfway point.
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Using Mutating Binary Search, looking for an address (see Figure 4.11) is
different. First, we explain some new conventions for reading Figure 4.11. As
in the other figures, we continue to draw a binary search tree on top. However,
in this figure, we now have multiple partial trees, originating from any prefix
entry. This is because the search process will move from tree to tree, starting
with overall tree. Each binary tree has the “root” level (i.e., the first length to
be searched) at the left; the left child of each binary tree node is the length to
be searched on failure, and whenever there is a match, the search switches to
the more specific tree.

Consider now a search for address 1100110, matching the prefix labelled
B, in the database of Figure 4.11. The search starts with the generic tree, so
length 4 is checked, finding A. Among the prefixes starting with A, there
are known to be only three distinct lengths (4, 5, and 6). So A contains a
description of the new tree, limiting the search appropriately. This tree is
drawn as rooting in A. Using this tree, we find B, giving a new tree, the
empty tree. The binary tree has mutated from the original tree of 7 lengths, to
a secondary tree of 3 lengths, to a tertiary empty “tree”.

Looking for 1111011, matching G, is similar. Using the overall tree, we
find F . Switching to its tree, we miss at length 7. Since a miss (no entry
found) can’t update a tree, we follow our current tree upwards to length 5,
where we find G.

In general, whenever we go down in the current tree, we can potentially
move to a specialized binary tree because each match in the binary search is
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Figure 4.11: Mutating Binary Search Example

longer than any previous matches, and hence may contain more specialized
information. Mutating binary trees arise naturally in our application (unlike
classical binary search) because each level in the binary search has multiple
entries stored in a hash table. as opposed to a single entry in classical binary
search. Each of the multiple entries can point to a more specialized binary
tree.

In other words, the search is no longer walking through a single binary
search tree, but through a whole network of interconnected trees. Branching
decisions are not only based on the current prefix length and whether or not
a match is found, but also on what the best match so far is (which in turn is
based on the address we’re looking for.) Thus at each branching point, you
not only select which way to branch, but also change to the most optimal
tree. This additional information about optimal tree branches is derived by
pre-computation based on the distribution of prefixes in the current dataset.
This gives us a faster search pattern than just searching on either prefix length
or address alone.

Two possible disadvantages of mutating binary search immediately pre-
sent themselves. First, precomputing optimal trees can increase the time to
insert a new prefix. Second, the storage required to store an optimal binary
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tree for each prefix appears to be enormous. We deal with insertion speed in
Chapter 5. For now, we only observe that while the forwarding information
for a given prefix may frequently change in cost or next hop, the addition or
deletion of a new prefix (which is the expensive case) is be much rarer. We
proceed to deal with the space issue by compactly encoding the network of
trees.

Bitmap One short encoding method would be to store a bitmap, with each bit
set to one representing a valid level of the binary search tree. While this
only uses W bits, computing a binary tree to follow next is an expensive
task with current processors.

Rope A key observation is that we only need to store the sequence of levels
which binary search on a given subtrie will follow on repeated fail-
ures to find a match. This is because when we get a successful match
(see Figure 4.9), we move to a completely new subtrie and can get the
new binary search path from the new subtrie. The sequence of levels
which binary search would follow on repeated failures is what we call
the Rope of a subtrie, and can be encoded efficiently. We call it Rope,
because the Rope allows us to swing from tree to tree in our network of
interconnected binary search trees.

If we consider a binary search tree, we define the Rope for the root of the
trie node to be the sequence of trie levels we will consider when doing binary
search on the trie levels while failing at every point. This is illustrated in
Figure 4.12. In doing binary search we start at Level m which is the median
length of the trie. If we fail, we try at the quartile length (say n), and if we fail
at n we try at the one-eight level (say o), and so on. The sequence m, n, o, . . .
is the Rope for the trie.

Figure 4.13 shows the Ropes containing the same information as the trees
in Figure 4.11. Note that a Rope can be stored using only log2 W (7 for IPv6)
pointers. Since each pointer needs to only discriminate among at most W
possible levels, each pointer requires only log2 W bits. For IPv6, 64 bits of
Rope is more than sufficient, though it seems possible to get away with 32
bits of Rope in most practical cases. Thus a Rope is usually not longer than
the storage required to store a pointer. To minimize storage in the forwarding
database, a single bit can be used to decide whether the rope or only a pointer
to a rope is stored in a node.
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Figure 4.12: In terms of a trie, a rope for the trie node is the sequence of
lengths starting from the median length, the quartile length, and so on, which
is the same as the series of left children (see dotted oval in binary tree on right)
of a perfectly balanced binary tree on the trie levels.

Using the Rope as the data structure has a second advantage: it simplifies
the algorithm. A Rope can easily be followed, by just picking pointer after
pointer in the Rope, until the next hit. Each strand in the Rope is followed in
turn, until there is a hit (which starts a new Rope), or the end of the Rope is
reached. Following the Rope on processors is easily done using “shift right”
instructions.

Pseudo-code for the Rope variation of Mutating Binary Search is shown
below. An element that is a prefix but not a marker (i.e., the “terminal” con-
dition) specifies an empty Rope, which leads to search termination. The al-
gorithm is initialized with a starting Rope. The starting Rope corresponds to
the default binary search tree. For example, using 32 bit IPv4 addresses, the
starting Rope contains the starting level 16, followed by Levels 8, 4, 2, 1.
The Levels 8, 4, 2, and 1 correspond to the “left” pointers to follow when no
matches are found in the default tree. The resulting pseudo-code (Figure 4.14)
is elegant and simple to implement. It appears to be simpler than the basic al-
gorithm.
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Figure 4.13: Sample Ropes

4.2.3 Using Arrays

In cases where program complexity and memory use can be traded for speed,
it might be desirable to change the first hash table lookup to a simple indexed
array lookup, with the index being formed from the first w0 bits of the address,
with w0 being the prefix length at which the search would be started. For
example, if w0 = 16, we would have an array for all possible 216 values of the
first 16 bits of a destination address. Each array entry for index i will contain
the bmp of i as well as a Rope which will guide binary search among all
prefixes that begin with i. An initial array lookup is not only faster than a hash
lookup, but also results in reducing the average number of lookups, since there
will be no misses at the starting level, which could direct the search below w0.

4.2.4 Halving the Prefix Lengths

It is possible to reduce the worst case search time by another memory access.
For that, we halve the number of prefix lengths by e.g. only allowing all the
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Function RopeSearch(D) (* search for address D *)
Initialize Rope R containing the default search sequence;
Initialize BMP so far to null string;
While R is not empty do

Pull the first strand (pointer) off R and store it in i;
Extract the first L[i].length bits of D into D′;
M ← Search(D′, L[i].hash); (* search hash table for D′ *)
If M is not nil then

BMP←M.bmp; (* update best matching prefix so far *)
R←M.rope; (* get the new Rope, possibly empty *)

Endif
Endwhile

Figure 4.14: Rope Search

even prefix lengths, decreasing the log W search complexity by one. All the
prefixes with odd lengths would then be expanded to two prefixes, each one bit
longer. For one of them, the additional bit would be set to zero, for the other,
to one. Together, they would cover the same range as the original prefix. At
first sight, this looks like the memory requirement will be doubled. It can
be shown that the worst case memory consumption is not affected, since the
number of markers is reduced at the same time.

With W bits length, each entry could possibly require up to log(W ) − 1
markers (the entry itself is the log W th entry). When expanding prefixes as
described above, some of the prefixes will be doubled. At the same time, W is
halved, thus each of the prefixes requires at most log(W/2)−1 = log(W )−2
markers. Since they match in all but their least bit, they will share all the
markers, resulting again in at most log W entries in the hash tables.

A second halving of the number of prefixes again decreases the worst case
search time, but this time increases the amount of memory, since each prefix
can be extended by up to two bits, resulting in four entries to be stored, ex-
panding the maximum number of entries needed per prefix to log(W )+1. For
many cases the search speed improvement will warrant the small increase in
memory.



4.2. Refinements to Basic Scheme 53

4.2.5 Very Long Addresses

All the calculations above assume the processor’s registers are big enough to
hold entire addresses. For long addresses, such as those used for IP version 6,
this does not always hold. We define w as the number of bits the registers hold.
Instead of working on the entire address at once, the database is set up similar
to a multibit trie [SV99a] of stride w, resulting in a depth of k := W/w.
Each of these “trie nodes” is then implemented using binary search. If the
“trie nodes” used conventional technology, each of them would require O(2w)
memory, clearly impractical with modern processors, which manipulate 32 or
64 bits at a time.

Slicing the database into chunks of w bits also requires less storage than
unsliced databases, since not the entire long addresses do not need to be stored
with every element. The smaller footprint of an entry also helps with hash
collisions (Section 5.5).

This storage advantage comes at a premium: Slower access. The number
of memory accesses changes from log2 W to k + log2 w, if the search in the
intermediate “trie nodes” begins at their maximum length. This has no impact
on IPv6 searches on modern 64 bit processors (Alpha, UltraSPARC, Itanium),
which stay at 7 accesses. For 32 bit processors, the worst case using the basic
scheme raises by 1, to 8 accesses. Generally, as long as W/w < 4, which
is the case for IPv6 addresses and modern processors, this does not increase
the number of worst-case steps; average-case scenarios do not seem to be
impaired either. Only at W/w = 4, a first additional memory access becomes
necessary.

4.2.6 Internal Caching

Figure 4.6 showed that the prefixes with lengths 8, 16, and 24 cover most
of the address space used. Using binary search, these three lengths can be
covered in just two memory accesses. To speed up the search, each address
that requires more than two memory accesses to search for will be cached in
one of these address lengths according to Figure 4.15. Compared to traditional
caching of complete addresses, these cache prefixes cover a larger area and
thus allow for a better utilization.
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Function CacheInternally(A, P , L, M )
(* found prefix P at length L after M memory accesses searching for A *)
If M > 2 then (* Caching can be of advantage *)

Round up prefix length L to next multiple of 8;
Insert copy of P ’s entry at L, using L most significant bits of A;

Endif

Figure 4.15: Building the Internal Cache

4.3 Special Cases

The previous sections have always implied that for an address length of W
bits there are W distinct prefix lengths and that binary searching them requires
log2 W steps. Both statements are incorrect. Nevertheless, assuming their va-
lidity both simplified the explanations and represents the behavior seen. Note
that the modifications below do not change any of the O(·) results.

4.3.1 Prefix Lengths

Instead of W distinct prefix lengths for addresses of length W , the maximum
is in fact W + 1, since all prefix lengths from 0 to W , inclusive, are possible.
But prefix length 0 is special. With a prefix length of 0, there are 0 bits of
information to distinguish between the entries of prefix length 0. Thus, there
can be at most one of these so-called default entries in the database. This lends
itself to special treatment.

Even if there is no default route in the database, this entry is nevertheless
recommended, especially in modular router designs, such as the BBN Gi-
gaRouter [PC+98]. In this router, the processor responsible for special packet
treatment, such as sending a “Host unreachable” ICMP control message back
to the sender is addressed in the same way as output interfaces. Thus it is pos-
sible to remove this test from the fast path. Thus it is recommended to always
have a default entry, but not store it in a hash table, but refer to it on search
failures.

Additionally, the CIDR specification [RL93, FLYV93] for IPv4 does not
introduce the notion of further aggregating (“supernetting”) the classical class
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A networks with eight bit prefix length. Therefore, the set of valid prefix
lengths is {0, 8 . . .32}, resulting in only 26 allowed distinct prefix lengths,
out of 33 possible. Most databases do contain even less than that.

A similar line of thought applies to IPv6. There will be W + 1 prefix
lengths (W is 128 for IPv6), but prefixes shorter than 3 are not used. IPv6
provides an option to use addressing schemes for other protocols in a “com-
patibility” mode. It is unclear whether this option is ever going to be used.
Even then, these non-native addresses will most likely only be used in some
restricted environments. Assuming native-only addressing, the interesting pre-
fix lengths start at 16, and most likely there will be no prefixes with lengths
between 64 and 128, resulting in valid prefixes of {0, 16 . . .64, 128}, or a total
of just 51 prefix lengths. The large gap between 64 and 128 is a natural fit for
hashing. The 128-bit addresses will be distributed sparsely within their corre-
sponding 64-bit prefixes. Tree-based algorithms will thus perform badly; path
compression may not perform well (a possible branch at each prefix length),
and level compression is unsuitable, since it would lead to (possibly multiple)
tables of 264 addresses each, clearly impractical.

4.3.2 Binary Search Steps

Each binary search step tests the middle level and then goes on to proceed in
the remaining half, excluding the middle level. Thus, the maximum number of
levels covered c after v search steps is C(v) = 1+2C(v−1), with C(1) = 1.
In closed form, this equals C(v) = 2v − 1, or v = dlog2(C + 1)e. Thus,
32 distinct prefix lengths would already require 6 steps in the worst case, only
below lengths, 5 steps would be sufficient. As we have seen above, in reality,
this would not make a difference. And we also considered it unfair, since
the improvements of asymmetric or Rope search, such as seen in Figure 4.10
would look better than they really are.

4.4 Summary

This chapter developed a working binary search on prefix lengths. It then in-
troduced asymmetric binary search and analyzed its impact. Then this was
improved to Rope search, which refines the search after each search step,
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adapting snuglily to the database. Further modifications such as using an ini-
tial array and halving the number of prefix lengths were presented. A closer
analysis on the number of prefix lengths and search step concluded this chap-
ter.



Chapter 5

Building and Updating

Having fast searching readily available is key. A necessary requirement is to
have algorithms ready to build the data structures used in searching. Besides
that, it is highly desirable to provide for quick builds, dynamic updates, and a
small memory footprint. This chapter will present solutions to all these issues.

A predominant idea used throughout this thesis is pre-computation. Every
hash table entry has an associated bmp field and (possibly) a Rope field, both
of which are precomputed. Pre-computation allows fast search but requires
more complex Insertion routines. However, as mentioned earlier, while the
routes stored with the prefixes may change frequently, the addition of a new
prefix (the expensive case) is much rarer. Thus it is worth paying a penalty for
Insertion in return for improved search speed, especially if that penalty is as
low as we will see below.

5.1 Basic Scheme Built from Scratch

Setting up the data structure for the Basic Scheme is straightforward, as shown
in Figure 5.1, requiring a complexity of O(N log W ). For simplicity of im-
plementation, the list of prefixes is assumed to be sorted by increasing prefix
length in advance (O(N) using bucket sort). For optimal search performance,
the final hash tables should ensure minimal collisions (see Section 5.5).

57
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Function BuildBasic;
For all entries in the sorted list do

Read next pair (Prefix, Length) from the list;
Let Index be the index for the Length’s hash table;
Use Basic Algorithm on what has been built by now

to find the BMP of Prefix and store it in BMP;
Add a new prefix node for Prefix in the hash table for Index;
(* Now insert all necessary markers “to the left” *)
For ever do

(* Go up one level in the binary search tree *)
Clear the least significant one bit in Index;
If Index = 0 then break; (* end reached *)
Set Length to the appropriate length for Index;
Shorten Prefix to Length bits;
If there is already an entry for Prefix at Index then

Make it a marker if it isn’t already;
break; (* higher levels already do have markers *)

Else
Create a new marker Prefix at Index’ hash table;
Set it’s bmp field to BMP;

Endif
Endfor

Endfor

Figure 5.1: Building for the Basic Scheme

To build a basic search structure which eliminates unused levels or to take
advantage of asymmetries, it is necessary to build the binary search tree first.
Then, instead of clearing the least significant bit, as outlined in Figure 5.1, the
build algorithm really has to follow the binary search tree back up to find the
“parent” prefix length. Some of these parents may be at longer prefix lengths,
as illustrated in Figure 4.2. Since markers only need to be set at shorter prefix
lengths, any parent associated with longer prefixes is just ignored.

5.2 Rope Search from Scratch

There are two ways to build the data structure suitable for Rope Search:
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Simple: The search order does not divert from the overall binary search tree,
only missing levels are left out. This results in only minor improve-
ments on the search speed and can be implemented as a straightforward
enhancement to Figure 5.1.

