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Abstract—
Middl ewaresupporting secure applicationsin a distri buted environment

facesseveral challenges. Scalable securi ty in the context of multi casting or
broadcasting is especially hard when pr ivacy and authenticity is to be as-
sured to highly dynamic groups where the application allows participants
to join and leaveat any time.

Unicastsecurity iswell-known and haswidely advancedinto production
state. But proposalsfor multi cast securi ty solutions that have been pub-
lished so far are complex, often require trust in network components or
are inefficient. In this paper, we propose a framework of new approaches
for achieving scalablesecuri ty in IP multicasting. Our solutions assure that
that newly joining members are not able to understand past group tr affic,
and that leaving membersmay not follow futur e communication.

For versatili ty, our fr amework supports a range of closely related
schemes for key management, ranging fr om tightly centralized to full y
distributed and even allows switching between these schemes on-the-fly
with low overhead. Operat ions have low complexity (

���������	��

for joins

or leaves), thus granti ng scalabili ty even for very large groups. We also
presenta novel concurr ency-enabling scheme, which wasdevised for full y
distributed key management.

In this paper we discuss the requirements for secure multicasting,
present our flexible system, and evaluate its properties, basedon the ex-
isting prototype implementation.

Keywords— Secure multi casting middleware, Tree-basedkey distri bu-
tion, Multi cast key distribution schemes, Distributed key management,
Concurr ent keydistr ibution.

I . INTRODUCTION

ITH the increasing ubiquity of the Internetand thegrow-
ing popularity of IP multicasting, multi -party commu-

nication is fast becoming a requirement for distributed appli -
cations, as is demonstrated with the popularity of the exper-
imental Mbone multicast service and the applications it sup-
ports. Today, the most important classof applications taking
advantageof multicasttransport servicesare collaborative mul-
timedia applications and conferencing services[1]. This usage
will grow and include new applications such as fault-tolerant,
distributed database systems [2] or massively-parallel super-
computersmadeof workstations [3].

Besides the basic needto exchange information among the
members of a group, the requirementsof specific applications
differ greatly. Resultinggroups come in very dif ferent sizes:
small (in the case of a simple multi-party desktop conference),
medium (e.g., distance-educationscenario), or very largegroups
(e.g., broadcasting of a major sports event). In many applica-
tions, groupmembersmayalso decide to join or leavethegroup
frequently andat any time. Best-effort IP multicastservice was
specificallydesigned to addressthese requirements, and does

Marcel Waldvogel, Nathalie Weiler, and Bernhard Plattner are with the
Computer Engineering and Networks Laboratory, ETH Zürich, Switzer-
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this very well.
But it is missing additional features that have to be provided

by other means: Quality of Service andresourcereservation is-
suesare being covered by numerous schemessuch as [4], [5].
Reliable transmission of data and concurrency resolution are
generally consideredto beappli cation-specific,if overheadis to
be minimal [6], [7]. But currently the provision of privacy and
authenticity for group members,e.g. by cryptographic means, is
still missing.Currentsolutionsoftenrequirehumanintervention
(manual keying is common), or restrict the dynamicsprovided
by multicastingand required by many applications.

In this paper, we investigatehow secure multicastingcanbe
provided as a universal service in an application-transparent
middleware, while preserving the propertiesof scalability and
flexibility asofferedby thebasicIP multicastservice.Wemain-
tain and wil l demonstrate that such solutions exist; our tech-
niques, however, are not only applicable to IP multicast, they
may alsobe usedin other environments,e.g. with connection-
orientedmulticast servicesasfound in ATM [8] orevenone-way
broadcastservices.

Like many unicastapplications,a largegroup of multi-party
multi-media applications will only be successful if privacy and
authenticity of participants can be provided efficiently. Con-
sider, for example,atele-education service,whichdistributesits
programto a large numberof customersaround the globe. It is
obvious that only those people who have subscribed to the ser-
vice should be able to receive it. If a new customer subscribes,
sheshould be able to receive data immediately, but not to un-
derstandinformation which wasreleasedbefore thetime of her
subscription. Conversely, a customercancelinghis subscription
should not be able to processinformation beyond the time of
cancellation.

Similarly, considera teleconference meeting between man-
agersof a virtual corporation which need some outsideexpert
opinions during their meeting, but do not want this expert to
learn about theother topicsthey arediscussing.

By consequence, this paper will discuss key management
schemeswhich guaranteethat at eachinstance in time only ac-
tual group memberswill be in possession of the cryptographic
keys neededto participate.A näıve solution would beto create
a new sessionkey whenever a member leavesthe group, and to
securely distribute thekey to eachmemberof the group, one by
one.However, suchasolution would not scale,asit requiresthat
thenew sessionkey be encrypted individually for eachpartici-
pant.

Even though multicast routing itself implements a kind of
closed user group, the property of closednessis rather weak:
Multi cast routing protocols known to datearedesigned to dis-
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tributemulticastdatagramsto asetof linkshosting group mem-
bers, i.e. to grant,and not to preventaccessto information. This
is most prominentwith routing protocolsbasedon flooding al-
gorithms,suchasDVMRP [9], andgenerally with approaches
using reverse path broadcasting/multicasting [10], which dis-
tribute multicastdatagrams quite generously to a setof poten-
tial recipientswhich is muchlarger thanthe actual set of group
members. Cryptographic mechanismsto restrict the realflow of
information will therefore be of primary importanceif tightly
controlled closedusergroupsareto be created.

We argue that a solution for secure multicasting must offer
thefollowing properties:� Groupwide privacy and authenticity, including the unabili ty
of newcomersto readpasttraffic.� Efficient distribution of keying material in large groups with
frequent membership changes (minimize traffic and computa-
tion effort for all partiesinvolved).� No trust in intermediateor third party components.� Avoid multi cast implosion.� No restriction of theservicesofferedby theunderlying multi -
castinfrastructure (e.g. avoid unicastsandrelaying).� Minimizeknowledgeneededby participating entities.� Minimizeattackvulnerabilities.

Additionally, thesystemshould addressthe following issues:� ProvidePerfect Forward Secrecy [11].� Cope with system and network failures (failure recovery
and/or resilience).� Work with (mostly) one-way traffic, such assatellitebroad-
casts.� Allow sender authentication (as opposedto group-wide au-
thentication).

In thispaper, wepresent threecloselyrelatedschemesfor key
distribution and management, ranging from tightly centralized
to completely distributed.Eachof them already meetsmost of
the requirements above. For the casethat requirements change
during thelife-timeof agroup(e.g. unexpectedgrowth), wealso
provide for a setof efficient transitionsfrom onescheme to an-
other. This yieldsa truly versatile framework that achievesscal-
ablesecurity in IP multicast,enabling secure multi-party multi -
media applications in which membersof large andhighly dy-
namic groupsmayparticipate.