Optimal: Calculating the shortest Ropes on all branching levels requires the
solution to an optimization problem in two dimensions. As we have
seen, each branch towards longer prefix lengths also limits the set of
remaining prefixes.

We present the algorithm which globally calculates the minimum Ropes,
based on dynamic programming. The algorithm can be split up into three
main phases:

1. Build a conventional (uncompressed) trie structure with O(NW ) nodes
containing all the prefixes (O(NW ) time and space).

2. Walk through the trie bottom-up, calculating the cost of selecting differ-
ent branching points and combining them on the way up using dynamic
programming (O(NW 3) time and space).

3. Walk through the trie top-down, build the Ropes using the results from
phase 2, and insert the entries into the hash tables (O(NW log W ) time,
working on the space allocated in phase 2).

To understand the bottom-up merging of the information in phase 2, let us
first look at the information that is necessary for bottom-up merging. Recall
the Ropes in Figure 4.13. At each branching point, the search either turns
towards longer prefixes and a more specific branching tree, or towards shorter
prefixes without changing the set of levels. The goal is to minimize worst-
case search cost, or the number of hash lookups required. The overall cost
of putting a decision point at prefix length x is the maximum path length on
either side plus one for the newly inserted decision. Looking at Figure 4.13,
the longest path on the left of our starting point has length two (the paths to
0∗ or 000∗). When looking at the right hand side, the longest of the individual
searches require two lookups (11001∗, 1100000, 11110∗, and 0111000).

Generalizing, for each range R covered and each possible prefix length x
splitting this range into two halves, Rl and Rr, the program needs to calcu-
late the maximum depth of the aggregate left-hand tree Rl, covering shorter
prefixes, and the maximum depth of the individual right-hand trees Rr. When
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trying to find an optimal solution, the goal is to minimize these maxima, of
course. Clearly, this process can be applied recursively. Instead of implement-
ing a simple-minded recursive algorithm in exponential time, we use dynamic
programming to solve it in polynomial time.
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Figure 5.2: Rope Construction, Phase 2

Figure 5.2(a) shows the information needed to solve this minimization
problem. For each subtree t matching a prefix P , a table containing informa-
tion about the depth associated with the subrange R ranging from start length
s to end length e is kept. Specifically, we keep (1) the maximum over all
the individual minimal-depth trees (TI ), as used for branching towards longer
prefixes and (2) the minimal aggregate tree (TA), for going to shorter pre-
fixes. Each of these trees in turn consists of both a left-hand aggregate tree
and right-hand individual branching trees.

Using the dynamic programming paradigm, we start building a table (or in
this case, a table per trie node) from the bottom of the trie towards the root. At
each node, we combine the information the children have accumulated with
our local state, i.e. whether this node is an entry. Five cases can be identified:
(L) setting up a leaf node, (P) propagating the aggregate/individual tables up
one level, (P+) same, plus including the fact that this node contains a valid
prefix, (M) merging the child’s aggregate/individual tables, and (M+) merging
and including the current node’s prefix. As can be seen, all operations are
a subset of (M+), working on less children or not adding the current node’s
prefix. Figure 5.3 lists the pseudo-code for this operation.
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Function Phase2MergePlus;
Set p to the current prefix length;

(* Merge the children’s TI below p *)
Forall s, e where s ∈ [p + 1 . . . W ], e ∈ [s . . . W ];

(* Merge the TI mini-trees between Start s and End e *)
If both children’s depth for TI [s, e] is 0 then

(* No prefixes in either mini-tree *)
Set this node’s depth for TI [s, e] to 0;

Else
Set this node’s depth for TI [s, e] to the

the max of the children’s TI [s, e] depths;
Endif

Endforall

(* “Calculate” the depth of the trees covering just this node *)
If the current entry is a valid prefix then

Set TI [p, p] = TA[p, p] = 1; (* A tree with a single entry *)
Else

Set TI [p, p] = TA[p, p] = 0; (* An empty tree *)
Endif

(* Merge the children’s TA, extend to current level *)
For s ∈ [p . . . W ];

For e ∈ [s + 1 . . . W ];
(* Find the best next branching length i *)
Set TA[s, e]’s depth to min(TI [s + 1, e] + 1), (* split at s *)

mine

i=s+1(max(TA[s, i − 1] + 1, TI [i, e]))); (* split below *)
(* Since TA[s, i − 1] is only searched after missing at i, add 1 *)

Endfor
Endfor

(* “Calculate” the TI at p also *)
Set TI [p, ∗] to TA[p, ∗; (* Only one tree, so aggregated=individual *)

Figure 5.3: Phase 2 Pseudo-code, run at each trie node

As can be seen from Figure 5.3, merging the TAs takes O(W 3) time per
node, with a total of O(NW ) nodes. The full merging is only necessary at
nodes with two children, shown as (M) and (M+) in Figure 5.2(b). In any trie,
there can be only O(N) of them, resulting in an overall build time of only
O(NW 3).
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If the optimal next branching point is stored alongside each TA[s, e],
building the rope for any prefix in Phase 3 is a simple matter of following
the chain set by these branching points, by always following TA[sprev +
1, previous branching point]. A node will be used as a marker, if the higher-
level rope lists its prefix length.

5.2.1 Degrees of Freedom

The only goal of the algorithm shown in Figure 5.3 is to minimize the worst-
case number of search steps. Most of the time multiple branching points will
result in the same minimal TA depth. Therefore, choosing the split point gives
a further degree of freedom to optimize other factors within the bounds set by
the calculated worst case. This freedom can be used to (1) reduce the number
of entries requiring the worst case lookup time, (2) improve the average search
time, (3) reduce the number of markers placed, (4) reduce the number of hash
collisions, or (5) improve update behavior (see below). Because of limitations
in space and scope, they will not be discussed in more depth.

5.3 Insertions and Deletions

As shown in [LMJ97], some routers receive routing update messages at high
frequencies, requiring the routers to handle these messages within a few mil-
liseconds. Luckily for the forwarding tables, most of the routing messages
in these bursts are of pathological nature and do not require any change in the
routing or forwarding tables. Also, most routing updates involve only a change
in the route and do not add or delete prefixes. Additionally, many wide-area
routing protocols such as BGP [RL95] use timers to reduce the rate of route
changes, thereby delaying and batching them. Nevertheless, algorithms in
want of being ready for further Internet growth should support sub-second
updates under most circumstances.

Adding entries to the forwarding database or deleting entries may be done
without rebuilding the whole database. The less optimized the data structure
is, the easier it is to change it.
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5.3.1 Updating Basic and Asymmetric Schemes

We therefore start with basic and asymmetric schemes, which have only elim-
inated prefix lengths which will never be used. Insertion and deletion of leaf
prefixes, i.e. prefixes, that do not cover others, is trivial. Insertion is done
as during initial build (Figure 5.1). For deletion, a simple possibility is to
just remove the entry itself and not care for the remaining markers. When
unused markers should be deleted immediately, it is necessary to maintain
per-marker reference counters. On deletion, the marker placement algorithm
from Figure 5.1 is used to determine where markers would be set, decreasing
their reference count and deleting the marker when the counter reaches zero.

Should the prefix p being inserted or deleted cover any markers, these
markers need to be updated to point to their changed BMP. There are a num-
ber of possibilities to find all the underlying markers. One that does not require
any helper data structures, but lacks efficiency, is to either enumerate all pos-
sible longer prefixes matching our modified entry, or to walk through all hash
tables associated with longer prefixes. On deletion, every marker pointing to
p will be changed to point to p’s BMP. On insertion, every marker pointing p’s
current BMP and matching p will be updated to point to p. A more efficient
solution is to chain all markers pointing to a given BMP in a linked list. Still,
this method could require O(N log W ) effort, since p can cover any amount
of prefixes and markers from the entire forwarding database. Although the
number of markers covered by any given prefix was small in the databases we
analyzed (see Figure 5.4), Section 5.4 presents a solution to bound the update
efforts, which is important for applications requiring real-time guarantees.

During the previous explanation, we have assumed that the prefix being
inserted had a length which was already used in the database. In Asymmetric
Search, this may not always be true. Depending on the structure of the binary
search trie around the new prefix length, adding it is trivial. The addition of
length 5 in Figure 5.5(a) is one of these examples. One possibility, shown in
the upper example, is to re-balance the trie structure, which unlike balancing a
B-tree can result in several markers being inserted: One for each pre-existing
prefix not covered by our newly inserted prefix, but covered by its parent. This
structural change can also adversely affect the average case behavior. Another
possibility, shown in the lower right, is to immediately add the new prefix
length, possibly increasing the worst case for this single prefix. Then we wait
for a complete rebuild of the tree which takes care of the correct re-balancing.



64 Chapter 5. Building and Updating

1

10

100

1 10 100

Fr
eq

en
cy

# Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(a) “Pure Basic” (without Length
Elimination)

1

10

100

1 10 100

Fr
eq

en
cy

# Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(b) Basic

1

10

100

1 10 100

Fr
eq

en
cy

# Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(c) Asymmetric

1

10

100

1 10 100

Fr
eq

en
cy

# Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(d) Rope

Figure 5.4: Histogram of Markers depending on a Prefix (log scales)

We prefer the second solution, since it does not need more than the plain
existing insertion procedures. It also allows for updates to take effect imme-
diately, and only incurs a negligible performance penalty until the database
has been rebuilt. To reduce the frequency of rebuilds, the binary search tree
may be constructed as to leave room for inserting the missing prefix lengths at
minimal cost. A third solution would be to split a prefix into multiple longer
prefixes, similar to the one used by Causal Collision Resolution Section 5.5.1.
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Figure 5.5: Adding Prefix Lengths

5.3.2 Updating Ropes

All the above insights also apply to Rope Search, and even more so, since it
uses many local asymmetric binary search trees, containing a large number of
uncovered prefix lengths. Inserting a prefix has a higher chance of adding a
new prefix length to the current search tree, but it will also confine the nec-
essary re-balancing to a small subset of prefixes. Therefore, we believe the
simplest, yet still very efficient, strategy is to add a marker at the longest pre-
fix length shorter than p’s, pointing to p. If this should degrade the worst-case
search time, or anyway after a large number of these insertions, a background
rebuild of the whole structure is ordered. The overall calculation of the opti-
mal branching points in phase 2 (Figure 5.3) is very expensive, O(NW 3), far
more expensive than calculating the ropes and inserting the entries Table 5.1.
Just recalculating to incorporate the changes induced by a routing update is
much cheaper, as only the path from this entry to the root needs to be updated,
at most O(W 4), giving a speed advantage over simple rebuild of around three
orders of magnitude. Even though Rope Search is optimized to very closely
fit around the prefix database, Rope Search still keeps enough flexibility to
quickly adapt to any of the changes of the database.

The times in Table 5.1 were measured using completely unoptimized code
on a 300 MHz UltraSparc-II. We would expect large improvements from opti-
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Basic Rope Entries
Hash Phase 2 Ropes Hash

AADS 0.56s 11.84s 0.59s 0.79s 24218
Mae-East 1.82s 14.10s 0.85s 1.69s 38031
Mae-West 0.58s 11.71s 0.60s 0.85s 23898
PAIX 0.09s 4.16s 0.18s 0.07s 5924
PacBell 0.48s 11.04s 0.57s 0.73s 22850
Mae-East
1996 1.14s 13.08s 0.75s 1.12s 33199

Table 5.1: Build Speed Comparisons (Built from Trie)

mizing the code. “Hash” refers to building the hash tables, “Phase 2” is phase
2 of the rope search, “Ropes” calculates the ropes and sets the markers. Just
adding or deleting a single entry takes orders of magnitudes less time.

5.4 Marker Partitioning

The scheme introduced below, recursive marker partitioning, significantly re-
duces the cost of marker updates identified as a problem above. It does this by
requiring at most one additional memory access per entire search, whenever
the last match in the search was on a marker. Using rope search on the ex-
amined databases, an additional memory lookup is required for 2 . . .11% of
the addresses, a negligible impact on the average search time. Of the searches
that require the identified worst case of four steps, only 0 . . .2% require an
additional fifth memory access.

Furthermore, prefix partitioning offers a tunable tradeoff between the
penalty incurred for updates and searches, which makes it very convenient
for a wide range of applications.

5.4.1 Basic Partitioning

To understand the concept and implications of partitioning, we start with a
single layer of partitions. Assume an address space of 4 bits with addresses
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ranging from 0 to 15, inclusive. This space also contains nine markers, la-
beled a1 to c3, as shown in Figure 5.6. For simplicity, the prefixes themselves
are not shown. Recall that each marker contains a pointer to its BMP. This
information requires update whenever the closest covering prefix is changed.
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a1 a2

a3

b1

b3b2

c1
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c3

Prefix
Length
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4

3
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0
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Figure 5.6: Simple Partitioning Example

Assume the prefix designated new is inserted. Traditional approaches
would require the insert procedure to walk through all the markers covered
by new and correct their BMP, taking up to N log W steps. Marker partition-
ing groups these markers together. Assume we had grouped markers a1 to a3

in group a, markers b1 to b3 in b, and c1 to c3 in c. Note that the prefixes
in the group are disjoint and hence, we can store a single overlapping BMP
pointer information for all of them instead of at each of them individually.
Thus, in this example, we would remember only three such entries — one per
group or partition. This improves the time required from updating each en-
try to just modifying the information common to the group. In our example
above (Figure 5.6), when adding the new prefix, we see that it entirely covers
the partitions a, b and c. Thus, our basic scheme works well as long as the
partition boundaries can be chosen so that no marker overlaps them and the
new prefix covers entire groups.

But when looking at one more example in Figure 5.7, where partition A
contains markers a1, a2, a3, partition B contains b1, b2, b3 and partition C con-
tains c1, c2, c3. Clearly, the partition boundaries now overlap. Although in this
example it is possible to find partitionings without overlaps, prefixes covering
a large part of the address space would severely limit the ability to find enough
partitions. Thus, in the more general case, the boundaries between the splits
are no longer well-defined; there are overlaps. Because of the nature of prefix-
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Figure 5.7: Partitions with Overlaps

style ranges, at most W distinct ranges may enclose any given point. This is
also true for the markers crossing boundary locations. So at each boundary,
we could store the at most W markers that overlap it and test against these
special cases individually when adding or deleting a prefix like new. It turns
out to be enough to store these overlapping markers at only a single one of the
boundaries it crosses. This is enough, since its bmp will only need to change
when a modification is done to an entry covering our prefix.

For simplicity of the remaining explanations in this section, it is assumed
that it is possible to split the prefixes in a non-overlapping fashion. One way
to achieve that would be to keep a separate marker partition for each prefix
length. Clearly, this separation will not introduce any extra storage and the
search time will be affected by at most a factor of W .

Continuing our example above (Figure 5.7), when adding the new prefix,
we see that it entirely covers the partitions a, b and partially covers c. For
all the covered partitions, we update the partitions’ Best Match. Only for the
partially covered partitions, we need to process their individual elements. The
changes for the BMP pointers are outlined in bold in the Table 5.2. The real
value of the BMP pointer is the entry’s value, if it is set, or the partition’s value
otherwise. If neither the entry nor the entry’s containing partition contain any
information, as is the case for c3, the packet does not match a prefix (filter) at
this level.
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Entry/Group Old BMP
stored

New BMP
stored

Resulting
BMP

a1 — — new
a2 — — new
a3 — — new
a — new (N/A)
b1 a3 a3 a3

b2 — — new
b3 b2 b2 b2

b — new (N/A)
c1 — new new
c2 — — —
c3 — — —
c — — (N/A)

Table 5.2: Updating Best Matching Prefixes

Generalizing to p partitions of e markers each, we can see that any prefix
will cover at most p partitions, requiring at most p updates.

At most two partitions can be partially covered, one at the start of the new
prefix, one at the end. In a simple-minded implementation, at most e entries
need to be updated in each of the split partitions. If more than e/2 entries
require updating, instead of updating the majority of entries in this partition,
it is also possible to relabel the container and update the minority to store the
container’s original value. This reduces the update to at most e/2 per partially
covered marker, resulting in a worst-case total of p + 2e/2 = p + e updates.