Our approachesallow all group members to establisha mu-
tually sharedsecret, which canbe used to provide group-wide
privacy and messageauthenticity, or any otherproperty relying
on sharedsecrets. Thesystemcanoffer perfect forwardsecrecy
[11], requires only a small amount of calculations and storage
from the participants, can be made highly resilient to compo-
nent andnetwork failures, andavoidstheneedfor trustinto third
party componentssuchasrouters.It is independent of the secu-
rity algorithmsused, soit canwork together well with IP Secu-
rity (IPsec[12]) encryption and authenticationmechanisms.

Theremainder of thepaper is organizedasfollows: SectionII
presentsrelatedwork, Section III introducesthe threekey man-
agement solutions, and Section IV explains the transitions be-
tweenthem. Section V thenevaluatesthe functionality and per-
formance of VersaKey. Section VI draws conclusions and ex-
ploresfurtherwork.

I I . RELATED WORK

Although a number of cryptographic techniques have been
proposedto secure group communication in broadcastor multi-
castscenarios,very few of themaretargetedatalargegroup set-
ting with highly dynamicmembershipwithout third party trust,
and if they do, they arecomplex and inefficient in dealing with
this issue.

Theexistingapproachesor applicationsconcerning multicast
key management canbeseparatedinto two classes.Thoseoffer-
ingdynamic operationsareableto changegroup keying material
on thefly. Staticsolutions, forming thesecondclass,require the
establishmentof anew groupto copewith membership changes.
Manualkeying,still being theprevalent solution to multicastkey
management ase.g. usedin theMBone applications, is consid-
ered an insufficient key managementsolution.

A. Static Key Management Approaches

The staticapproachesdistribute anunchanging group key to
members asthey join. They provide no solutions for changing
the key when the group membership changesother thanestab-
lishing anew group from scratch.

For IP multicast security, several key management schemes
are proposed, e.g. the Group Key Management Protocol
(GKMP) [13], [14], the Simple Key-Management for Internet
Protocols (SKIP) [15], the Internet Key Exchange (IKE) [16],
making useof the InternetSecurity Association andKey Man-
agement Protocol (ISAKMP) [17] and the the Oakley Key De-
termination Protocol [18], and the Scalable MulticastKey Dis-
tribution Scheme(SMKD) [19]. None of them provides a so-
lution for key change upon membership changesor for Perfect
ForwardSecrecy (PFS).Thepropertiesof all presentedschemes
aresummarized in Table I.

B. DynamicKey ManagementApproaches

In order to prevent the joining members from understanding
the past traffic and the left members from listening to future
messages, dynamic changesof the session key must be possi-
blewithout rebuilding thewholegroup. Among theexisting dy-
namic approaches,centralizedanddistributed schemescanbe
distinguisheddepending on if they rely on a designatedcentral
entity.

A few schemescan be enumerated as centrali zed dynamic
approaches, like Key Pre-distribution [20], Fiat-Naor Broad-
castEncryption, [21], SecureLock [22], thespanning tree-based
scheme [23] and[24]. All of themrequire a designated central-
izedcontroller to take care of distributing and/or updating key-
ing material.However, they also sharethe inherent drawbacks:
possible setup implosion, single point of failure andrelatively
largedatabasefor thekeying material.

To reducethestorageattheuser’sendandthemessagelength
broadcastby a center for dynamicallychanging privileged sub-
setof users,several schemes were presentedby Fiat andNaor
[21].

Wallner et al. [25] proposea key management schemefor
multicastcommunication which requireseach of the N users to
store��������������� keys.In orderto removeauserfrom thegroup,
a new group key must be generated. Unlike in the Fiat-Noar
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TABLE I

PROPERTIES OF DIFFERENT SCHEMES

Property
StaticApproaches
(GKMP, SMKD, SKIP,
ISAKMP/Oakley)

CentralizedApproaches
(Pre-distribution, SecureLock,
Fiat-Naor, Spanning tree,Iolus)

Distributed
Approaches
(Cliques)

VersaKey

Group-wide key yes Iolus:no; others: yes yes yes
Dynamicjoin andleave
handled

no yes yes yes

Scalability no Iolus/Spanning tree:yes;
others: no

yes yes

Perfect forwardsecrecy no no no yes
Centralized entity required yes yes variable variable
Trust in third partiesrequired SMKD: yes;others: no Iolus:yes;others:no no no
Trust in otherparticipants no Spanning tree:yes;others:no yes noa

Memory with eachentity
required

small Pre-distribution: huge;
others: small

small smallb

High Delayin key
distribution

no Spanning tree:yes;
others: no

Initial setup: yes;
otherwise:no

no

�
DistributedFlat: yes,but untrusted participantscan besafely ignored�
Except group manager in Centralized Tree: large

broadcastencryption schemes,thenumberof transmissionsre-
quired to rekey the multicast group is small. However, in this
schemeeverygroupmembermustassure thathe receivesall the
updatemessagessent by thegroupmanager. A similar approach
hasbeenproposedin [26].

Secure lock is implementedbasedon theChineseRemainder
Theorem.Here,the group sessionkey is secured in a way that
only the keys of authorized userscan retrieve it. This scheme
requires the association of one large number (relatively prime
to all othergroup members’ numbers)with eachparticipant.In
addition, the retrieval of the group session key is an expensive
operation. Theseconditions confine this protocol to being used
only within small groups.

Thespanningtree[23] needsto beextendedor pruned, when-
ever themembershipchanges,to make sure that only the group
members can get the updatedconferencekey. Thedelay in dis-
tributing a conference key along the spanning tree makes this
approachnot applicable for frequent changesof membership.

Iolusdealswith thescalabilit y issuesin highly dynamic large
groups by decomposing large groups into subgroups. Thus, a
group membership changecan behandledin therespectivesub-
group without affectingany other subgroups.While improving
scalability, theabsenceof a global group key requiresthe intro-
duction of secure agents,one for eachsubgroup, to relay mes-
sagesandperform ”key translation”. In addition to requiring full
trust into eachsubgroupagent, extradelays in messagedelivery
must beaccepted.

Cliques,described by Steiner et al. [27], is a natural exten-
sion to the Diffie-Hellman key exchange protocol and presents
thecapability to distribute sessionkeys in dynamicgroups.The
group controller canbe either fixed with a designatednode or
transferredto the newly joint member. While this protocol pro-
videsaway to distributeasession key in highly dynamicgroups,
thesolution doesnot scalewell to largegroups,where thegroup

manager has to perform  !�#"$� exponentiations for eachgroup
change,and messagesget prohibitively large.