As p ∗ e was chosen to be N , minimizing p + e results in p = e =
√

N .
Thus, the optimal splitting solution is to split the database into

√
N sets of√

N entries each. This reduces update time from O(N) to O(
√

N) at the
expense of at most a single additional memory access during search. This
memory access is needed only if the entry does not store its own BMP value
and we need to revert to checking the container’s value.
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5.4.2 Dynamic Behavior

Insertion and deletion of prefixes often goes ahead with the insertion or dele-
tion of markers. Over time, the number of elements per partition and also in
the total number of entries, N , will change. The implications of these changes
are discussed below. For readability, S will be used to represent

√
N , the

optimal number of partitions and entries per partition.

The naı̈ve solution of re-balancing the whole structure is to make all par-
titions equal size after every change to keep them between bSc and dSe. This
can be done by ‘shifting’ entries through the list of partitions in O(S) time.
This breaks as soon as the number of partitions needs to be changed when
S crosses an integer boundary. Then, O(S) entries need to be shifted to the
partition that is being created or from the partition that is being destroyed,
resulting in O(N) entries to be moved. This obviously does not fit into our
bounded update time.

We need to be able to create or destroy a partition without touching more
than O(S) entries. We thus introduce a deviation factor, d, which defines how
much the number of partitions, p, and the number of elements in each partition,
ei, may deviate from the optimum, S. The smallest value for d which allows
to split a maximum-sized partition (size Sd) into two partitions not below the
minimum size S/d and vice versa is d =

√
2. This value will also satisfy all

other conditions, as we will see.

Until now, we have only tried to keep the elements ei in each partition
within the bounds set by S and d. As it turns out, this is satisfactory to also
force the number of partitions p within these bounds, since N/ min ei > S/d
and N/ max ei < Sd.

Whenever a partition grows too big, it is split into two or distributes some
of its contents across one or both of its neighbors, as illustrated in Figure 5.8.
Conversely, if an entry is getting too small, it either borrows from one or
both of its neighbors, or merges with a suitably small neighbor. Clearly, all
these operations can be done with touching at most Sd entries and at most 3
partitions.

The split operation is sufficient to keep the partitions from exceeding their
maximum size, since it can be done at any time. Keeping partitions from
shrinking beyond the lower limit requires both borrow (as long as at least one
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of the neighbors is still above the minimum) and merge (as soon as one of
them has reached the minimum).

0

S

Max

Min
Split

Merge Borrow

Distribute

Figure 5.8: Dynamic Operations

S crossing an integer boundary may result in all partitions to become either
too big or too small in one instant. Obviously, not all of them can be split or
merged at the same time without violating the O(S) bound. Observe that there
will be at least 2S + 1 further insertions or 2S − 1 deletions until S crosses
the next boundary. Also observe that there will be at most S/d maximum-
sized entries and Sd minimum-sized entries reaching the boundaries.1 If we
extend the boundaries by one on each side, there is plenty of time to perform
the necessary splits or merges one by one before the boundaries change again.

Instead of being ‘retro-active’ with splitting and joining, it can also be
imagined to be pro-active. Then, always the partition furthest away from the
optimal value would try to get closer to the optimum. This would make the
updates even more predictable, but at the expense of always performing splits
or joins.

To summarize, with the new bounds of S/d−1 to Sd+1, each insertion or
deletion of a node requires at most 2(Sd+1) updates of BMP pointers, moving
Sd/2 entries to a new partition, and on boundary crossing Sd + 1 checks
for minimal size partitions. This results in O(Sd) work, or with d chosen a
constant

√
2, O(S) = O(

√
N). All further explanations will consider d =√

2. Also, since we have O(s) partitions, each with O(s) pointers, the total
amount of memory needed for the partitions is O(N).

1If there are more than Sd/2 minimum-sized entries, than some of them have to be right
beside each other. Then a single merge will eliminate two of them. Therefore, there will be at
most Sd/2 operations necessary to eliminate all minimum-sized entries.
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5.4.3 Multiple Layers of Partitioning

We have shown that with a single layer of partitions, update complexity can
be limited to O(

√
N) with at most a single additional memory access during

search.

It seems natural to extend this to more than one layer of grouping and to
split the partitions into sub-partitions and sub-sub-partitions, similar to a tree.
Assume we defined a tree of α layers (including the leaves). Each of the layers
would then contain s = α

√
N entries or sub-partitions of the enclosed layer.

As will be shown below, the update time is then reduced to O(α α

√
N ) at the

expense of up to α − 1 memory accesses to find the Best Match associated
with the innermost container level who has it set.

Prefix updates At the outermost layer, at most sd containers will be covered,
with at most two of them partially. These two in turn will contain at
most sd entries each, of which at the most sd/2 need to be updated, and
at most one further split partition. We continue this until the innermost
level is found, resulting in at most sd+(α−1)2sd/2 changes, or O(s).

Splitting and Joining At any one level, the effort is s. In the worst case, α
levels are affected, giving O(sα).

Boundary Crossing of s The number of insertions or deletions between
boundary crossings is (s + 1)α − sα, while the number of minimal-
sized partitions is

∑a−1
i=1 si = (sα − s)/(s − 1). So there is enough

time to amortize the necessary changes over time one by one during
operations that do not themselves cause a split or join.

An application of this technique to multi-dimensional packet classification
is documented in [BSW99].

5.4.4 Further Improvements

For many filter databases it would make sense to choose α dynamically, based
on the real number of entries. The total number of markers for most databases
will be much less than the worst case. If optimal search time should be
achieved with bounded worst-case insertion, it seems reasonable to reduce
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the partition nesting depth to match the worst-case update. Often, this will
reduce the nesting to a single level or even eliminate it.

5.5 Fast Hashing

There are many ways to implement hashing. Since we have mentioned a sin-
gle memory access per lookup, the number of collisions needs to be tightly
bounded. One well-known solution is perfect hashing [FKS84]. Unfortu-
nately, true perfect hashing requires enormous amounts of time to build the
hash tables and also requires complex functions to locate the entries. While
perfect hashing is one of the solutions fulfilling the O(1) access requirement, it
is often impractical. An improvement, dynamic perfect hashing [DMR+94],
also achieves O(1) lookup time at amortized cost of O(1) per insertion, by
having a two-level hierarchy of randomly chosen hashing functions. Thus, it
requires two memory accesses per hash lookup, making it an attractive option.

With increasing memory densities (both for static and dynamic RAM) at
stagnant and falling prices, memory cost is no longer one of the main limiting
factor in router design. Therefore, it is possible to relax the hashing require-
ments. First, we no longer enforce optimal compaction, but allow for sparse
hash tables. This already greatly reduces the chances for collisions.

Second, we increase the hash bucket size. With current DRAM technolo-
gies, the cost of a random access to a single bit is almost indistinguishable
from accessing many bytes sequentially. Modern CPUs take advantage of this
and always read multiple consecutive words, even if only a single byte is re-
quested. The amount of memory fetched per access, called a cache line, ranges
from 128 to 256 bits in modern CPUs. This cache line fetching us to store a
(small) number of entries in the same hash bucket, with no additional memory
access penalty (recall that for most current processors, access to main mem-
ory is much slower than access to on-chip memory and caches or instruction
execution.)

We have seen several key ingredients: Randomized hash functions (usu-
ally only a single parameter is variable), over-provisioning memory, and al-
lowing a limited number of collisions, as bounded by the bucket size. By
combining these ingredients into a hash function, we were able to achieve
single memory access lookup with almost O(1) amortized insertion time.
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In our implementations, we have been using several hash functions. One
group of functions consists of non-parametric functions, each one utilizing
several cheap processor instructions to achieve data scrambling. Switching
between these functions is achieved by changing to a completely new search
function, either by changing a function pointer or by overwriting the existing
function with the new one.

The other group consists of a single function which can be configured
by a single parameter, using frac(Key ∗ Scramble) ∗ BucketCount, where
frac is a function returning the fractional part, Key is the key to be hashed,
Scramble ∈ (0 . . .1] is a configurable scrambling parameter, and BucketCount
is the number of available hash buckets. This function does not require floating
point and can be implemented as fixed-point arithmetic using integer opera-
tions. Since multiplication is generally fast on modern processors, calculation
of the hash function can be hidden behind other operations. Knuth [Knu98,
Somewhere] recommends the scrambling factor to be close to the conjugated
golden ratio ((

√
5− 1)/2). This function itself gives a good tradeoff between

the collision rate and the additional allocation space needed.

It is possible to put all the hash entries of all prefix lengths into one big
hash table, by using just one more bit for the address and setting the first bit
below the prefix length to 1. This reduces the collision rate even further with
the same total memory consumption. Since multiplication is considered costly
in hardware, we also provide a comparison with a 32-bit Cyclic Redundancy
Check code (CRC-32), as used in the ISO 3309 standard, in ITU recommen-
dation V.42, and the GZIP compression program [Deu96]. In Figure 5.9(b), a
soft low-pass filter has been applied to increase readability of the graph, elim-
inating single peaks of +1. Since only primes in steps of about 1000 apart
are used for the table sizes, there is always a prime hash table size available
nearby which fulfills the limit.

Depending on the width of the available data path, it might thus be more
efficient to allow for more collisions, thus saving memory. Memory require-
ments are still modest. A single hash table entry for 32 bit lookups (IPv4)
can be stored in as little as 6 or 8 bytes, for the basic schemes or rope search,
respectively. Allowing for five entries per hash bucket, the largest database
(Mae East) will fit into 1.8 to 2.4 megabytes. Allowing for six collisions, it
will fit into 0.9 to 1.2 MB.
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Figure 5.9: Collisions versus Hash Table Size

5.5.1 Causal Collision Resolution

As can be seen from Figure 5.9, only very few entries create collisions. If we
could reduce collisions further, especially at these few “hot spots”, we could
optimize memory usage or reduce the number of operations or the data path
width. In this section, we present a technique called “Causal Collision Res-
olution” (CCR), which allows us to reduce collisions by adapting the marker
placement and by relocating hash table entries into different buckets. We have
seen that there are several degrees of freedom available when defining the
binary search (sub-)trees for Asymmetric and Rope Search (Section 5.2.1),
which help to move markers.

Moving prefixes is also possible by turning one prefix colliding with other
hash table entries into two. Figure 5.10(a) illustrates the expansion of a prefix
from length l to two prefixes at l + 1, covering the same set of addresses.
This well-known operation is possible whenever the l is not a marker level
for l + 1 (otherwise, a marker with the same hash key as the original prefix
would be inserted at l, nullifying our efforts). When expansion doesn’t work,
it is possible to “contract” the prefix (Figure 5.10(b)). It is then moved to
length l − 1, thus covering too large a range. By adding a prefix C at l,
complementing the original prefix within the excessive range at l − 1, the
range can be corrected. C stores the original BMP associated with that range.

The two binary search trees shown in Figure 5.10 are only for illustra-
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tive purposes. Expansion and contraction also work with other tree structures.
When other prefixes already exist at the newly created entries, precedence is
naturally given to the entries originating from longer prefix lengths. Expan-
sion and contraction can also be generalized in a straightforward way to work
on more than ±1 prefix lengths.
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Figure 5.10: Causal Collision Resolution

In Figure 5.11 the number of buckets containing the most collisions and
those containing just one entry less are shown. As can be seen, for the vast
majority of hash table configurations, only less than a handful of entries define
the maximum bucket size. In almost half of the cases, it is a single entry. Even
for the buckets with one entry less than the maximum size (Figure 5.11(b)),
a negligible amount of buckets (less than 1 per thousand for most configura-
tions) require that capacity.

Using causal collision resolution, it is possible to move one of the “sur-
plus” entries in the biggest buckets to other buckets. This makes it possible to
shrink the bucket sizes by one or two, reducing the existing modest memory
requirements by up to a factor of two.
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Figure 5.11: Number of (Almost) Full Hash Buckets

5.6 Summary

This chapter starts by presenting routines to build the search structures de-
scribed in Chapter 4 from scratch. It also shows how to optimally calculate
the Ropes in order to reduce the worst-case search time. It then evolves to
schemes allowing the real-time update of these structures. For the non-Rope
structures, it shows that these changes can be done cheaply and do not require
and reshaping. For Rope search, the performance may slowly degrade over
time. But it is shown that the most expensive part of that operation, recalculat-
ing the optimal Ropes, can be done incrementally. This considerably reduces
the process of rebuilding the structure from scratch.

The chapter further introduces the concept of marker partitioning to con-
siderably reduce update time at only minimal search-time expenses. It also de-
scribes how we can do practical fast hashing, requiring only a single memory
access during search. We also show that this can be done in a small memory
footprint. It also shows that this footprint can be reduced even further by ap-
plying a technique we call Causal Collision Resolution, which can be used to
reduce the size of a maximum-size hash bucket or reduce the overall number
of hash buckets.





Chapter 6

Implementation

In Chapter 4, we have seen that the search code is extremely simple per iter-
ation and only very few iterations are needed. Yet it turns out that in general,
compiled code is not executed at the speeds that can be expected from the
code’s simplicity. After explaining our principles for measuring speed, the
individual optimization steps and their effect on the speed will be discussed.
Optimizations were performed for both the Sparc v9 (UltraSparc [WG94])
and Pentium II [Int97c, Int97a] architectures. More background on the analy-
sis results can be found in [Mey99].

6.1 Measurement Principles

The main metric for speed measurements is lookups per second (lookups/s).
The accuracy and meaningfulness of the measurement results depends on two
key criteria:

Test Data How is the test sequence chosen?

System Interferences How does the operating system and other processes
interfere with our measurements?

79
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6.1.1 Test Data Generation

For the creation of test data, several simple generation mechanisms come to
mind:

Linear Walking linearly through the search (=network address) space, either
in single increments or in larger steps. This has the advantages of sim-
plicity and perfect reproducibility, but may show artifacts from unreal-
istic cache locality and—if run only over a partial region—may only be
representative for the address range covered, bearing no relevance for
the rest of the database.

Random Walking pseudo-randomly keeps the simplicity and the repro-
ducibility, while reducing cache locality and taking samples from all
regions of the database. Because it probably has least locality, it can
serve well as a worst case.

Trace Driven Simulating using a trace from a router whose routing table is
also available would give an excellent real-world result. Unfortunately,
for none of the backbone routers both routing information and packet
traces are currently available.

Entry Driven Searching for each entry in the database would again be
heavily biased. The prefixes each cover ranges of vastly different
size, the largest covering more than 16 Million times more addresses
than the smallest. It is unlikely that both will have even remotely
similar traffic densities. An inspection of the available databases
further reveals that roughly 95% of the prefixes lie in the range
192.0.0.0 . . .210.255.255.255.

“Random” seems to be the fairest strategy from those available. Yet a closer
look at the database shows that only roughly 55% of the entire address space
is covered by prefixes. This means that in 45% of the queries, the default
entry will be returned. These routing tables were retrieved from the so-called
“default-free” Internet. This means that these routers in principle should never
see packets addressed to destinations they cannot find in their routing tables.
If such a packet should ever reach them, they will not know where to send it
further and will bounce an appropriate ICMP error packet back to the sender.

Therefore, only random addresses which can be found in the database
should be generated. Our approach is to pick random entries one by one and
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then search for them in the database to see whether it is a valid entry. Then
they are stored in a table that is later being consulted to perform timed mea-
surements. This random search also gives a minimal chance for the caches to
“warm up” [PH96], i.e. contain some of the data they would if the router had
been doing lookups for some time.

Nevertheless, a fully random search also has its uses. If the router utilizing
our algorithm would not be in the default-free Internet, but just outside, e.g.,
within a large ISP, it would contain a large number of routes and a default
route towards the backbone. Thus, we will perform our measurements and
optimizations with both scenarios:

Backbone Router Only addresses contained in the database are to be looked
up (default-free).

Border Router addresses matching the (implicit) default entry, resulting in
packets being forwarded to a more knowledgeable router. Using pure
random data, this results in about three quarters of the lookups returning
the default route (the prefixes have about 25% coverage).