As summarized in Table 1, most existing protocols for secure
multicasting arelimited to distributesessionkeysin static and/or
small groups. For dealing with the group key distribution in a
largegroup with frequent membership changes,somegood ex-
plorations have beendone in [24], [27]. However, several is-
suesmust be improved: the reduction of computational com-
plexity, decreaseof trust in dedicatednodes(e.g. network com-
ponents), and the necessity for group members to interoperate
for thegenerationof a group-wide secret.We will now present
severalschemesthatdemonstratetheability to successfullyhan-
dle theseissuesin largeandhighly dynamicgroups.

I I I . SECURE MULTICASTING ALGORITHMS

In the solutionspresentedhere,changesto thegroup’s mem-
bership are possible with minimal involvement of dedicated
nodes and group members. The approachescope with several
properties inherent to multicast and broadcastenvironments:
There is an unreliable (and in the case of IP also unordered)
transmission channel, and the transmissions may be one-way,
with no or only a minimal return channel, to reflectthe nature
of wide-scale distribution environments – li kely users of secure
multicasting. Lastbut certainly not least, it is important that as
little trust aspossible should be necessarytowards third party
entities such as routers or other intermediate systems. While
thosethird party components may betrustedto distribute a ses-
sion directory, certified public key material, or accesscontrol
informationsigned by a group memeber, they should never be
able to gainaccess to actual keying materialand decryptedpay-
load.

As seenearlier, it is importantto haveasystemwhich— even
with large groups and frequent joins or leaves— neither is sus-
ceptible to implosionnor enablesusers to understand what was
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Fig. 1. Two PossibleMulticastScenarios

transmittedattimesthey werenot part of thegroup, eitherbefore
they joinedor after they left or wereexpulsed. Additionally, any
third party recording ongoing transmission and later capturing
thesecretsheld by a participant must not beable to understand
its recordings. This is known as“perfect forwardsecrecy” [11].
To completelyachieve this, also theunicastconnectionsneedto
beset up using ephemeral secrets.

This section is organizedasfollows: First, thegeneralarchi-
tecture and components of the framework are discussed, fol-
lowed by thedetailed descriptionsof thethreekey management
approaches(Tree-based,CentralizedFlat,and DistributedFlat),
explaining the propertiesthey make availableto large,dynamic
groups.The presented schemescover a wide range of applica-
tions and security needs: From very tight control in the cen-
tralizedapproachto extremetolerance to systemandnetwork
failuresin thecompletely distributedscheme.A selection of ad-
vancedtopicsconcludesthe discussion.

A. Componentsand Group Operations in Multicast Scenarios

Figure 1(a) ill ustratesthebasicarchitecture for a simple sce-
nario consisting of a single sending entity and any number of
receiving entities.Generally the components areseparatedinto
two groups: (1) a group of data relatedcomponents, covering
components very similar to thoseof current insecure multicast
or broadcastcommunicationarchitecture. It consists of the data
source,datasink, encryption and decryption units and the data
multicast group(s). (2) a group of control (or key management)
relatedcomponents,which includesall components involvedin
the key agreement and key exchange process. Note that in the
centralizedapproachesdescribed below, it is possible to locate
instancesof the admissioncontrol component on different ma-
chines,thusmitigating apotential implosion problem.

Theoutlineof themulticastdataflow from thesending entity
to oneof thereceiving entities is asdepicted in Figure 1(a): The
datasource is fed to the encryption unit to be multi cast to the
addresseddatamulticast group. The receiving entity performs
thenecessarydecryption and hands its resultonto thedatasink.
The control related componentsprovide the necessary keys to
theencryption anddecryption units.

An overview of the roles of the different components in
Figure 1(a) during group management operations are shown in
TableII (for the distributed approach explained below, the du-

ties of the group manager are sharedby all participants). Fur-
ther possible operations concern the group setup: creation, de-
struction, merging, and splitting of groups. They arehighly de-
pendent on the key management scheme andwill therefore be
discussedin the corresponding sections.Also, the exclusion of
multiple colluding participants is to be treateddifferently in
some of theschemes.

The components have been described for a simple scenario.
However, there often is more thanone sender, and sendersand
receivers may not bedistinguishable. Also, any receiving entity
is free to send data encrypted or authenticatedusing the cur-
rent group-wide symmetric key, and in a group collaboration
environment every memberof thegroup holds both rolesat the
sametime,resultingin a situation asshown in Figure 1(b). This
group collaboration scenario arises from a transformation of
Figure 1(a) wheresending andreceiving entity wereintegrated,
yet thegroup manager remainsisolated. Al l of theschemesalso
work in this scenario, and the later presented distributed key
management scheme(cf. SectionII I-D) is very well suited for
it. If sendersandreceivers aretreatedequally, they will be re-
ferredto usingthemore generic term participant.

In the following two subsections,wewill illustrateadditional
aspects, namely the propertiesof keying material,andthebasic
operationsin thegroups.

A.1 Identificationof Keying Material

We distinguish two typesof keys. Firstly, we needa key to
encrypt, decrypt, and possibly authenticatethe datatraffic. For
this purpose,the Traffic Encryption Key (TEK) is given by the
local key managerto the appropriate unit. Secondly, a number
of Key Encryption Keys (KEKs) areusedto encrypt thecontrol
traffic in thekey control group, ultimately containing theTEK.

To distinguish the keys, eachkey is addressedthrough a key
selector, consisting of (1) a uniqueID which will staythesame
even if the secret keying material changes, and (2) a version
and revision field, reflecting updatesin thekeying material(cf.
Figure 2). The version is increasedwhenever new keying ma-
terial is sentout by the group manager on a leave, while the
revision is increasedwhenever thekey is passedthrough a one-
wayfunction, eliminatingtheneedfor sending updatemessages
on joins.

Fixed ID Version Revision Secret Material

Key DataKey Selector

Fig. 2. Structureof aKey

A.2 BasicOperationson the Group

The abovementioned components and keys will be involved
in different activities:
Group Creation The Group Manageris configured with group
and access control information. Additionally, the group param-
etersarepublishedusinga directory service.
SingleJoin The new participant’s Key Manager sends its re-
quest to the Group Manager, which checkswhether this par-
ticipant is allowed to join. If yes, the Group Managerassigns
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TABLE II

INTERACTIONS OF THE DIFFERENT COMPONENTS DURING THE OPERATIONS

Operations
Components Join Leave

Single Multiple
Participantkey manager updatekeying material(4)a updatekeying material (3)
Key manager of
entity/-iesrequesting
operation

request (1)
updatekeying material(4)

no comprehensibility of thekeying material
update(3)

Group manager change keying material,
notificationof the
joining entity (3)

common handling
of several requests
(3)

changekeying material(3)

Admissioncontrol asymmetric cryptographic operations,
checkof accessrights(2)

changeof accessrightsfor leaving entity (1)
notification of thegroup manager(2)b

�
Thenumbers in parentheses indicate thesequenceof steps.�
This ispolicy-dependent. In case of a voluntary leave,thekeyingmaterial maybekept thesame.

a unique ID to him, and selects a series of KEKs which will
be transmittedto thenewcomer. Theselectionof KEKs wil l be
discussedseparatelyfor eachkey managementscheme.
TheGroup Managernow increasestherevision of all keys(TEK
andKEKs) to be transmittedto the participant by passing the
keying material throughaone-wayfunction (e.g. acryptograph-
ically secure hash), thensends the keys out to the new partic-
ipant. It also informs the sender(s) to usethe new TEK. The
otherparticipantswill notice therevisionchangevisible in ordi-
nary data packets,and alsopasstheir TEK throughtheone-way
function. Since the function is not reversible, thenewcomerhas
no way to determinethekey usedbeforehand.
SingleLeave Thereare threeways to leavea group:
1. Silent Leave:A receiver just stopsparticipatingin thegroup

without telling anyone.No action isneeded.
2. VoluntaryLeave:A receiverannouncesthatit’s leaving.De-

pending on thepolicy, its keying material can bemadeunusable
through a leave messageasdescribedbelow, the leave message
may be delayed until another leave has to be performed, or no
actionis done,allowing the receiver to continue listening, if it
wishesso.
3. Forced Leave: If the Admission Control feels a need to

forcibly exclude a participant,a leave message is to besent out.
Also, participants mayasktheAdmission Control to excludea
member. It is up to theadmission poli cy how to dealwith such
requests.
To exclude a member, all keys known to it needto be replaced
with entirely new keying material. To make all remaining par-
ticipants awareof this change, the key’s version number is in-
creased.
The Group Manager sendsout a messagewith new keying ma-
terial which canbedecryptedby all the remaining participants’
Key Managers,but not thememberwhich just left. Additionally,
it freesthe slot previously utilized by the leaving participant,
making it available for reuse.As soon asall participants throw
awayprior keying material,perfectforwardsecrecy for the past
traffic is assured.
Multiple Join, Multiple Leave, Group Merge, Group Split

Thesefunctionshave a number of dependencieson the chosen
scheme and will thusbedetailedthere.
Group Destruction The Group Manager notifies all remaining
participants of the destruction, closesall network connections,
destroys all keying materialand freesall memory. As soon as
all parties have thrown away their keying material,perfect for-
wardsecrecy covering all traffic against third party opponentsis
guaranteed.

B. Centrali zed, Tree-BasedKey Management

In our firstapproach,weproposedand implementedacentral-
ized, easymaintainable schemewhich achievestightestcontrol
over the individual participants[28]. It is suitable for applica-
tions with high security demands,and posesvery little loadon
the network and the receivers.All keying material is managed
centrally by the group manager, whereall joining entitieshave
to register. To store the keying material, a treeis usedin which
all participating entities are representedby its leaves. For sim-
plicity of the explanation assume that a fully balanced binary
treeis used.Theexample in Figure3 depicts such a treewith a
maximum of 16 group members(addresslength % of 4 bits).

Key
Encryption
Keys

Traffic
Encryption
Key

Level 0

Level 1

Level 2

Level 3

Level 4 (=W)
(Leaves)0 1 2 3 4 5 6 7 8 9 A B C D E F

01 23 45 67 89 AB EF

03 47 8B CF

07 8F

0F

CD

Fig. 3. Binary Hierarchy of Keys.Labels in hexadecimal define the rangeof
participantsknowing thiskey.

During asetupphase,which includesadmission control, each
participant establishesa shared secret with the group manager.
This sharedsecret is known only by thegroup managerand the
individual participant,and is usedas the lowestlevel KEK. The
group managerstores it in theleafnodeassociatedwith this par-
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ticipant, and usesit whenever only this individual participant
should understand a message — suchasfor unicasttraffic dur-
ing this participants join operation. Its revision is increasedafter
eachuseto insure perfect forward secrecy. Besidesincrement-
ing the revision field, the keying material is passedthrough a
one-way function, sothatearlier traffic cannot be recoveredby
the newcomer. The nodesin the binary treeheld by the group
manager contain further KEKs, used to achieve efficient com-
munication of new keying material whenthemembershipof the
group changes.Thesenodes do not represent actual systemsor
intermediateentities,but hold keysforahierarchy of virtual sub-
groupsof dif ferent sizes.

Eachparticipant holdsadifferent subsetof keysfrom thetree,
more specifically all thosekeys that are in the path from the
participants leaf to the root node, which is usedas the TEK.
These intermediateKEKs areusedif a messageshould only be
understoodby apartof thegroup, e.g.amessageencryptedwith
KEK &	' is understood by participants &)(*(*(+' . This enablesthe
transmission of new keys to only a limited setof participants,
therebydisabling othersto decrypt specific messages.

Eachencryptedpayload and key change message includesa
reference to its key’s version and revision number, such that
key changesandout-of-orderdelivery canbeimplicitly detected
by the participants. Versionchangesare always escorted by a
separatemessage from the group manager, where the new key
is provided in a secure manner. Revision changes can be re-
solved locally, thus reducing the amount of messages andde-
cryptions needed compared to other independently proposed
schemes[25], [26].

B.1 CentralizedTreeOperations

B.1.a Join. Ona join operation, theparticipant’sKey Manager
unicastsits request to the Group Manger, which checks with
Admission Control and assigns anID (say & ), where the partic-
ipant’s individual key is stored (usually the unicast session key
already employedfor thejoin request). TheID is usedsuchthat
thebit-patternof the ID definesthetraversalof the tree, leading
to a unique leaf. As analternative to the explicit assignmentof
IDs, it is possibleto usetheparticipant’saddress(IPaddressand
port number, or a function thereof) of participantsasIDs. The
Group Manager increasesthe revision of all thekeys along the
pathfrom thenew leaf to theroot (Key Encryption Keys &-, , &.' ,/ ' , andthe Traffic Encryption Key

/10
), puts themthrough the

one-way function and sends the new revision of the keys to the
joining participant, together with their associatedversionand
revision numbers. At the sametime,all sendersareinformed of
therevision changein apreferrably reliablemanner, so they start
usingthe new TEK. Thereceivers will know about this change
when the first datapacket indicatingtheuseof the increasedre-
visionarrives.This createslesstraffic andcanmaketherevision
change more reliable.