6.1.2 Avoiding System Interferences

Since the measurements were performed on networked multitasking ma-
chines, there would be influences from the multitasking system, which might
activate some background process or system cleanup function on a regular ba-
sis. And there might also be other users working on the machine. The latter
can be easily checked for and avoided, but the former is hard to avoid, even if
the system seems unloaded.

To minimize system interferences, we ran the simulation multiple times.
Since we knew that the program flow was deterministic (each run would use
the same database and test addresses), we knew that any variations would
come from background load and system maintenance. Therefore, instead of
averaging the run-times, we took the minimum time. Firstly, prolongations of
the measured time can easily be explained by system activities, whereas faster
run-time—besides explanations involving system failures—can only be due
to “too good” caching. “Too good” caching cannot happen out of the blue,
so this also indicates the absence of system interferences polluting the caches.
Secondly, the minimum execution time was very close to the average (only a
few percent away), and closer even to the median.
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Using performance measurement tools such as Quantify [Ratb] does not
help. Since the commonly available tools are software-based, they have to
“instrument” the code (insert additional measurement instructions), which re-
quire additional computing cycles and memory accesses. Though the tools try
to eliminate this time from their measurements, the effects on pipelining and
memory stalls become noticeable when profiling compact pieces of code.

Thus we do not doubt the validity of our results under these circumstances.

6.2 Implementation Overview

The code piece we will analyze and show how to improve does asymmetric
binary search for 32 bit IPv4 addresses on hash tables that use a simple multi-
plicative hash. The database used contains the 1996 prefixes from Mae East.

The hash function gets the search key as a right-aligned prefix, i.e., occu-
pying the least significant bits, multiplies it by a constant and masks the result
by the length of the hash table. Each prefix length uses its own hash table,
with the number of elements in the hash table being a power of two. Each
hash table entry consists of 8 bytes (see Table 6.2). Its first four bytes contain
the prefix, so the hash lookup code can determine whether the right entry was
found. The next byte contains flag bits, such as whether this entry is a prefix,
only a marker, there are collisions, and the entry is valid at all. The latter is
necessary to distinguish an all-zeroes (or all-ones) entry from an empty slot.

0 1 2 3

Prefix
Flag Bits Collision Count Next Hop Index

Table 6.1: Format of a Hash Table Entry

If there are collisions, the collision bit is set in the flags and the collision
count byte contains a counter, the number of entries to search in linear order
until a match is found or the end is reached. The last two bytes are an index
into the next hop table, containing information such as outgoing link, IP, and—
if necessary—MAC layer address to use.
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Each hash table is described by a structure as shown in Table 6.2. It con-
tains a pointer to the hash table entries and a mask to apply to the output of
the hash function, to trim it down to a valid index into the hash table. It also
contains the minimal number of significant bits the hash function needs to de-
liver. In this case it is used as padding, to make the descriptor a power of two.
Additionally, it contains the current prefix length, and which prefix lengths to
branch to when branching “left” (shorter prefix lengths) or “right” (longer), in
relative and absolute measures.

0 1 2 3

Pointer to the Hash Table
Mask for Index (2b − 1)

Bits Needed (≥ b)
Prefix Length Right Absolute Right Relative Left Relative

Table 6.2: Hash Table Descriptor

In this scenario, the memory required by the hash tables amounts to just
below 1.2 MB, the descriptors occupy just above 0.5 KB.

The code we started with was organized in a very modular fashion, not
only to provide for a solid basis, but also to simplify performing a wide range
of functional experiments. The first obvious optimization was to inline the
code, which made the following logical flow also the physical flow of events:
No additional parameter passing and subroutine calls. This basic structure
can be found in Figure 6.1 and closely corresponds to the pseudo-code in
Figure 4.5 on page 40. The diagram also contains the relative frequency of
taking both paths of a branching decision in the border router scenario.

The algorithm in Figure 6.1 after inlining runs as follows: First, there is
a check that there are still hash tables to be searched (box “prefixLen>0?”).
Then, after devising which entry in which hash table should be consulted, the
entry is looked at. If it matches our query data (first box “entry found?”), it
is analyzed further below. If not, the algorithm checks whether there are any
collisions (“collision?”). If so, the entries in the chain are checked for a match.

Then, depending on whether the above strategy has found an entry (second
box “entry found?”), everything is prepared for a left (shorter prefixes) or right
(longer prefixes) branch. But if the entry found is not also a marker, we can
short-cut the search and terminate here.
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Figure 6.1: Flow Chart for Basic Binary Search [Mey99]

6.3 Sparc Version 9 Architecture Optimizations

In view of this knowledge of the algorithm, let us review the relevant hardware
characterstics of the machine used and then proceed to perform appropriate
optimizations.
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6.3.1 The Hardware and Its Restrictions

Our experiments were run on a Sun Ultra 60, where a UltraSPARC-II proces-
sor runs at 370 MHz. This processor implements the Sparc V9 architecture
[WG94] and was equipped with dual instruction execution units, a first-level
cache (16 KB data and instruction each) which can be accessed with a two
cycle latency, and an external 4 MB second-level cache with an access time
of 30 ns, requiring around 11 clock cycles per access, during which 22 in-
structions could be executed. Memory has a latency of 150 ns, leading to a
response time of seemingly endless 55 clock cycles. In this time more than
110 instructions could have been executed, enough for two complete lookups,
assuming no memory latency [Rij00].

With so few instructions per loop cycle, it is therefore imperative to avoid
memory accesses and drastically cut down on second-level cache accesses.
Unfortunately, fine-grained control on cache allocation and replacement poli-
cies is not available to the user. Since the hash tables scarcely fit into second-
level cache, it is to be expected that external memory accesses will occur only
in extremely seldom cases. Also, with the compact size of the hash table
descriptors and their frequent access, they will probably remain in first-level
cache for most of the time. Thus, memory access latency can be expected to
be minimal.

Besides memory access timing, modern processors have another bot-
tleneck: Pipelines. To achieve today’s clock frequencies, deep pipelines
are needed. Unfortunately, they may require flushing and refilling at (mis-
predicted) branches. Looking at Figure 6.1, it is obvious that almost the entire
algorithm consists of decisions and branches, and there is almost no computa-
tion to be done in-between them.

Another source for pipeline stalls are data dependencies, when an instruc-
tion needs to work on data that a previous instruction has not yet delivered.
This may be due to a required memory access or a long execution time of the
previous instruction. Besides that, an instruction that is just before the current
instruction may be executed in parallel to it, requiring a stall for the latter even
if the former does not induce any latency.

These two factors will be the main issues to be addressed in the upcoming
optimizations. Each of the ideas for optimizations will be discussed separately
below. Unless specified otherwise, all the optimizations were done entirely in
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the C programming language, although the assembly source output from the
compiler was used to analyze some of the impacts.

6.3.2 Tighter Coupling

Instead of just performing inlining, it is also possible to couple the modules
tighter. As an example, the generic function to search an entry in the hash
table “returns” a pointer to the entry found or NULL, if nothing was found.
This requires an additional test for NULL in the “calling” code. Instead, the
hash table test for a match could be combined with the left-right-branching
test for a match, reducing comparisons and, generally, overhead. This simple
trick yields a speedup of 15 . . .20%.

6.3.3 Expanding Bitfields

Another possibility is to expand the bit-fields into their own integers, to sim-
plify loading and masking. Unfortunately, this increases the memory footprint
of the data structures, thus reducing the cache hit rate. Therefore, this “opti-
mization” would slow down the program by 50 . . .100%.

6.3.4 Changing Data Layout

Trying to do some fine-tuning with the data structure layout turned out to
yield 0.1 . . .3% improvement, at the limit of our measurements. Although
this could be considered a minor success, together with the preceding result,
it became clear that memory layout was not the problem.

6.3.5 Overlaps Between Loop Iterations

The next optimization step is to move instructions from the beginning of the
current iteration to the end of the previous iteration. So, we can reduce the
data dependencies at the beginning of the loop and thus reduce pipeline stalls.
Figure 6.2 outlines this for fetching the address of the hash table for the next
round. For clarity, this figure displays a restricted view onto Figure 6.1.
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Figure 6.2: Loop Overlapping (main data path in bold) [Mey99]

As can be seen from Figure 6.1, hash table misses are much more common
than hits (93% vs. 7% in the border router scenario, 69% vs. 31% for the
backbone router). The instruction flow for this case is emphasized by the
thick line in Figure 6.2. So it is a “safe” guess to assume that there will be
a miss this round and optimize for this case by determining the hash table
address for the next iteration early (box “prefixlen(miss)”). As can be seen,
the calculation is done an entire iteration earlier than was done originally.
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If there should be a hash table hit, then there is still time before the
test for a marker to start calculating the next hash table address (box “pre-
fixlen(hit)”). This optimization leads to an additional 15 . . .25% speedup.
Other re-arrangements, such as interleaving multiple parallel statements to re-
duce pipeline stalls, improved this by further 2%.

The result of all optimizations was that the average instruction now took
two clock cycles (CPI=2). The theoretical maximum lies at CPI=0.5, when
always two instructions are executed in parallel.

6.3.6 Dual Address Search

We have seen that interleaving statements gives an improvement. The ulti-
mate in interleaving is performing two independent address lookups in paral-
lel. Unfortunately, searches do not always require the same amount of loops.
Measurements showed that the average number of iterations was just below
the maximum of five. Therefore, the terminating condition was changed to
always make five passes.

Additionally, each of the individual searches could have different results
and therefore branch differently. The combined algorithm had to take this into
account and handle all possible combinations. Figure 6.3 shows the flow chart
of such an attempt.

This resulted in a speedup of 18 . . .25%. Further speedups might be
achieved by looking for a third or even fourth address in parallel. It has to
be kept in mind that each of these parallel paths requires its own processor
registers, imposing a hardware limit on growth. Besides, each additional path
doubles the number of possible combinations, quickly leading to a state ex-
plosion.

6.3.7 Loop Unrolling

Now that the number of iterations is known in advance, loop unrolling can
entirely avoid counting the iterations and free a processor register for other
chores. This resulted in accelerating lookups by another 17 . . .33%.
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6.3.8 Assemly Optimizations

After improving the C source, re-arranging statements at assembly language
level did not yield any further improvements. Neither did adding explicit pre-
dictions to the conditional branches, or use of branches anulling the instruction
in the branch delay slot [WG94].

Overall, the optimizations to the existing C code totalled to speeding up
the search by a factor of 3.9 . . .4.6, or a factor of 2.2 compared to the inlined
version.

6.4 Intel Pentium Architecture Optimizations

The same improvements were tried on an AMD K6-II processor clocked at
300 MHz. This processor is instruction-set compatible to the Intel Pentium
processor series, but has a different internal architecture. Therefore, not all
results may be directly transferred. A comparison between the two results are
given in Table 6.3. Each step is relative to the most recent optimization, that
achieved a speedup for this processor.

Speedup on
Optimization step UltraSPARC-II AMD K6-II

Border Backbone Border Backbone

Plain Code 1.000 1.000 1.000 1.000
Inlining 2.142 1.780 2.091 1.867
Tighter Coupling 1.155 1.186 (included)
Expanding Bitfields 0.795 0.497 0.854 0.584
Data Layout 1.001 1.034 1.243 1.162
Loop Overlaps 1 1.246 1.149 1.047 0.992
Loop Overlaps 2 1.019 1.021 (included)
Dual Search 1.245 1.182 0.796 0.739
Loop Unrolling 1.171 1.333 1.214 1.222
Total 4.620 3.906 3.302 2.269

Table 6.3: Speedup Comparison (based on [Mey99]). Speedup is relative to
the previous successful optimization step (> 1), total counts successful steps
only.
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As can be seen, changing the data layout gives an improvement on the
AMD K6-II, which probably results from a different prefetching logic. Loop
overlaps do not give as much improvement on the K6-II, probably due to a
better instruction scheduling inside the processor score. Its major drawback is
the slowdown for dual searches, no wonder in view of the extremely limited
number of available registers in the Intel x86 architecture [Int97b].

As mentioned at the beginning of this chapter, lookups/s is the most im-
portant measure. For each of the four scenarios, we therefore give the number
of lookups, in Mega-lookups/s in Table 6.4. Using real-world packet distribu-
tion from June 1997 [Nat97], the equivalent line speed has also been calcu-
lated. This table also introduces the results from the BBN GigaRouter project
[PC+98] on DEC Alphas at 500 MHz, using the basic binary search algorithm.
These numbers are complete packet forwarding decisions per second (decreas-
ing the number of lookups), but also apply a limited amount of caching (re-
sulting in a speed improvement).

Processor Scenario Mlookups/s Gbit/s

Border 5.8 23.2
UltraSPARC Backbone 4.6 18.4

Border 2.7 10.8
AMD K6-II Backbone 2.0 8.0
DEC Alpha Backbone (BBN results) 10 . . .13 40 . . .52

Table 6.4: Optimized Lookup Speed

We believe that the limited number of translation look-aside buffers (TLB)
available in the processor results in a major performance decrease due to the
resulting TLB traps and lookups. We expect that direct access to physical
memory would result in a significant speedup. Please keep in mind that all
the simulations were done under worst-case conditions, i.e., there is no traffic
locality, as there would be under realistic traffic conditions.
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6.5 Implementation in General-Purpose Hard-
ware

As we have seen in both Figure 4.5 and Figure 4.14, the search functions are
very simple, so ideally suited for implementation in hardware. This chapter
has shown that in spite of its simplicity, current processors do not perform
well, since out of little data a lot of information can be gathered, requiring a
number of branches, each based on a very simple condition. It can be con-
cluded that the decisions are too simple, but too many for modern processors.
Hardware lends itself well to performing these checks in parallel.

The inner component, most likely done as a hash table in software im-
plementations, can be implemented using (perfect) hashing hardware such as
described in [Spi95], which stores all collisions from the hash table in a CAM.
Instead of the hashing/CAM combinations, a large binary CAM could be used.
Besides the hashing function described in [Spi95], Cyclic Redundancy Check
(CRC) generator polynomials are known to result in good hashing behavior
(see also the comparison to other hashing functions in Section 5.5).

RAM
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Figure 6.4: Hardware Block Schematic

The outer loop in the Rope scheme can be implemented as a shift register,
which is reloaded on every match found, as shown in Figure 6.4. This makes
for a very simple hardware unit. For higher performance, the loop can be un-
rolled into a pipelined architecture. Pipelining is cheaper than replicating the
entire lookup mechanism: in a pipelined implementation, each of the RAMs
can be smaller, since it only needs to contain the entries that can be retrieved in
its pipeline stage (recall that the step during which an entry is found depends
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only on the structure of the database, and not on the search key). Consult
Figure 4.10 for a distribution of the entries among the different search steps.
As is true for software search, Rope search will reduce the number of steps per
lookup to at most 4 for IP version 4 addresses, and hardware may also use an
initial array. Pipeline depth would therefore be four (or five, in a conservative
design). If a pipelined design is infeasible, but multiple memory banks exist,
changing from binary to k-ary branching will lead to a reduction in the num-
ber of search steps. The resulting performance improvement heavily depends
on how well the access to memory banks can be parallelized in the actual
implementation.

Consider a pipelined approach using early 1999 DRAM technology
(SDRAMs at 125 MHz [Gri99]) with identical information in both banks of
the SDRAM. We expect the hardware cost to be around US$ 100. Using
this simple device, it is possible to achieve a throughput of one lookup ev-
ery two cycles, resulting in 62.5 million packets per second. This speed is
equivalent to 20 Gbit/s with minimum size packets or around 250 Gbit/s using
measured packet distributions from June 1997 [Nat97]. Using custom hard-
ware and pipelining, we thus expect a speedup of roughly 10 to 20 relative to
software performance, allowing for affordable IP forwarding reaching far be-
yond the single-device transmission speeds reached in high-tech research labs
(Table 6.4).

6.6 Summary

In this chapter, we presented software optimization techniques which were
used to improve the speed of the search function. Using Sparc and Intel/AMD
processors as examples, we compared the effects of the optimizations. We
showed which optimizations perform well on both, neither, or just one of the
processor families. Of course, the measurement methodology is discussed in
detail. This chapter also outlined the more relevant details of our implemen-
tation and concluded with a presentation of fast search hardware.