B.1.b Leave. To perform a leave operation, the Group Man-
ager sends out a message with new keying material which can
only bedecryptedby all remaining participants’ Key Managers.
Additionally, it freestheslot utilized by theleaving participant,
making it available for reuseat a future join.

Assume 2 is leaving. This meansthat thekeys it knew (Key
Encryption Keys 243 , 2 0 , 5 0 , andthe Traffic Encryption Key

/10
) needto beviewedascompromisedand have to bechanged

in sucha way that 2 cannot acquire thenew keys.This is done
efficiently by following thetreefrom theleaf nodecorrespond-
ing to theleaving participantto theTEK storedin theroot node,
and encrypting the new node keys with all appropriateunder-
lying node or leaf keys. For our example, the tree in Figure3
shows that the new Key Encryption Key 24346�798 (replacement
for 2:3 ) needsto bereceived by 3 , 2 0 6�798 by participants 3 ,;

and
0

, 5 0 6-798 by 5<(*(=(*>@?*3A(B(=( 0 , and the new Traffic En-
cryption Key

/C0 6�7D8 by every participant except 2 . Instead of
encrypting the new keys individually for each of the intended
participants,we take advantage of the existing hierarchy:� 243 6-798 is encryptedfor 3 , theonly recipient in needof it.� 2 0 6-7D8 is sent twice,eachcopy encryptedwith oneof its two
childrenkeys,theexisting

; 0
andthenew 243 6-798 , so it can be

decryptedby the intendedrecipients 3A(*(=( 0 .� 5 0 6-7E8 is similarly encrypted for those knowing 51> or2 0 6-798 .� /F0 6-7E8 is finally encrypted for those holding key
/ ' or key5 0 6-798 .

This resultsin thefollowing message being sent out:;HG �9243 6-7D8 �;HI�J �D2 0 6�7D8 � ;$K G$L=M�N ��2 0 6-798 �;PORQ ��5 0 6�798 � ; K�J L+MSN �S5 0 6-798 �;PTEU � /10 6�798V� ; O J L+MSN � /10 6-7E8H�
Along thepathto the leaving node’s leaf,all new keysexcept

the bottom two rows will be encrypted for their two children.
The new key in theleaver’sparentnode will beencryptedonce.
This results in WC%YXZ� keysbeing sentout, where % represents
the depthof the hierarchy and alsothe length of the ID. Thus,
evenfor a huge group with 4 billion participants( %\[^]-W ) and
128 bit keys, a single message of around 1200 bytes1 multicast
to everyone in the group establishes the new secrets. Process-
ing this multi cast message will require at most % decryption
operations from the participants,with anaverage of lessthan2
decryptions.

B.1.c Multiple Leaves. Intuitively, this canbeextendedto mul-
tiple leaves.Thesimplestand mostobviousis theexclusion of a
subtree,but it canbegeneralizedto any arbitrary group of nodes.
Using a single message for multiple leavestakesadvantageof
path overlaps,soseveral keys will only needto be createdand
sentout onceper message instead of onceper leave operation.
This canbeusedto efficiently coalescemultiple leave(and join)
operationsinto asinglemessage.

Colluding participantscanbereliably excludedby either se-
quential exclusions of them,or by grouping themtogetherinto
a multiple leaveoperation.

B.1.d MultipleJoins. Similarly, if several joinshappenin short
succession, the revision of the TEK and the KEKs shared be-
tweenthe newcomers only need to be increasedonce, if new-
comers canbe allowedto deciphera smallamount of datasent
out before they wereadmitted(usuallyonly a fraction of a sec-
ond). If frequent joins are to be expected,the architecture may_

OneTraffic EncryptionKey with 32bitseachfor keyid,version,andrevision
encrypted for two groups, `badc Key EncryptionKeyswith 31 bit versionand
1 bit revision encrypted for two sub-groupsand oneleaf Key Encryption Key,
encrypted for a single node. One bit revision is enoughfor KEKs, since the
higher revisionsarealwayssent out in secureunicast connections.
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bechangedsuch that theactual sendersare responsible for revi-
sion increasesof theusedTEK. They mayincrease the revision
in regular, short intervals (such as half a second), thuscreating
a limited window for newcomersto read pasttraffic, but at the
sametime removing the needfor the Group Manager to reli-
ablykeepin contactwith thesenders.If leavesand joinshappen
interleaved, they canboth begroupedindividually.

B.1.e Group Merge. To merge two independent groups, their
two treescan be joined by adding a new root node, which be-
comesthe new TEK for the joint group. The former TEKs be-
come the KEKs for the second level. The new TEK is thensent
out encrypted twice, once for each of the previous TEKs, to-
gether with the information that the treehasgrown a level, re-
sultingin aunifiedgroup. Onehasto keep in mind that theTEK
is treatedexactly like theKEKs whenit comesto key changes,
theonly dif ferenceis that it is also usedto encrypt traffic.

This insertion of anadditional hierarchy level canalsobeused
to grow agroup, if thepreviouslyassignedID spaceis exhausted
becauseof the unexpectednumber of participants.

B.1.f Group Split. If the above group is to besplit again into
it’soriginal subgroups, the top layerwith thecommonTEK can
beremoved, resulting in two separatetrees.Of course, it isalso
possible tosplit groupsthathavebeenintermingled, theneachof
thetwo new Group Managers(which can be the samemachine)
performsaGroup Leave operationon the foreign members.

B.2 Evaluation for Improvement

This centralizedtreebased approachiswell suitedfor broad-
castingandhigh-security applications. If we consider the leav-
ing operationfor a huge group with 4 billion participants( %e[]�W ) and128 bit encryption keys, a single multicast messageof
around 1200 bytesis sufficient. It contains all thenew keys,ap-
propriately encrypted, that are necessary for the exclusion of
a single participant. Processing this multicast message will re-
quire at most % decryption operations from the other partici-
pants,with anaverageof less thantwo decryptions.

Ourschemeachievestheobjectiveof establi shing group-wise
keys to obtain privacy andauthenticity, while guaranteeingper-
fect forward secrecy without any trust in third parties.Joining
andseparation of groups areeasy. However, setupimplosion is
anissue.Furthermore,the central unit which mustbe known by
all participants is a single point of failure in the system. The
relatively largekey management database(  @����� , with � being
thenumberof participants)is anotherminor disadvantageof this
scheme. To cope betterwith these issues, we will now modify
Centralized Treekey managementinto a completelydistributed
key management using a flat key structure, called Distributed
Flat ( 3@f ). This approachis well suitedfor dynamicconferenc-
ing applications without a dedicatedsessionchair. Since there
arescenarios which require a dedicatedsession chair, we first
introduce an intermediate solution, Centralized Flat ( 2gf ) key
management, which copesbetterwith the memory allocation
for thekey spacethan the centralized, tree-based approach(cf.
SectionII I-B), yetpreservesthesimplicity of thecentralizedap-
proach.

C. CentralizedFlat Key Management

Insteadof organizing thebitsof the ID in ahierarchical, tree-
based fashion and distributing the keys accordingly, they can
also be assigned in a flat fashion (Figure 4). This hasthe ad-
vantage of greatly reducing storagerequirements,andobviates
thegroup managerfrom the needof keeping all participants in
memory. As long asaparticipant’sID is known, it canbethrown
out without theneedto havekept any further state(andwhether
it is currently partof thegroup at all).

TEK

KEK 0.0 KEK 0.1

KEK 1.0 KEK 1.1

KEK 2.0 KEK 2.1

KEK 3.0 KEK 3.1

ID Bit #0

ID Bit #1

ID Bit #2

ID Bit #3

Bit’s Value = 0 Bit’s Value = 1

Fig. 4. SimpleKeyAssignmentfor aFlat ID

In thesimplestcase,thedatastructureheldby thegroupman-
ager is a tablewith WF%h�i� entries.One entry holds the current
TEK, the other WF% slots hold Key Encryption Keys. % rep-
resents the amount of bits in the participant ID. Often, this ID
will betakenfrom theparticipant’snetwork address, e.g. IP ad-
dressandport number, in order not to have to keeptrack of the
assigned IDs, since this is already unique. For eachbit in the
ID, two keys are available.Eachparticipantknowsone of those
keys, depending on the value of the single bits in his ID. He
holds %j�k� keys in total. All keyshave associated version and
revision numbersasin thetreescenario above.

The table contains W1% KEKs, two keys for eachbit l4m^% ,
corresponding to the two valuesnomqp / ?r�-s that bit can take.
The key associatedwith bit l having value n is referred to as
K lB( n (“Bit Keys”). While the keys in the table could be used
to generatea tree-like keying structure, they canalso be used
independently of eachother.

The resultsarevery similar to the Tree-BasedControl from
SectionIII-B, but the key space is much smaller: For an ID
lengthof % bits,only WC%t�u� keys(includingTEK) areneeded,
independent of the actual number of participants. The number
of participantsis limited to Wwv , soa valueof 32 isconsidereda
goodchoice.For IPv6andcalculatedIDs, avalueof 128should
be chosento avoid collisions. This still keeps the number of
keys andthe size of change messagessmall.Besidesreducing
the storageand communication needed, this approachhasthe
advantagethat nobody needs to keeptrackof who is currently a
member, yetthegroup manager is still able toexpelanunwanted
participant.

C.1 Centralized Flat Operations

C.1.a Join. To join, a participant contactsthe Group Manager,
where it is assigned a unique ID and receives the keys corre-
sponding to the ID’s bit/valuepairs,after previous revision in-
crement. TheID may alsobederivedform the network address.
As an example, a newcomer with (binary) ID 0010 would re-
ceive theTEK andthe Key Encryption Keys K3.0, K2.0, K1.1,
and K0.0 over thesecure setup channel,aftertheir revision was
increased.
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C.1.b Leave. All keys known to the leaving participant (the
TEK andx % KEKs) areto beconsidered invalid. They needto be
replacedin awayintractable to theleaver, but easily computable
for all remaining participants.The Group Manager sendsout a
multicast message consisting of two parts: Firstly, it contains
a new TEK encrypted for each of the valid KEKs so that ev-
ery participant with at leasta single bit of differencewith the
leaver’s ID cancalculate the new TEK. Secondly, it contains a
new replacement KEK encrypted with both the old KEK and
thenew TEK for eachof theinvalid KEKs, sothatevery partic-
ipant remaining in thegroup canupdatethe KEKs it previously
had, but doesnot gainany furtherknowledgeabout thekeys the
other participants have. An example for the messagegenerated
when the participant with (binary) ID 0110 leavesis shown in
Figure 5.

E(KEK 3.0new)

E(KEK 1.1new)

E(KEK 0.0new)

EKEK 1.0(TEK)

EKEK 2.0(TEK) E(KEK 2.1new)

EKEK 3.1(TEK)

ID Bit #0

ID Bit #1

ID Bit #2

ID Bit #3

Bit’s Value = 0 Bit’s Value = 1

The new KEK’s are encrypted using a function of the old KEK and new TEK

EKEK 0.1(TEK)

Fig. 5. Centralized Flat: Messageto excludeparticipant0110

C.1.c Multiple Joins. The revision numbers of all involved
keys only needto be incremented once.Then,the sendershave
to be informed about thenew revision to use.

C.1.d Multiple Leaves. Whenconsidering theunion of all keys
owned by all leaving participants as invalid, this will soon re-
sult in all, or almostall, of thekeys being unusable.Evenif not
all of the keys are tainted, a large number of legitimatepartici-
pants will be unableto recover thenew TEK. This canbe over-
come by executing it similar to the tree-based leave. Because
keys are not organizedin a hierarchical fashion in Centralized
Flat,“imaginary” keysarecreatedin thehierarchy, derived from
thekeysknown to theparticipants:Theindividual (lowest-level,
leaf) imaginary KEK in thehierarchy is calculatedasafunction
(e.g. a simple exclusive-or) of all % KEKs known to thatnode.
Thenext higherimaginary KEK is equivalentto thefunctionap-
plied to a subsetof size %yXz� of its real keys, e.g. the KEKs
corresponding to thehighest %{X|� ID bits,and soon.

Whenworking with theseimaginary keys,theMultipleLeave
algorithm from SectionII I-B can be applied asis. As an addi-
tional bonus,the order of theKEKs canberearrangedarbitrar-
ily, as long as the subsetrelation described above still holds.
This will result in ashortermessageat theexpenseof additional
processingcost for theGroup Manager.

C.1.e Group Merge. Merging two groups canbe achievedby
the two Group Managers agreeing on a single freshsetof keys
(KEKs and TEK). Each Group Manager thensendsout the new
key encryptedwith theequivalent old key, thenoneof theGroup
Managers resigns its position.

This only works if participants can keep their IDs. This
strengthens the needfor ’coordinated’ ID assignment, e.g. by
usingsomething derivedfrom thenetwork addresses.

A similar mechanismcan be usedto recover from the fail-
ure of a Group Manager. Af ter a new managerhas beendesig-
nated,he just collectsthekey tables from a few selectedgroup
members,and is thusable to reconstruct thefull setof W1% Key
Encryption Keys.