Chapter 7

Performance Summary

Recollecting some of the data mentioned earlier, we show measured and ex-
pected performance for our scheme. We will first discuss the memory require-
ments as due to the expansion resulting from markers, compare complexities
between different lookup techniques, recapitulate the speed under realistic as-
sumptions, and mention expected behavior under IPv6.

7.1 Memory Requirements

One open question is the number of markers needed in realistic workloads.
Theoretically, they could multiply to number of total entries by up to log2 W .
Yet in the typical case, many prefixes will share markers (Table 7.1), reducing
the marker storage further. Notice the difference between “Max Markers”, the
number of markers requested by the entries, and “Effective Markers”, how
many markers really needed to be inserted, thanks to marker sharing. In our
sample routing databases, the additional storage required due to markers was
only a fraction of the database size. However, it is easy to give a worst case ex-
ample where the storage needs require O(log2 W ) markers per prefix. (Con-
sider N prefixes whose first log2 N bits are all distinct and whose remaining
bits are all 1’s). The numbers listed below are taking from “Plain Basic”
scheme, but the amount of sharing is comparable with other schemes.
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Total Basic: Request for Max Effective
Entries 0 1 2 3 4 Markers Markers

AADS 24218 2787 14767 4628 2036 0 30131 9392
Mae-East 38031 1728 25363 7312 3622 6 50877 13584
Mae-West 23898 3205 14303 4366 2024 0 29107 9151
PAIX 5924 823 3294 1266 541 0 7449 3225
PacBell 22850 2664 14154 4143 1889 0 28107 8806
Mae-East 1996 33199 4742 22505 3562 2389 1 36800 8342

Table 7.1: Marker Overhead for Backbone Forwarding Tables

7.2 Complexity Comparison

Table 7.2 collects the (worst case) complexity necessary for the different
schemes mentioned here. Be aware that these complexity numbers do not
say anything about the absolute speed or memory usage. See Chapter 3 for
a textual comparison between related work and more background informa-
tion. For Radix Tries, Basic Scheme, Asymmetric Binary Search, and Rope
Search, W is the number of distinct lengths. Memory complexity is given
in W bit words. The three closely related algorithms presented in this thesis
(Basic Scheme, Asymmetric Binary Search, and Rope Search) allow for a flex-
ible and tunable tradeoff between build and search times. It can be seen that
the schemes performing binary search on prefix lengths outperform the other
schemes in most categories. In the other categories, they are only marginally
worse.

7.3 Measurements for IPv4

Many measurements on the number of memory accesses for real-world data
have been included earlier in this paper. The number of memory accesses
have been analyzed in Chapter 4, software and hardware speeds in Chapter 6,
respectively. To summarize, we have shown that with modest memory require-
ments of less than a megabyte and simple hardware or software, it is possible
to achieve fast best matching prefix lookups with at most four memory ac-
cesses, some of them may even be resolved from cache.
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Algorithm Build Search Memory Update

Binary Search O(N log N) O(log N) O(N) O(N)
Trie O(NW ) O(W ) O(NW ) O(W )
Radix Triea O(NW ) O(W ) O(N) O(W )

Ternary CAMs O(N) O(1)b O(N) O(N)

Basic Scheme O(N log W ) O(log W ) O(N log W ) O(N)
or O(α + log W ) O(AW log W )
Asymmetric BS O(N log W ) O(log W ) O(N log W ) O(N)
or O(α + log W ) O(AW log W )
Rope Search O(NW 3) O(log W ) O(N log W )c O(N)
or O(α + log W ) O(AW log W )

A = α α

√
N

aAs in current NetBSD implementations
bUsing theoretical very large CAMs (not available today)
cFor the search structure; for building and fast updates O(NW 3) is needed, possibly outside

the router

Table 7.2: Speed and Memory Usage Complexity

7.4 Projections for IP Version 6

Although there originally were several proposals for IPv6 address assignment
principles, the aggregatable global unicast address format [HOD98] is at the
verge of being deployed. All these schemes help to reduce routing informa-
tion. In the optimal case of a strictly hierarchical environment, it can go down
to a handful of entries. But with massive growth of the Internet together with
the increasing forces for connectivity to multiple ISPs (“multi-homing”) and
meshing between the ISPs, we expect the routing tables to grow. Another new
feature of IPv6, Anycast addresses [HD98, DH98], may (depending on how
popular they will become) add a very large number of host routes and other
routes with very long prefixes.

So most sites will still have to cope with a large number of routing entries
at different prefix lengths. Likely, there will be more distinct prefix lengths,
so the improvements achieved by binary search will be similar or better than
those achieved on IPv4.

For the array access improvement shown in Section 4.2.3, the improve-
ment may not be as dramatic as for IPv4. Although it will improve perfor-
mance for IPv6, after length 16 (which happens to be a “magic length” for the
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aggregatable global unicast address format), only a smaller percentage of the
address space will have been covered. Only time will tell whether this initial
step will be of advantage. All other optimizations are expected to yield similar
improvements.

7.5 Summary

We have designed a new algorithm for best matching search. The best match-
ing prefix problem has been around for twenty years in theoretical computer
science; to the best of our knowledge, the best theoretical algorithms are based
on tries. While inefficient algorithms based on hashing [Skl93] were known,
we have discovered an extremely efficient algorithm that scales with the loga-
rithm of the address size.

Our algorithm contains both intellectual and practical contributions. On
the intellectual side, after the basic notion of binary searching on hash ta-
bles, we found that we had to add markers and use pre-computation, to ensure
logarithmic time in the worst-case. Algorithms that are trying to use binary
search of hash tables without using markers and pre-computation are unlikely
to provide logarithmic time bounds. Among our optimizations, we single out
mutating binary trees as an esthetically pleasing idea that leverages off the
extra structure inherent in our particular form of binary search.

On the practical side, we have a fast, scalable solution for IP lookups that
can be implemented in either software or hardware, reducing the number of
expensive memory accesses required considerably. We expect most of the
current characteristics of this address structure to remain and possibly even
becoming stronger in the future, especially with the transition to IPv6. Even
if our predictions, based on the little evidence available today, should prove to
be wrong, the overall performance can easily be restricted to that of the basic
algorithm which already performs remarkably well.

We have also shown that updates to our data structure can be very simple,
with a tight bound around the expected update efforts. Furthermore, we have
introduced causal collision resolution. Thanks to knowledge outside the hash
function itself, it greatly simplifies collision resolution compared to known
algorithms working only inside the hash tables.
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With algorithms such as ours, we believe that there is no more reason for
router throughputs to be limited by the speed of their lookup engine. We also
do not believe that hardware lookup engines are required because our algo-
rithm can be implemented in software and still perform well. If processor
speeds should not keep up with the expectancies, extremely affordable hard-
ware (around US$ 100) enables forwarding speeds of around 250 Gbit/s, much
faster than any single transmitter can currently achieve even in the research
laboratories. Therefore, we do not believe that there is a compelling need for
protocol changes to avoid lookups as proposed in Tag and IP Switching. Even
if these protocol changes were accepted, fast lookup algorithms such as ours
are likely to be needed at several places throughout the network.

Anyone capable of holding a soldering iron can thus achieve IP forwarding
speeds far exceeding the physical layer speeds currently achieved in high-tech
research laboratories.

Our algorithm has already been successfully included into the BBN multi-
gigabit per second router [PC+98], which can do the required Internet packet
processing and forwarding decisions for 10 . . .13 million packets per second
per forwarding engine. Each forwarding engine is based on a single off-the-
shelf microprocessor, a member of the DEC Alpha family [Sit92], clocked at
500 MHz.





Chapter 8

Advanced Matching
Techniques

We have seen that the basic binary search of hash tables (Section 4.1.2) and its
various enhancements such as Rope Search (Section 4.2.2) provide dramatic
improvements to traditional search schemes. Now the question arises whether
these advantages seen in the one-dimensional case can also be transformed
and applied to multi-dimensional classification.

First, we formalize the problem of multi-dimensional prefix matching.
Then, we have a look at some existing classifiers, which might take advan-
tage of our scheme. Later, we evolve the one-dimensional algorithm to two
dimensions. Later, we extend it to more than two dimensions.

We will conclude this chapter with a closer look at how longest prefix
matching and range matching relate to each other and can take advantage of
each other, both in single and multiple dimensions.

8.1 Properties of Multi-Dimensional Matching

Two-dimensional matching is very similar to one-dimensional matching, but
instead of having a database of prefixes such as {111 00∗, 0110∗, . . .}, we
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have a database of prefix pairs, e.g., {(1∗, 0000 00∗), (1111 11∗, 0∗), . . .}.
This database is consulted for fully-specified tuples, such as—assuming 12
bit address length—(1100 0000 1111, 0000 1111 1111). These pairs are or-
dered tuples, with each of the tuple’s fields representing a range of coordinates
in the corresponding dimension.

Extending it to d > 2 dimensions is straightforward, but instead of 2-
tuples, d-tuples are being used.

Obviously, each prefix (or prefix tuple) can also be represented by the set
of addresses (or address tuples) it matches. In one-dimensional matching,
when multiple matching entries exist in the database, the sets representing
these entries can always be completely ordered by a subset relation. Otherwise
said, from each pair of matching entries, one of the representing sets was a
subset of the other. Therefore, the most specific entry could be determined
easily and unambiguously.

For d-dimensional matching (with d ≥ 2), ambiguities may—and in
general, will—exist. Assume again our two-dimensional prefix database
{(1∗, 0000 00∗), (1111 11∗, 0∗)}. If we would search this database for
entries matching (1111 1111 1111, 0000 0000 00000), both entries would
match. Neither of them can be considered more specific: The second entry
is more specific in the first dimension, but the first entry is more specific in the
second dimension. Also, the size of the sets represented by either tuple is the
same. Therefore, it is impossible to find a natural ordering between the two;
the ambiguity cannot be resolved.

If it is known in advance that only few entries will contain ambiguities, it
may be possible to split the entry into several sub-entries to resolve ambigui-
ties, as described in [Har99].

To resolve ambiguity, several solutions have been proposed:

Unspecified There is no simple way to know in advance which of the match-
ing entries will be returned. This is the simplest solution, but seldom sat-
isfactory, unless ambiguities can be prevented to appear in the database
in the first place [Har99].

Priorities of Dimensions The dimensions are prioritized against each other.
Without loss of generality, it can be assumed that the dimensions are
sorted in order of decreasing priority. When resolving ambiguities, the
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prefix lengths of the individual numbers are concatenated as digits in a
W + 1-ary number and the entry with the highest number wins.

It is not obvious how this scheme can be implemented more efficiently
than the next proposal. Therefore, applications for this solution are not
apparent.

Explicit Priorities Each entry is assigned an explicit priority, which can be
considered constant during the presence of that entry in the database.
This priority is then used to resolve ambiguities. We assume that entries
having a subset relation will have priorities set so they do not conflict
with the subset relation. If they ever do, i.e., if a more specific entry
should have a lower priority than a less specific entry, the lower priority
entry will never be consulted. Instead of solving this problem at search
time, it can be avoided at database build time by ignoring the hidden
entry.

This scheme is the the most flexible of these three, and includes the
others as subset. Providing a solution for this problem therefore implies
having a solution for the others.

The following discussions will assume the assignment of explicit priorities
and provide solutions for this case.

8.2 Use In Existing Classifiers

In [SVSW98], Srinivasan et al. describe two schemes for packet classification.
The first, Grid of Tries allows for efficient classification in two dimensions. As
the name implies, it consists of two intermingled tries, one for each of the two
dimensions. The first trie is searched for a longest matching prefix in tradi-
tional fashion. Only the second trie than contains non-standard constructs,
which cannot be lead back to a prefix operation. So, any of the algorithms
for finding the longest matching prefix discussed in this thesis may be used to
speed up the first trie. Although this might lead to a significant performance
boost, the second trie search limits still remains at O(W ) complexity. There-
fore, the performance boost, although real, remains unseen in the complexity
analysis.

The second algorithm described in [SVSW98] is called Cross-producting
and allows for an arbitrary number of dimensions. When it is being used, all
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the dimensions are being searched independently for their best match. Later,
the results are combined using a huge table. Since this table is of exponential
size, it is maintained as a virtual table, i.e., only the entries that are needed
are being calculated and are cached. For the back-end procedure, they give
way to linear search through the classifiers. For sensible packet classification
databases, the improvement over naı̈ve caching of fully-specified entries is
significant, since a typical cache entry can be used for many more flows than
caching fully-specified entries.

For this scheme, there are even two possible applications of the algorithms
described herein: Not only can the search algorithm for the individual di-
mensions be replaced by our one-dimensional algorithm, the back-end multi-
dimensional algorithm can also be replaced by a multi-dimensional algorithm
as described herein.

8.3 Two-Dimensional Extension

Recall the one-dimensional solution. There we perform a binary search over
multiple collections. Each of these collections has a pre-defined set of signif-
icant bits and can therefore be accessed in O(1) using a hash table. Among
these sets of significant bits, we can set up two ordered comparisons with the
operators x ⊂ y and x � y, ordering them both in gestalt and priority. Inci-
dentally, these two relations return the same ordering for both criteria. It seems
that this definition is both necessary and sufficient to enable binary search over
hierarchical prefixes.

How can this definition be applied to two or even more dimensions?
Figure 8.1 shows the increasing lengths for one-dimensional matching on the
left-hand side. Each square represents a hash table with all the prefixes of
length i. Moving up results in a more specific prefix. A natural placement of
the length pairs can be seen on the right-hand side. Again, the tuples represent
the number of significant bits in each of the two dimensions, and label the hash
table represented by the enclosing square. Moving right or up in this matrix
results in a more specific entry (one of the prefixes becomes more specific).
Moving left or down results in a less specific entry. Moving two steps, one
left and one up (or one right and one down), results in a more specific entry
along one dimension, and in a less specific entry along the other, resulting in
ambiguity.



8.3. Two-Dimensional Extension 105

4 (0,4) (1,4) (2,4) (3,4) (4,4)

3 (0,3) (1,3) (2,3) (3,3) (4,3)

2 (0,2) (1,2) (2,2) (3,2) (4,2)

1 (0,1) (1,1) (2,1) (3,1) (4,1)

0 (0,0) (1,0) (2,0) (3,0) (4,0)

Figure 8.1: One- vs. Two-Dimensional Search

As seen in Section 8.1, ambiguity cannot be avoided in structural ways.
We therefore apply the proven divide and conquer strategy [Cae50]. Each of
the columns (or rows) in Figure 8.1’s matrix fulfills the non-ambiguity criteria,
when taken by itself. An obvious solution would be to search each of the
columns (or rows) using the one-dimensional binary search scheme. For two
addresses of W bits each, this would require searching a (W + 1)× (W + 1)
matrix, using binary search in one dimension and linear search in the other.
Thus, the number of steps would be O(W log W ) or, more concrete, (W +
1) · dlog2(W + 1)e. For W = 32, this would amount to 198 search steps, too
much for modern routers.

Fortunately, there is hope. Not only is a better solution available, we also
expect the classification databases to exhibit a large amount of structure, which
can be exploited.

Please note, that unlike the one-dimensional case discussed in Section 4.3,
the row (and column) corresponding to prefix length zero is necessary in the
multi-dimensional search. This is due to the fact that—except for the prefix
length pair (0, 0)—the other prefix length is non-zero, providing for non-zero
information.
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8.3.1 Faster Than Straight

To improve on the row-by-row scheme presented above, recall that the number
of memory accesses for binary search grows logarithmically to the number
of prefix pairs covered. It is thus better to use fewer binary searches, each
covering more ground.

Further recall that the entries get more specific both in vertical (up in
Figure 8.1) and in horizontal direction (left). By combining a path in both di-
rections, it is possible to create a sequence of completely order prefix lengths
which is longer than a single row or column. Figure 8.2 shows a set of such
longest paths. Let us call such a path collecting unambiguous prefix length
pairs a Line.