C.1.f Group Split. Splitting the group is done analogously
to the procedure described in Section III -B: Each of the new
groups performs a multiple leave for the non-members. The
main difference to note is that groups that have been merged
cannot take advantage of the simplification mentioned in
SectionIII-B’sdescription of Group Split.

C.2 Group Manager Authentication

In thecaseof a CentralizedFlat key management scenario, a
very interestingsolution offers itself to the problem of authen-
ticating the group manager, similar to the schemesketched in
[29] whichwasindependently proposed. It canalso beextended
to permit authentication of datasent from asinglesourcethat is
co-locatedwith the group manager(asin broadcastscenarios).

To protectagainst a malicious insider “hijacking” therole of
thegroup manager, traffic from thegroup manager must be au-
thenticatedsuch that no insidercan fake theauthentication. Ob-
viously, the TEK cannot beusedfor this. The traditional solu-
tion is the use of asymmetric authentication, e.g.RSA, where
the sender signs a message, or, to offset processing cost, the
MACs of several messages.Receivers can thenverify the sig-
naturewithout beingable to generateit.

Due to the special nature of the distribution of the KEKs,
onecando awaywith thecostly asymmetricauthentication alto-
gether. By using all W1% KEKs askey to aMAC, WF% MACsare
generated.When a receiver obtains theseMACs together with
thekey changemessagethathasthusbeen authenticated,hecan
check all the MACs for which he holds the KEKs. Everybody
holds a differentset of KEKs, soonly the receiver, or thegroup
manager, are able to createa valid setof MACs. All receivers
can verify that the message originatedfrom the manager, but
no single receiver canfraudulently createsuch a message.Due
to the symmetric nature of the used mechanism, receiverswill
not be ableto prove thereceiptof anauthentic messageto third
parties– but thatis not arequirementfor thepresentapplication.

D. DistributedFlat Key Management

The main concerns with centralizedapproachesare the dan-
ger of implosionand theexistenceof a single point of failure. It
is thusattractive to search for a distributedsolution for the key
management problem. This solution was found in completely
distributing the key database of the Centralized Flat approach,
suchthatall participantsarecreatedequalandnobody hascom-
plete knowledge. As in the Centralized Flat approach above,
eachparticipant only holds keys matching his ID, so the col-
laboration of multiple participants is required to propagatekey
changesto the whole group. There is no dedicatedgroup man-
ager, instead, every participant may perform admissioncontrol
and otheradministrative functions.

While some participantswill be distinguished as key hold-
ers for some time, performing some authoritative function, this
function a) is only neededto improve performanceon version
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changes, b) is assigned naturally to the creator of the newest
versionof the key, andc) canbe takenover at any time by any
other participant knowing the key, if that node should seemto
have disappeared. If no remaining participant hasthat key, no-
body needs to be key holder for it. The dutiesof a key holder
areto heartbeatthe key and to perform key translations.These
operations will be detailedin the description of the operations
below.

Sincethere is no group manager knowing about the IDs in
use,theIDs need to begenerated uniquely in a distributedway.
Apparent solutions would be to use the participant’s network
addressdirectly or to first apply a coll ision-freehash function
on it.

This schemeis highly resilientto network or nodefailuresbe-
causeof its inherent self-healing capability, but is alsomorevul-
nerableto insideattacks thantheothers.It offers thesamesecu-
rity to break-in attacks asthe schemesdiscussedabove; thanks
to its higher resilienceto failures, it canbeconsideredstronger
againstactiveattacks.

D.1 JoinDynamics

The first participant in the group will find that no heartbeat
existsandstart to createits own keys(theTEK and % of the W1%
KEKs), theonesit would havereceivedfrom thegroupmanager
in Centralized Flat. Then it starts a heartbeatannouncing itself
andthe fact that it is key holder for the keys it just generated.
The heartbeat containsfor eachkey thekey’s ID (bit/value pair
as described in Section III-C), version, revision, and creator’s
address.In this early phase where no previouscommon key ex-
ists,multiple creations of thesame key are resolvedasfollows,
exceptthataunicastconnection is openedbetweenthekey hold-
ersto establisha previouskey.

Eachkey holder performs a regular heartbeatsending out a
messagecontaining its view of thenewestkeys anda short his-
tory of previous keys, as an automatic retransmission in case
somemessages were lost, in a format analogous to those de-
scribed in Section III-C. Each participantwho recentlyhascre-
ateda key, will consider itself a key holder, until it hasreceived
aheartbeatsuperseding his (i.e.having everykey at least asnew
ashis own). This results in a small number of messagesbeing
sentout in a regular fashion, in addition to the rekeying mes-
sagesneededby Centralized Flat. If a key holder should stop
announcing its function, any other participantknowing that key
cantake over. The participants willin g to take over should usea
non-flooding election scheme to decide. A simple example for
sucha schemeare expanding multicast rings where thepartici-
pant with higherpriority (e.g. highernetwork address)wins.

D.2 DistributedFlat Operations

Beforetheoperationswill bedescribed, anumberof concepts
areintroduced, which helpto understand how the systemworks
with no centralized control and a number of participants per-
forming operations at the same time. This knowledge will also
make it easierto follow thedescription of the join operation.
Parallel Operation Sincemultiple parties may create new keys
atthesametime,eachhasto includeitsown ID toassureunique-
ness,andthe ID of thekeys it is basedon, sinceonly thisallows
picking thecorrectkey for decryption. Additionally, thereneeds

to be an algorithm to unify the resultsof multiple parallel op-
erations.Insteadof trying to sequentiali ze all changes, we have
devised a simple, yet efficient continuous consensus protocol,
which allows eachparticipant to always use the most current
information.
A sample setof parallel operations for asingle KEK is depicted
on Figure 6, showing threedifferent snapshots of development
happening to the same KEK. Initially, a single key is created
(“root” circle), then two independent operations (lines) lead to
two new keys(shown in the left snapshot). As soonasany given
participant receivesthesecondkey changemessage,both claim-
ing to replacethesamekey, it needsto mergethesechanges.Our
solution is to put the resulting keys from both messagesasele-
ments into the ActiveSet, the setof current keys (shaded area
in Figure 6. More formally, the Active Set consistsof all the
current leaf nodes in the key inheritance graph. Whenever the
current KEK needs to beused to encoding a new key with, the
active set is used(middle snapshot). If a messageannouncing
this change is received, it will push all its “parent” keys out of
theActive Set,since they will no longer be leafs. Theresult of
two more key changes occuring concurrently is shown in the
right snapshot (one of the creators of a new key had only re-
ceived a single key change messageat the time it sent out its
message).
As wehaveseen, thecreation of anew key element will remove
leaf statusfrom all current elements of the Active Set,shrink-
ing it to thesingle new element. Thus it canbeeasily seen that
thesizeof theActive Setis boundedby thenumberof parallel
operationswithin a round-trip time.
Thekey selectorfor aKEK is thustheenumerationof theselec-
torsof thecontributing keys; thekeying materialusedis by com-
bining theindividual secrets(e.g. usingexclusive-or). By keep-
ing ashort history containing thekey elementsreceived during a
round-trip time,any message receivedcanbedecoded, because
it canonly referencekey elements from this history.
Resolution of parallel operations is only necessaryfor version
changes.Concurrent revisionchangeswill resultin thesamere-
sult, independently of who performs it. In fact, only two revi-
sions areever neededfor a single KEK element. The first mes-
sageencryptedwith any KEK is revision 0 of the current TEK.
To achieveforward secrecy, laterjoinersmustbepreventedfrom
deciphering thismessage.Thisisdoneby sending thenewcomer
revision 1 of the current KEK elements through an encrypted
unicastchannel. Successorkeyswill alsobeencryptedusingre-
vision 1 and the current TEK. Inclusion of thecurrentTEK has
alreadybeendonein CentralizedFlat to prevent expelledmem-
bers from learning the new KEK, here the use of the current
TEK whenencryptingKEKs alsohelpsensure forward secrecy.