9 7 5 3 1

Figure 8.2: Longest Possible Lines in a 5× 5 Matrix

In the naı̈ve solution, a 5 × 5 matrix was covered by 5 Lines of length 5
each, each requiring 3 search steps, totaling 15 search steps. Now, the matrix
is covered with 5 Lines of varying length, summing up to 4+3+3+2+1 = 13
search steps. Larger matrices allow for a higher yield. So the ratio for an 8×8
matrix equals 32 : 24.

Against the intuition presented earlier, making lines as long as possible
is not the optimal solution. Recall that the number v of binary search steps
required to cover C prefix length pairs is v = dlog2(C + 1)e (Section 4.3).
Going from a Line of length 7 to one covering 8 cells also increases the number
of steps from 3 to 4, going from a coverage of 7/3 cells per search step down
to 8/4.
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Therefore, it is not only advisable to make the lines as long as possible, but
also to cut some off just below powers of two. Figure 8.3 shows an example
with a better line configuration. The longest line has been cut off at length
7 to save a search step, the second line is kept at that size, but changes path
to keep nestling up against the first. The third line is extended to length 7 to
cover the two cells freed by the other two lines, at no additional cost. Thus,
the total number of search steps amounts to 3 + 4 + 3 + 2 + 1 = 12, a further
improvement.

7 7 7 3 1

Figure 8.3: Optimal Lines in a 5× 5 Matrix

It can be shown that this solution is optimal. Lines with optimal length
can be built by the algorithm in Figure 8.4. “Spare” cells are cells that could
be covered at no additional cost, if the current lines would be extended to the
maximum length

Now we have reached one goal, making lines longer. But we haven’t yet
reduced the number of lines. Unfortunately, the number of elements on the
co-diagonal is one of the limiting factors. Since all of the prefix length pairs
on the co-diagonal are ambiguous to each other, they provide a lower bound
for the number of Lines. So do the other cuts parallel to the co-diagonal and
generally all other sets of mutually ambiguous prefix length pairs.

8.3.2 Expected Two-Dimensional Classification Databases

As discussed in Section 3.3, until very recently, no feasible approach for
multi-dimensional classification was available, short of slow and tedious lin-
ear search through the entire database. Therefore, no one has started creat-
ing large classification databases. Nevertheless, we expect demand for using
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Function OptimalLines(W ) (* Build Lines for Size W *)
(* Calculate memory accesses for each Line *)
Initialize s to 0; (* spare cells *)
For l← 1 to W do

(* Calculate longest Line along the outer border of a square *)
(* of length l, taking into account and updating spare cells. *)
(* 2l − 1 is border length, cl is coverage, ml is search steps. *)
cl ← smallest (power of 2) −1,≤ 2l − 1− s;
ml ← dlog2(cl + 1)e;
(* Update spare counter by surplus/borrowed cells *)
s← s + cl − (2l − 1);
If cells were borrowed then

Extend the most recent Lines which can cover more cells
(m2

i − 1 > ci) until borrows are satisfied;
Endif

Endfor

Figure 8.4: Build Optimal Lines For Full Matrices

such databases to become real within the next few years. Until then, we can-
not but generate our own sample databases. To provide for a wide variety
of databases, covering a large part of the possible spectrum, we devised four
benchmark scenarios, described below.

Full This is the simplest scenario, but the most expensive to solve: All pos-
sible prefix length pairs will show up in the database, giving a full
(W + 1)× (W + 1) matrix.

Chess In the manner of a checkerboard, only every alternating matrix cell of
prefix pair lengths contains prefixes.

CIDR This pattern consists of the prefix lengths that are most likely to appear,
so all (x, y), where x, y ∈ {0, 8 . . .30, 32} are assumed to contain pre-
fixes. Lengths 1 . . .7 are excluded since they are not part of the CIDR
[RL93, FLYV93] specification. Length 31 is not part of the set since
most of the checked one-dimensional routing databases do not contain
entries of that length. This is due to the fact that the two addresses in-
cluded in that range cover more than a single host, but not enough to
cover a reasonable network (the first and last address in each network
cannot be assigned to machines).
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Random This is actually based on real entries, and comes in two flavors, Ran-
dom1000 and Random5000. To create this database, 1000 (5000) ran-
dom prefixes were picked from the Mae-East database. Of these, 1000
(5000) random pairs were constructed. 10% of these pairs had one entry
prefix replaced by a default prefix (with zero length). This is based on
the assumption that classifiers will be biased towards some prefixes, and
that tuples only specifying either source or destination filters will also
be common. Additionally, the database contains the “default” prefix
pair with a (0,0) length tuple.

These five benchmarks (Full, Chess, CIDR, Random1000, and Random5000)
will be used for analysis below.

8.3.3 Lines for Sparse Matrices

In Figure 8.4, we have seen how to build optimal Lines for full matrices. For
sparse matrices, no algorithm for building optimal Lines is known, short of
exhaustive search. We have devised a number of heuristics. Each of these
tries to build the largest possible Lines, but some of them cut Lines down.

To find the longest Lines, a directed acyclic graph of subset relations is
built. By labeling each vertex with its depth in the graph, the vertex with the
highest number is the end of the longest Line. This Line is removed, and the
process repeated, until the graph is exhausted.

The algorithms for cutting Lines are as follows:

Simple No cutting is done, the longest Lines are used.

Log All Lines are cut to the maximal length in the form 2x − 1, optimizing
the coverage per search step.

AlmostLog Only Lines “just above” an optimal length are cut down, i.e.,
those with lengths of the form 2x . . .1.5 · · ·2x.

8.3.4 Performance Analysis

In the previous sections, five benchmark databases (full, chess, CIDR, Ran-
dom1000, and Random5000) have been introduced. Table 8.1 compares the
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performance of different Line selection algorithms for these benchmark sce-
narios. The algorithms are called Original (Lines are parallel, either all rows or
all columns), Optimal (Figure 8.4, and the three heuristics for sparse matrices
(Simple, Log, and AlmostLog).

As can be seen, Selection according to the AlmostLog criteria is up to 25%
faster than our first, naı̈ve idea, especially on the random distributions, those
we deem most representative for future classification databases.

Note that for reasonably sparse matrices, such as the results from the ran-
dom distributions, two-dimensional classification is only an order of magni-
tude more expensive than the fastest one-dimensional lookups. We expect that
a two-dimensional generalization of the Rope paradigm would give an addi-
tional performance boost.

Benchmark Full Chess CIDR Rnd1000 Rnd5000
DB Size 1089 544 625 1001 5001
Prefix Pairs 1089 544 625 88 141

Original 198 165 125 42/40a 56
Simple 168 140 119 30 46
Log 164 132 111 31 48
AlmostLog 159 130 111 30 45
Optimal 159 Unknown

a42 was achieved when splitting along the columns, 40 when splitting along the rows. This is
the only test where data organization made a difference.

Table 8.1: Line Search Performance (Memory Accesses)

Since many of the benchmarks do not deal with prefixes, but only with
the utilized prefix lengths, we cannot do any Rope search simulations, since
they would require real data. It is expected that Rope search will improve the
performance quite dramatically. While we believe in the representativeness
of the prefix length pair simulations above, we doubt that Rope search results
based on our synthetic data would bear any resemblance to real data.
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8.4 Adding a Third Dimension

Analogous to adding a second dimension, further dimensions may be added.
Unfortunately, the lower bound on the number of Lines grows impracticable.
In the two-dimensional case, we have seen that the number of occupied cells
in the co-diagonal, any of its parallels, and in fact any group of cells which
are mutually ambiguous imposes a lower bound on the number of Lines. Sim-
ilarly, the co-diagonal plane in the three-dimensional cube and all its rela-
tives provide a lower bound for three dimensions. Thus, with all prefix length
triples in use, there are O(W 2) lines of O(logW ) search steps each, total-
ing O(W 2 log W ), clearly impractical, even if many databases will perform
much better than that. Generally, for d dimensions, O(W d−1 log W ) effort is
required. If the dimensions should differ in size, with Wi the number of bits
necessary to represent the address range in dimension i, O(log Wd

∏d−1
i=1 Wi).

8.5 Collapsing Additional Packet Classification
Dimensions

As can be seen from the previous section, adding dimensions after the second
does apparently not lead to efficient solutions. Therefore, we try to change our
goal and reduce the number of dimensions needed, instead of adding dimen-
sions we can support.

For this section, knowledge of the additional header fields used in classifi-
cation is advantageous. If you do not feel familiar enough with the semantics
of these fields, it is advisable to refresh Section 2.2.3 before proceeding.

8.5.1 Collapsing a Wildcard Matching Dimension

As can be seen from Table 2.6 on page 15, full prefix matching is only re-
quired for the source and destination addresses. For all the other fields, much
more limited matching methods are sufficient. Assume the addition one of the
wildcard fields, such as the protocol ID. Instead of adding this as full-fledged
dimension in its own right, we add it as an additional layer to dispatch between
multiple two-dimensional search structures.
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To dispatch, all the valid protocol IDs are stored in an array or a hash table.
Each of these entries points to a Line search structure, to perform the source/
destination address matching. Each of these Line search structures only con-
tain the entries of the database which contain the appropriate protocol ID.
Additionally, there is a Line search structure containing all entries where the
protocol ID is a wildcard. Given a packet, it is classified as follows. First, the
protocol ID is looked up in the initial array or hash table. If found, the refer-
enced two-dimensional structure is searched and the best match remembered.
Independent of the execution of the previous step, the additional structure for
wildcard protocols is searched. Then, the search result with the higher priority
is used to further process the packet.

In the worst case, this approach only doubles the search steps, compared
to an up to fourfold slow-down if the protocol ID were considered a full-
fledged eight-bit dimension. By sacrificing some memory, the addition of the
third dimension may not even affect the performance. By including all the
relevant data from the wildcard structure into the individual fully-specified
sub-databases, the additional search of the wildcard structure can be avoided
entirely. Although no large databases are available to support this claim, we
believe that the search structures associated with the defined protocol IDs will
not be extended significantly.

8.5.2 Collapsing a Limited Range Matching Dimension

Some fields, such as the port fields, do not only require exact matching
and wildcard fall-back, they also require a small number of ranges. The
only known ranges used for ports are [1, 1023] (privileged ports and well-
known services [Pos81b, RP94]) and [6000, 6063] (X Window System (X11)
[Nye95, RP94]).1 Extending wildcard matching to support these is straight-
forward. After searching the exact match (if it exists), a range is searched
(if appropriate), and then the wildcard default is searched. This requires only
three times as many searches as a plain two-dimensional classification.

Since the number of supported ranges is a small constant, it makes sense
to avoid the third search in the wildcard database, by including the relevant

1Some sources refer to the X11 reserved range as [6000, 6100]. According to both [RP94,
IAN], the authoritative sources for Internet number assignments, only the first 64 ports are in fact
reserved for X11.



8.6. Matching Ranges 113

entries into the two range databases, sacrificing a small amount of memory
for a significant worst-case speed improvement.

8.5.3 Multiple Fields

Obviously, this strategy can also be extended to matching multiple of these
fields. The classical problem in Internet packet classification is the five-tuple
matching: source/destination addresses, protocol ID, and source/destination
ports. One of the factors that simplify this five-tuple matching is that only
two protocols, UDP and TCP, do have port numbers defined. All others have
no notion of protocols, so port matching is not necessary when searching the
wildcard protocol ID. Instead, these entries are just added to both the UDP
and TCP databases, again sacrificing a negligible amount of memory for a
significant speedup.

Figure 8.5 shows the decision tree that is to be used, limiting the two-
dimensional searches for any path to at most 5. If each of these dimensions
were treated as prefix matches, the three fields of length 8, 16, and 16 bits
(protocol, source port, destination port, respectively), would have resulted in
an increase in the number of search steps by several orders of magnitude.
Although Figure 8.5 shows a sequential order, all the decisions can be made
before starting the first lookup, and all lookups can be performed in parallel,
since there are no interdependencies.

Although the idea is similar to the one described in [SVSW98], this de-
scription goes much further and even allows for a limited amount of ranges on
port numbers.

8.6 Matching Ranges

Although matching prefixes is the natural form of matching for Internet ad-
dresses, many other problems are more commonly treated as range matching.
Already in the Internet world, we have seen that port numbers sometimes are
treated in ranges (e.g., port numbers Section 2.2.3). In this chapter, we will
explore how to extend binary search to match ranges. Additionally, a short
discussion on optimizing Internet packet forwarding using ranges is also in-
cluded.
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Figure 8.5: Collapsing Multiple Dimensions

As discussed earlier in Section 2.4 and visualized in Figure 2.1 on page 21,
(integer-valued) Range matching and Longest Prefix Matching are specializa-
tions of the Prefix Matching problem. Figure 2.1 showed that there is some
relation between the two descendants. Their relationships are the topic of this
section. A short section each is dedicated on how to map one onto the other
and vice versa.

8.6.1 Ranges Expressed Using Non-Overlapping Prefixes

Before using longest prefixes to express ranges, we start by looking at using
non-overlapping prefixes. Figure 8.6 shows an example of covering a range
with multiple prefixes.

The general algorithm to cover arbitrary ranges by prefixes is shown in
Figure 8.7. 2p, the size of the next prefix, is calculated so that it is a prefix and
does not extend beyond either end of the range. Recall that a prefix is defined
such that its length is a power of two and a prefix of length l must start at an
integer multiple of l. Unfortunately, this listing does not show an apparent
upper bound on the number of prefixes necessary to cover the given range.

By changing the algorithm to narrow from both sides, we are able to limit
the number of iterations and thus the number of prefixes necessary. This is
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Figure 8.6: Covering Ranges Using Non-Overlapping Prefixes

Function RangeCovering(s, e) (* Build Lines for Range [s, e) *)
While s < e do

(* LSB(x) is the bit number of the least significant bit set in x *)
p← max(LSB(s), blog2(e− s)c);
Emit prefix covering [s, s + 2p);
(* Limit range to what remains *)
s← s + 2p;

Endwhile

Figure 8.7: Range Covering Algorithm

shown in Figure 8.8. As can be seen, each iteration emits one prefix and clears
the least significant bit of either s or e. If both s and e are W -bit numbers, this
process has to terminate after at most 2W steps. A closer limit is 2(W − I)
bits, where I is the number of identical contiguous bits, measured from the
most significant bit.

It is even possible to calculate the exact number of prefixes required with-
out running the algorithm. The number of prefixes created on the upper end
(near e) is simple. Because the subtraction clears the least significant set bit
without side-effects, this requires as many bits as there are bits set to one in
the least significant W − I bits of e, i.e., in the “non-common” area.

On the lower end (near s), things are a little bit more complicated, since the
addition which clears the least significant bit creates a carry, possibly changing
higher bits. This can be fixed by first calculating the two’s complement of the
least significant W − I bits of s before counting the set bits.
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Function RangeCovering(s, e) (* Build Lines for Range [s, e) *)
While s < e do

If LSB(s) < LSB(e) then
(* Start requires smaller prefix to cover, do this first *)
p← LSB(s);
Emit prefix covering [s, s + 2p);
s← s + 2p;

Else
(* End requires smaller prefix to cover, do this first *)
p← LSB(e);
Emit prefix covering [e− 2p, e);
e← e− 2p;

Endif
Endwhile

Figure 8.8: Narrowing Range From Both Ends Simultaneously

Now we have covered both ranges. Concluding, the number of prefixes to
cover the range [s, e) is the sum of the number of bits set in the least significant
W − I bits of e and the number of bits set in the least significant W − I bits
of the two’s complement of s or bitcount(e ? (2W−I) − 1) + bitcount(−s ?
(2W−I)− 1). In the previous formula, bitcount counts the number of set bits,
? is the bitwise and, and the unary minus calculates the two’s complement.

8.6.2 Ranges Expressed Using Longest Prefix Matching

In the previous section, we have shown that it is possible to cover an arbi-
trary integer-valued range by at most 2W non-overlapping prefixes. Since
Section 2.4 pointed out that overlapping prefixes with longest prefix matching
are more powerful than their non-overlapping brothers, it should be possible
to reduce the number of prefixes needed to cover a range by switching to the
more powerful mechanism.

Indeed, switching to longest prefix match gets rid of one of the restrictions
we have seen in Section 8.6.1. The need to confine the prefixes entirely within
the covered range is gone. Instead, they can cover a larger area and the sur-
plus region can be corrected using additional prefixes, as already employed in
Section 5.5.1.
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Figure 8.9: Covering Ranges By Longest Prefixes

Figure 8.9 shows the same range to be covered. In gray is the solution
achieved in Figure 8.6. This is a bad example for plain prefixes: On one end,
a range just smaller than a power of two is to be covered. Using longest prefix
matching, instead of requiring almost W ranges, only two are needed. The
entry labeled 1 covers the power of two, just a little bit too much. This is
corrected by entry number 2, containing the information that would have been
returned in that area had entry 1 not covered too much. Since entry number
2 is more specific than number 1, it automatically takes precedence. If the
neighboring range is covered, the corrective entry has already been inserted
when the neighboring range was set up, so the number of entries due to “our”
range is reduced even further.

We have seen that in many cases, the number of prefixes can be reduced
significantly. But does it improve the upper bound? Recall that the number of
prefixes depends on the number of bits set in the coordinates of the endpoints.
If the bits set is more than W/2, we can now cover the next higher power of
two with an entry, toggling all bits. Therefore, there are now less than W/2
bits set, requiring less than W/2 prefixes. Together with the helper entry used
to toggle the bits, at most W/2 prefixes. This can be done on both sides, reduc-
ing the worst case prefixes from 2W to W by switching from non-overlapping
prefixes to a longest prefix matching algorithm.

In many cases, it is possible to optimize this even further. Should the re-
verted range still contain a bit sequence with high frequency of set bits, these
can be toggled by inserting further prefixes. Geometrically, this repeated tog-
gling represents alternatively overshooting the assigned border, changing be-
tween covering too much and too little. Generally, toggling a bit sequence
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requires 2 prefixes, but if it terminates at W − I bits, only a single prefix is
required. Table 8.2 shows an example of repeatedly overshooting one end,
when covering the range [0000 0000 0000, 0111 0000 1111). This reduces
the number of prefixes required from 8 using plain prefixes, over 5 using
longest prefix matching to 3.

Extracted Prefix Remaining Range Position

Start [0000 0000 0000, 0111 0000 1111) In
0* [0111 0000 1111, 1000 0000 0000) Out
0111* [0111 0000 0000, 0111 0000 1111) In
0111 0000 1111 ∅

Table 8.2: Modeling a Range By Overshooting Repeatedly

8.6.3 Longest Prefixes Expressed Using Ranges

Above, we have seen the close resemblance between sequences of prefixes
and ranges. This can also be advantageous the other way round, by expressing
prefixes as ranges. Having both possibilities will allow us to switch from one
representation to the other, resulting in a way to improve the number of pre-
fixes needed to represent the original information, e.g., minimizing the number
of entries needed in complex routing tables.

As discussed earlier in Section 2.4, a single change in a database of N pre-
fixes expressed as up to 2N ranges, can require changes in N ranges, which
is clearly impractical whenever response time to updates is an issue. But there
are applications where the advantages of coding entries as prefixes outweigh
this disadvantage. This is especially true when the ranges are encoded as
overlapping prefixes again, in which case the above-mentioned drawback no
longer applies, and fast updates can be achieved using the technique described
in Section 5.4. Such an application are Internet forwarding tables. Our work
involving such tables has shown that these tables are often described ineffi-
ciently and that further or different aggregation may reduce the routing table
size significantly. It is common to find successive prefixes, which all contain
the same information, i.e., point to the same next hop. In this case it may be
desirable to recode such sequences more optimally, using less prefixes. One
technique is described below.
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Minimizing Routing Table Entries

A simple technique is to describe a sequence of prefixes having the same in-
formation by a single range, and then optimally encoding such a range by
possibly overlapping prefixes, such as described in Section 8.6.2. This can be
done in O(NW ) time and O(W ) space.

Besides optimally encoding successive prefixes, this also optimally en-
codes overlapping prefixes, where a more specific prefix contains the same
information as its outer prefix. As an additional bonus, it also covers the case
where prefixes only almost succeed, and either contain a small hole between
them, which does not contain any information, or a small range containing
different information. This is already done by the scheme in Section 8.6.2.
There, ranges which are covered by overlapping longest prefixes whose bor-
ders overlap will generate some identical prefixes, which are automatically
merged. A more complex scheme achieving a similar result, including an op-
timality proof, can be found in [DKSZ99].

Beyond the Optimum

Although [DKSZ99] contains an optimality proof, it is possible to improve
on that. We do not show that the proof shown therein is in error, instead we
show that one of the boundary conditions they assume and adhere often can
be relaxed.

Above, we have seen that almost successive ranges may contain holes. Al-
though these holes are rendered efficiently when recoded using ranges, there
is an even better way to encode these holes: Not at all. This works efficiently,
if some router further downstream still has the knowledge that there really is a
hole. In a default-free world, this automatically happens whenever the packet
addressed to a non-existent address in the hole reaches a choke point, a point
where the hole is left alone, and not merged with either side. This happens lat-
est, when the range just below the hole needs to contain information different
from the range just above the hole.

Should the packet leave the default-free part of the Internet, then this so-
lution still works perfectly, if the hole belongs to an address space allocated
to the same entity as the bordering ranges. Then this entity (usually an Inter-
net Service Provider, ISP) can return the correct ICMP error message to the
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source, notifying it of its use of an unused address. If this is not the case,
the packet will bounce forth and back between the default-free zone and the
ISP, and eventually be discarded because it exceeded its lifespan. Then, some
more resources have been utilized and a possibly misleading message that the
packet looped before it reached the destination will be sent back. Since pack-
ets should not be sent to an inexistent destination frequently, we believe that
this is just a minor inconvenience and will not cause any network problems.

8.7 Summary

In this chapter, we have shown several techniques enabling efficient two-
dimensional longest prefix matching in general. To test its performance, we
developed models for possible future two-dimensional classification patterns.
For more than two dimensions, a native three-dimensional algorithm has been
introduced that is able to perform fast searches when the sizes of sets of mu-
tually ambiguous prefix length tuples remains small. More importantly, we
have shown an efficient scheme to match 5-tuples used for Internet packet
classification.

We have further shown the close relation between range matching and
longest prefix matching has been laid out. Techniques for mapping them onto
each other have been introduced, including analyses on the impact of the con-
versions. Based on the two conversions, an algorithm optimizing routing table
entries, thus minimizing memory requirements has been presented. Further,
a strategy for further improvement has been proposed, which can also further
improve another algorithm which was proved optimal.



Chapter 9

Applications

In the previous chapters, we have introduced an algorithm to perform fast
and scalable longest prefix matching. We have also discussed several opti-
mizations that allow this algorithm to improve the number of search steps
required by adapting closely to the database searched. We have also shown
some generalizations, notably to match arbitrary ranges and the extension to
match multiple dimensions. All of this work has been focusing on applica-
tion in an Internet world, to be utilized by network nodes such as routers or
firewalls.

In this chapter, we will show the versatility of the algorithm, its improve-
ments, and extensions by introducing applying it to solve a number of differ-
ent problems unrelated to packet networks. We will cover topics from such
diverse topics such as geographical information systems (GIS), memory man-
agement, databases, and access control management. Many of these are still
topics of ongoing research and require further work.

9.1 Geographical Information Systems

Geographical information systems [BM98, LGMR99] often have queries re-
lated to locating points in landscapes [KNRW97], similar to classical point lo-
cation [BKOS97]. A number of algorithms and publications exist on point lo-
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cation, which often relates to range queries with non-integer boundaries. The
best known two-dimensional algorithms achieve O(N) storage and O(logN)
search time with O(N log N) build time, which sounds excellent. To achieve
these results, [Sei91] has to revert to randomization, impractically high con-
stants, and a number of tricks such as shearing all the data, when two points
happen to have the same X coordinate. Other solutions have similar draw-
backs. In higher dimensions, the point location problem is still considered
very much open [BKOS97]: No general solutions with reasonable bounds
have been found.

Below, we show several practical cases where longest prefix matching
opens new possibilities or leads to improved algorithms.

9.1.1 Proximity Queries

One area where prefix matching performs well is what we call the proximity
query. The goal of proximity queries is to find the point closest to the given
query point offering some particular service. E.g., in an in-flight emergency,
it can prove vital to quickly locate the nearest airfield to land on.

The database consulted for such a query might be structured as follows.
For each airfield, the region of points closer to this than to any of the others
is calculated in advance and stored in a database. Although the area usu-
ally is pretty symmetrical, it will consist of ranges, possibly even describing
the borders using floating-point numbers or a function. To store such two-
dimensional range information using prefixes will require large amounts of
prefixes, impractical for most situations.

There are better possibilities to store such coarse-grain tiles requiring fine-
resolution borders. Instead of modeling the border exactly within the data
structure, we only model the border coarsely. Then, within the record found,
we define the borders in the desired resolution or even as a function. Then, the
decision which side of the border the query point lies can be solved in a short
time. When the borders consist of lines, the answer is found after at most b
comparisons, where b is the number of directly bordering regions. When the
borders are defined by a function, the function defines the cost. Figure 9.1
shows an example.
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Figure 9.1: Examples of Coarse-Grain Tiles With High-Resolution Borders

9.1.2 Squares

In the proximity query introduced above, all regions have borders whose out-
line is within a constant factor from a square, i.e., length/width ≤ f . Then
there is a better algorithm than using two-dimensional classification, which
allows for easy extension to arbitrary dimensions. This is done by bit-wise
interleaving of all the coordinates. As such, regions which would be rep-
resented using a pair of prefixes of the same length in the proximity query
scheme (Section 9.1.1), will be represented using a single database entry. A
region which whose prefix lengths differ by one will require one or two en-
tries; a region whose prefix lengths differ by two requires two or four, and
so on (Table 9.1). In this table, question marks (?) symbolize a single un-
known bit and, as usual, Asterisks (*) mark the remaining bits as unknown.
The changing bits in the database entries are marked in bold.

Coordinate Interleaved Database
First Second Pattern Entries

1111* 0000* 10101010* 10101010*
11111* 0000* 101010101* 101010101*
1111* 00000* 10101010?0* 1010101000*, 1010101010*
111111* 0000* 101010101?1* 10101010101*, 10101010111*
1111* 000000* 10101010?0?0* 101010100000*,

101010100010*,
101010101000*,
101010101010*

Table 9.1: Address Interleaving

In general, each region is extended to at most 2(d−1)f database en-
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tries, each with the flexibility described in Section 9.1.1, allows search in
O(log(dW )), where d is the number of dimensions, and W the number of
significant bits in each coordinate. This allows for extremely fast lookups.
Still, for small values of f , the resulting memory expansion is negligible.

In case the extents of the regions should only be comparable in some of
the dimensions only, these dimensions can be merged into one. This merged
dimension can then be used as a single dimension, together with the un-
mergeable dimensions, in “conventional” multi-dimensional lookups.

9.1.3 Efficient Bit Interleaving

Before entering the realm of more complex shapes than the square, we need
to gain some background knowledge on bit interleaving, which simplifies the
understanding of the following section.

Unfortunately, modern processors do not support bit interleaving well.
This means that interleaving the coordinates would be slow and tedious. In-
stead of interleaving the bits, the regions to would be interleaved in the algo-
rithms described above, can also be extracted from the the different coordi-
nates and simply be concatenated. If all interleaving operations in an algo-
rithm are replaced by concatenations of the appropriate bits, the algorithms
can remain otherwise unmodified. This simple change results in a significant
performance improvement.

When using binary search on hash tables as a back-end, is not even neces-
sary to perform the interleaving. It is enough to feed the relevant prefixes of
the coordinates into different hash functions each and combine the resulting
partial keys. To check for a match in the hash table, each coordinate is then
compared on an individual basis.

This shows that the bits themselves do not really need to be interleaved for
the operations to work. This also means that specifying the number of bits per
coordinate is sufficient and there is no need to specify their exact order. This
is crucial for what we will encounter in the next section.
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9.1.4 Rectangles

In Section 9.1.2, we have seen that squares, cubes, and hypercubes can be
efficiently stored searched by interleaving coordinates bitwise before adding
them to the database or searching for them. It has also become clear that the
further the region shape evolves from a square, cube, or hypercube, the more
entries are needed to describe them. Reducing the number of entries for these
rectangular items is thus the topic in this section.

Looking at Table 9.1, it can be noticed that the number of entries required
does not only depend on the difference in prefix length, but also on the order
of the coordinates. Put differently, the efficiency of storing a region in the
database depends on the relation between the exact sequence of interleaving
and the shape of the region. If a majority of the regions should have a simi-
lar, non-rectangular shape, then the interlacing scheme can be changed, e.g., to
take a single bit from the first coordinate, then two from the second, then again
one from the first, and so on. This results in an effect similar to performing
a coordinate transformation. While it can be used for simple stretching trans-
forms, it can also be used to apply nonlinear transforms. This makes it possible
for large-scale objects to have one preferred orientation while smaller-scale
objects may have a different form factor and tiny objects looking differently
again.

Conceptually, the global skew towards some address bits resembles asym-
metric binary search as discussed in Section 4.2.1. This gives rise to the ques-
tion whether there is also a dimensional equivalent to Rope search.

There is. As search proceeds in Rope search, the prefix lengths to be
searched can be progressively narrowed down, adapting to the database. In-
stead of only narrowing down the prefix lengths, in multi-dimensional search,
we can also adapt to localized form factors. This is achieved by adding a
different amount of bits for each dimension. In this generalized form, each
strand1 of the Rope not only consists of single prefix length, but consists of d
prefix lengths, indicating the number of bits to extract from each of the coor-
dinates.

Figure 9.2 shows a sample layout and Table 9.2 an excerpt of the corre-
sponding database, corresponding to the four quadrants, staring at the upper
left and proceeding clockwise. The Rope entries specify the prefix lengths for

1An individual prefix length specification in the Rope, see Section 4.2.2 on page 44.
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Figure 9.2: Sample Rectangular Layout (Coordinates Given in Binary Nota-
tion)

Coordinate
x y Type Rope

* * Start (1,1)
0* 1* Marker (3,2), (3,1)
000 1* Entry 1 —
001 11* Entry 2 —
010 1* Entry 3 —
1* 1* Marker (1,3)
1* 111 Entry 4 —
1* 100 Entry 5 (3,3)
111 100 Entry 6 —
0* 0* Marker (2,2)
00* 01* Entry 7 —
01* 00* Entry 8 —
1* 0* Marker (3,3)
101 010 Entry 9 —...

...

Table 9.2: Excerpt of Database Corresponding to Figure 9.2
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each coordinate in a tuple. Already in this small coordinate system the advan-
tages of two-dimensional Ropes can be perceived. Two-dimensional binary
search as introduced in Chapter 8 would require 4 search steps, while only
three steps are needed here. With larger universes, the advantage will grow
even further.

Often a large number of different form factors exist within the same region
or a number of vastly different form factors coexist. Then, it is also possible
to trade off some search speed for a smaller memory footprint. This is done
by enhancing or—depending on the standpoint—slightly abusing the Rope
mechanism. In the one-dimensional Rope, walking and guiding only occurs
along a single subset relation, i.e., between ordered prefix lengths. Multi-
dimensional Ropes can be freed from this restriction and can guide among the
predominant rectangle geometries.

9.2 Memory Management

There are a number of issues in memory management, where fast longest
matching prefix algorithms may help providing solutions. Exemplarily, man-
agement for persistent objects and application-transparent garbage collection
and memory compaction will be discussed.

9.2.1 Persistent Object Management

Management of object persistence [Ses96] can be classified whether the appli-
cation needs to be aware of the underlying persistent storage or not. While it
is easier to write applications that do not need to be aware of the database and
look like plain object-oriented applications, the underlying middleware needs
to know when and how objects have been accessed. For read accesses, it may
need to (re-)fetch the object from the database, and for write accesses, it needs
to mark the object dirty, scheduling a later write-back.

The detection of accesses is done by first protecting the object’s memory
region against all accesses. The first time the object is accessed, the processor
traps to the operating system, which forwards this event to the middleware.
The middleware then fetches the object from the database, changes permis-
sions to allow reads, and asks the operating system to continue the trapped
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instruction. On a write access, the middleware is again notified, marks the ob-
ject as dirty, removes all access limitations, and resumes program operation.

The best performance is achieved if applications can run natively, i.e. out-
side an interpreter or virtual machine. Unfortunately, current processors do
not support fine-grained memory management, but rely on segmenting mem-
ory into pages of 4 or 8 KBytes [Tan87]. This usually results in either coarse-
grained access control, when multiple objects are put into the same page, or a
waste of physical memory.

Itzkovitz and Schuster [IS99] recently proposed a system allowing mul-
tiple objects to share the same physical page while keeping fine-grained
read/write logging. Their system clobbers entries in the Translation Look-
aside Buffers (TLB), where the processor’s memory management unit (MMU)
keeps a cache of address translations and access permissions, thus reducing
memory access performance. Additionally, the middleware will become more
complex as a result of this change. Further, access faults, such as address-
ing beyond the end of an array, will be harder to catch, complicating program
debugging.

We believe that the solution is to provide for a finer-grain memory manage-
ment. Moving from fixed-size memory pages (typically 2 to 8 KBytes today)
to variable sizes allows to adapt better to today’s needs: Large, contiguous
blocks of memory, which currently use up many pages (and thus many of the
very limited entries in the TLB cache), can be represented in a single trans-
lation entry. Blocks smaller than the page size, which need to be protected
individually, can use a more compact “local page size” and do not waste an
entire memory page.

Such fine-grain memory management can easily be accomplished by us-
ing binary search on prefix lengths together with a small TLB cache made of
content-addressable memory (CAM). Hashing for page table lookups already
is a common practice in the PowerPC processor [MSSW94], as a second-level
cache beyond the TLB cache. Modifying the algorithm to do binary search on
the prefix lengths will give additional flexibility at minimal cost.

Besides object persistence, many operating system extensions [CT90,
BCWP98] try to improve I/O throughput by zero-copying. Fine-grain memory
management helps these efforts by reducing the granularity. In addition, also
coarse-grain management is made possible by switching to a longest match-
ing prefix solution. Coarse-grain memory management also often a desirable
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feature in current computer systems, since it improves the hit rate of the TLB.

Other applications where we envisage improvements include faster inter-
process message passing through fine-granular memory mapping, and im-
proved memory protection and access checks. Such hardware-assist can be
used for improved run-time bounds checking, similar to what is currently be-
ing done by several products in software [Rata].

9.2.2 Garbage Collection and Memory Compaction

Many popular processor architectures, such as Alpha [Sit92] and Sparc
[WG94] have already performed the transition from 32 bit address spaces to
64 bit addresses, and others, such as Merced (now Itanium), the result from
the Intel-HP joint processor development program, are following this trend.
While this only doubles the number of address bits, the available address
space immediately grows by a factor of 232. Physical memory growth be-
haves closer to Moore’s law, which predicts doubling of processor speed ever
18 months. While the address space growth will remove all practical limits
on virtual memory for the foreseeable future, physical memory will become
relatively scarce, compared to the vast address space. If the memory require-
ments of applications continues its fast growth, the relative memory scarcity
will also turn absolute.

Many modern run-time environments support garbage collection, the au-
tomatic deallocation of unused memory. This provides for an efficient use of
memory resources and at the same time frees the developers from the error-
prone task of remembering the allocation status of individual objects and vari-
ables. To make garbage collection efficient, the remaining regions of allocated
memory need to be compacted. This separates the wild pattern of free and allo-
cated regions from each other, separating the two and clustering them together.
This reduces fragmentation of the free space, making it ready for re-allocation
by differently sized objects. Also, some chunks of free space may be returned
to the operating system to make them available to other applications in need
of memory.

Memory compaction is a complex process, especially if it has to happen
in the background. Not only do all objects need to be copied, polluting the
processor’s data cache, but all references to these relocated objects need to
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be updated, requiring more memory operations and severely restricting the
efficiency of background operation.

This efficiency can be greatly improved by taking advantage of large ad-
dress spaces and the flexible fine-grain memory address translation as intro-
duced in Section 9.2.1. Then, physical memory can be compacted on an as-
required basis, invisible to the application, by retaining its virtual memory
addresses and only performing the collection in physical memory. Parallel
operations are also simplified, since the same mechanism also allows physical
memory to be protected from application accesses during data relocation.

9.3 Updating Views in Distributed Databases

In a distributed database, several nodes may store data based on an as-needed
basis, e.g., using a View paradigm. Or a client wants to register a call-back with
a server, to be notified, whenever entries matching certain criteria change.

When the distributed system is large or many call-backs have been regis-
tered, the traditional mechanism of sequential matching quickly becomes un-
wieldy. If the matches are exact, the solution is trivial. If the matches can be
expressed as longest matching prefixes (or postfixes), binary search on prefix
lengths comes in extremely handy. For applications using character strings, it
makes sense not to do bit-by-bit matching, but character-by-character match-
ing, a straightforward extension.

Another matching problem that is to be expected to be frequent, is sub-
string matching [Sri99]. We are currently working on extending our prefix
matching solution to substrings. Our intermediate results on research in this
direction look extremely promising.

9.4 Access Control

Many data services such as web servers [Wil98] provide a hierarchical ad-
dress space [BMM94] and perform access control based on this hierarchy.
Currently, this is done by searching the hierarchy level-by-level after parsing
it for level separators character-by-character. With the availability of fast pre-
fix matching solutions which scale well with the length of the prefixes, such
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linear algorithms could soon become obsolete and replaced by binary search
on prefix lengths.

9.5 Summary

We have seen that the availability of fast prefix matching allows for a number
of new and elegant solutions to existing problems, such as geographical infor-
mation systems, object persistence, garbage collection, distributed databases
and access control for Web servers. The vast variety of these issues suggests
that prefix matching has more general problems than assumed until now.





Chapter 10

Conclusions and Outlook

In the present thesis, we have developed a new algorithm for longest prefix
matching. We have then analyzed and improved it, to take optimal use of
the structure hidden in the database to be searched. We have also seen that
it compares very favorably with other algorithms known. Based on our one-
dimensional results, we have extended the algorithm to two and more dimen-
sions. We have then shown the generality of prefix matching by applying the
results to other problem domains.

10.1 Contributions

In Section 1.3 on page 4, we have listed a number of claims to be addressed in
this thesis. Now it is time to revisit them. Below, you will find each of these
claims assessed.

1. Fast and Scalable Longest Prefix Matching
We introduce a fast and scalable, yet generic algorithm which allows for
matching query items against a large database of possibly overlapping
prefixes.

The analysis shows that the prefix matching algorithm based on binary
search of hash tables not only requires very few and simple search steps,
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logarithmic in the prefix length. It also shows that the performance is
completely independent of the size of the database. This not only pro-
vides the possibility for the algorithm to be fast, it is extremely scalable
in matters of database size and prefix length. The analysis of our imple-
mentation in Chapters 6 and 7 supports these statements.

2. Fast Forwarding
We apply this algorithm to Internet packet forwarding and analyze its
performance using the largest available databases.

We have seen that the algorithm works like a charm using even the
largest available Internet forwarding databases of around 40,000 pre-
fixes and that the theoretical results hold in practice. With modest
amounts of memory high-performance results can be achieved.

BBN’s choice to license and use this algorithm in their GigaRouter
[PC+98] supports this claim. The simplicity and performance of our al-
gorithm impressed them so much that they did not use any of the freely
available algorithms nor the algorithm they had licensed earlier on for
that purpose.

Our results of using binary search on prefix lengths to improve lookup
time also have found their way into several recent textbooks discussing
Internet forwarding [PD00, Per99, KR00].

3. Adaptivity
We extend the generic algorithm to a scheme which can self-adapt to
structures discovered in the search database, resulting in a further per-
formance boost.

The novel Rope paradigm introduced allows for even faster convergence
to the search result than binary search on prefix lengths. After each
successful search step, the range of the remaining lengths to be searched
can be narrowed down further, depending on the database. This is done
by encoding the next search prefix lengths to search in turn until a hash
table hit supplies its own Rope.

Even for the largest databases, we could demonstrate that the worst case
improved to mere four hash lookups. We are confident that with longer
addresses the improvement will turn out to be much better.

4. Efficient Building and Updating
We present efficient algorithms for building both the generic and the
self-adapting data structures. We also show how to update them both
quickly and efficiently.
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The analysis of the algorithms presented in Chapter 5 provides evidence
to the efficiency of building and updating both structures. The generic
algorithm can be built in expected O(N log W ) time, with N denomi-
nating the size of the database and W the length of the addresses. Up-
dating will mostly be O(log W ), although the bound for expected per-
formance lies at O(α α

√
N log W ).

Adapting the data structure for the first time requires O(NW 3), each
change at most O(W 3). Rebuilding then requires the same cost as the
generic algorithm. Incremental updates cost O(α α

√
N log W + W 3),

fast enough for most real-time applications. When new prefix lengths
are added, changes in the Ropes are necessary. Although they can be
done incrementally, the worst-case search time can degenerate slowly,
rebuilds may be necessary after many changes.

5. Fast Hashing
We explain and analyze practical schemes for fast hashing. This scheme
is required for the operation of the presented algorithms. We also show
that the search structures and hashing can be efficiently combined to
yield even better results.

We have shown how to make hash table lookups possible in a single
memory access with modest memory requirements, without requiring
complex hash functions or prohibitively long build times. The resulting
scheme is well-suited for cheap implementation in hard- or software.
Our analysis demonstrated that (re-)moving a few entries would reduce
the memory requirement even further. The introduction of causal colli-
sion resolution allows for an efficient relocation of misbehaving entries,
further reducing the memory requirements. Using causal collision res-
olution, a single entry can be split into two, with different hash keys.

6. Two Dimensions
We extend the scheme to perform two-dimensional prefix-style packet
classification. This is required for basic packet classification on source/
destination address pairs.

With Line search, an elegant extension of the one-dimensional longest
prefix matching scheme to two dimensions has been introduced. Al-
though no large two-dimensional prefix databases are available, we have
developed a sensible model for what these databases might look like.
We have then analyzed the algorithm under different conditions. The re-
sults show that the algorithm performs exceptionally well for expected
future databases.
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We have also presented an algorithm to optimally cover full matrices
with Lines and a series of heuristics for covering sparse matrices. The
AlmostLog heuristics, which tries to use the use the longest possible
Lines, unless their lengths are just a little above a power of two, in
which case it is cut down to this power minus one. At this number,
maximum coverage per number of memory accesses is achieved.

7. Packet Classification
We further enhance the algorithm to an efficient full-fledged five-
dimensional Internet packet classification, thanks to known properties
of the additional three dimensions.

We have shown that the naı̈ve way of performing five-dimensional look-
ups, i.e., doing longest prefix matching in each dimension, will result in
bad performance. By knowing that the three additional fields (proto-
col, source/destination port) do not require prefix matching, but only
wildcard matching, maybe with a small number of range matches, our
solution requires only 5 two-dimensional lookups instead of 100 to per-
form five-dimensional packet classification. This makes our classifier
both more versatile and more efficient than other known solutions.

8. Versatility
We show that our algorithm is not limited to theory and Internet. In-
stead, the availability of our prefix matching scheme makes a series of
other applications practical for the first time or improves them signifi-
cantly.

Longest prefix matching can be used to efficiently model arbitrary range
matching. Thamks to our Ropes, it is even possible to perform better
than the best known dedicated range matching algorithms, which can-
not handle simple overlaps, let alone priorities. We demonstrate how a
conversion to range matching and back can shrink the size of the for-
warding database, and even propose a scheme that is able to reduce
forwarding tables below what others previously had proven to be the
optimal solution.

Besides that, we show that longest prefix matching techniques can pro-
vide for major improvements in geographical information systems, mid-
dleware supporting persistent databases, garbage collection, distributed
databases, and access control.

As the above list shows, our efficient longest prefix matching algorithms
fulfills all the claims stated in Section 1.3.



10.2. Outlook 137

10.2 Outlook

In this section, we present some open issues and unsolved problems related to
the improvement of the data structures, their implementations, applications,
and Internet routing.

Incremental Updates It is still unclear whether it is possible to perform in-
cremental updates in the Rope search structure. We believe that some
restructurings necessary during insertions can require work equivalent
to a complete rebuild, unless a localized degradation of performance is
acceptable. We believe that an algorithm trying to do all the operations
only at insertion time will run into this dilemma sooner or later.

So we put our hopes in pro-active algorithms, that try to foresee critical
situations and relax them in advance. As it is impossible to predict the
upcoming changes in general, the only practicable way seems to identify
all locations where an insertion might require restructuring and change
them in appreciation of this change.

Optimal Lines Another unsolved problem is how optimal lines can be calcu-
lated in sparsely occupied matrices in polynomial time. Our best heuris-
tic results in the same performance for fully-covered matrices than the
known optimal solution. Yet we do not know whether the Lines gener-
ated by the heuristic for sparse matrices are also optimal.

Co-Optimizing Ropes and Lines An even less studied problem which might
lead to major improvements is the parallel creation of Lines and the
Ropes making up these Lines. Then, the optimal Line length will no
longer be of the form 2x − 1, but will allow for more coverage with the
same or a lesser number of search steps.

Optimal Bit Interleaving During the discussion of geographical information
systems in Section 9.1, we have seen that bit interleaving can be done
flexibly. Defining metrics for optimality of this type of search is hard,
since there is a flexible trade-off between memory requirements and
search speed involved. Even if criteria were set, it is unclear how to
optimize bit interleaving to meet them.

Conditional Moves We are still working on ideas how to take optimal advan-
tage of new processor instructions, such as conditional moves, to further
improve software performance of the search algorithms.
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Testing Applications Although a number of applications for longest prefix
matching have been defined and analyzed in theory, it remains to check
out their impact and performance under test and real-world conditions.

Vector Distance Finding the closest match in a multi-dimensional vector
space is a challenging problem. There is some relation to finding a
longest prefix, or to point location, but it is not obvious how to solve this
efficiently. Such problems do occur e.g. in speech recognition. There
matching is additionally complicated because the vector to be matched
can start anywhere in a sequence of numbers.

Improving Routing We have seen that graph theory has resulted in several
routing algorithms that require much less information than the current
Internet. Some of these algorithms have very good performance. Are
there ways to change our current Internet routing to take advantage of
some of the theoretical results? For IP version 6, it is already planned
to allow for painless renumbering of network addresses [DH98] and a
lot of brain power has been invested into trying to reduce routing table
size [HD98, HOD98]. But it is foreseeable that the routing database
will either grow fast or routing will be suboptimal. Taking advantage of
foreign results therefore seems necessary if the Internet should be able
to grow and prosper.

Dynamic Routing The Internet was designed as a packet network in order
to automatically route around failing nodes and links. Recent events
[SWI99] show that already a single link failure can cause long outages.1

Besides political issues related to traffic and peering contracts, it is also
a technical issue. Since most Internet service providers rely on static
or semi-static routing, problems like these aggravate. Finding a solu-
tion to either the political or the technical problem would improve the
reliability of the Internet.

I hope that the present thesis has raised the awareness for longest prefix
matching problems and their background. Longest prefix matching in its var-
ious aspects not only shows simplicity and elegance, but also provides for
incredible amounts of flexibility. The latter allows it to be tweaked to adapt to
the current situation, and to become extremely versatile. I have been amazed
about the possibilities. Please let me know when you solve your next problem
using longest prefixes.

1Due to a link failure in New York, most Swiss research institutions lost connectivity to most
of the Internet for about 20 hours.
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in Zürich). During his work as both a networking consultants and a member
of the board, the company started flourishing.

In 1996, he left the company to search for new challenges in research
and joined the Computer Engineering and Networks Laboratory (TIK) at ETH
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