T
im

e

Root

Active Set

RootRoot

Fig. 6. Parallel KeyChanges: Key inheritancehierarchysnapshots
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Heartbeat WhenDistributedFlat is not run on top of a reliable
multicast scheme,eachKey Holderperformsaregularheartbeat
sending out a messagecontaining its view of the newest keys
andashort history of previouskeys,asanautomaticretransmis-
sion in casesome messageswerelost, in a format analogous to
thosedescribedin Section III-C. Themessageformatis detailed
in Figure 7.Eachparticipantwho recently hascreatedakey, will
consideritself aKey Holder, until it hasreceivedaheartbeatsu-
perseding his (i.e. having every key at least asnew ashis own).
This results in a small number of messagesbeing sent out in
a regular fashion, in addition to the rekeying messagesneeded
by CentralizedFlat. If a Key Holder should stop announcing its
function, any otherparticipant knowing that key cantake over.
The participants willin g to take over should usea non-flooding
election schemeto decide.

Key coordinate: KEK row/columnor TEK;
Current ActiveSet: setof

�~}���������

tuples

(
}

=keyselector,
�

=parentkey selector set,�
=key material, encrypted with thekeys from

�
);

Selectedelementsfrom thehistory in thesameformat;
Messageauthentication codeusingcurrent TEK;
Messageauthentication codeusingan older TEK;

Fig. 7. Heartbeat MessageFormat

D.2.a First Participant. The first participant in the group will
find that no heartbeat exists and start to createits own keys
(the TEK and % of the WF% KEKs), the onesit would have re-
ceivedfromtheGroupManagerin theCentrali zedFlatscheme.
Then it starts a heartbeat announcing itself and the fact that it
is Key Holder for thekeys it just generated. The heartbeatcon-
tains for each key the key’s ID (bit/value pair asdescribed in
SectionII I-C), version, revision, and creator’s address.In this
earlyphasewherenopreviouscommonkey exists,multiple cre-
ations of the same key areresolved as described below, except
thata unicastconnection is openedbetweentheKey Holdersto
establisha previouskey.

D.2.b Join. All further joins will seethe heartbeat andselect
a previous participant (from the sender addressof packets,the
list of key creators from the heartbeat,or expanding multicast
rings)who is willing to admit them.2 This introducer will send
thenewcomer thekeys the two of themshare(the TEK andthe
applicable KEKs, all with increasedrevision). KEKs which are
neededby the newcomer and do not alreadyexist, arecreated
asin the initial operation. Since the ID canbe calculated from
the network address, it is easyto select participants having the
remaining keys (the introducer, having more knowledge about
thegroup, canassist the newcomer). Theseadditional key con-
tributorscanperform asimplified accesscontrol procedure if an
accesscontrol token is supplied by the first introducer. Simpli -
fiedpseudo-code canbe found in Figure8.

Although admissioncontrol issuesareout of thescopeof this
paper, it canbenoted that whenconnectingto a further partic-
ipant to get some of the remaining keys, a token proving the
successful previousadmissioncansimplify this step.

�
Of course, thenewcomer hasto makesurethattheintroducer is trustworthy,

i.e. both sidesperform access control

Newcomer:
Wait for packetscontaining tablegeometry andparticipantaddresses;
Select memberssharingkeysandcontact themto obtain keys,

performingadmissioncontrol on them;

Introducer:
Wait for requestfromnewcomers;
Perform admissioncontrol andestablishsharedsecret;
SendTEK andsharedKEKs onan encryptedconnection;

Fig. 8. Joining aDistributedFlatGroup

D.2.c Leave. The leave operation works analogous to thede-
scription in Section III -C, with the participant taking care of
someone’s leave(“excluder”) becomingKey Holderof thisnew
version, announcing the new key and who has left (to update
the other participants’ Admission Control). Sincethe excluder
will not know all keys whose version needs to beincreased, the
current Key Holder of theseKeys will perform the version in-
crease; it works as a “key relay”. Participants wishing to leave
alsocaninitiate this operation through akey relay(without sup-
plying themnew keying material which they arenot supposedto
know). Pseudo-codefor this operation canbe found in Figure 9.

Expeller:
Mark tableentriesknown by expelled participantas forbidden;
Createnew TEK andnew KEKs for markedkeysshared with theexpelled;
Sendoutmessagewith encryptednew keys,list of markedentries,

and updatesto admissioncontrol (if necessary);

Key Holder receiving thatmessage:
Relaymessage:Createnew keysfor KEKs ownedandsendthemout;

Fig. 9. Leaving a Distributed Flat Group

The other operations suchas multiple joins and leaves and
group merges canbe performedanalogousto thedescription in
SectionIII-C when making useof the relays,sinceno partici-
pant is supposedto know more thanits shareof keys.

E. Collusion and Recovery

In the Tree approach, expelling colluding participants does
not involve more work thanexpelling the same numberof non-
colluding participants.In the Flat approaches, colluding mem-
bers sharing their keys thus becomeimmune to individual ex-
pels of members.To excludesupposedly colludingmembers, the
union of their keying material hasto beexcludedat once.This
union may also include unsuspecting participants who happen
to shareeach of their individual KEKs with at leastoneof the
“badguys”. In this section, we will analyzethe impact of mass
exclusion and present ways to reduceit.

Wehavealsoseen that two carefully chosenparticipantswith
complementary IDs know—if they co-operate—allthe group’s
keys, and thus can only be expelled by re-creatingthe group,
they become “resistant”. One solution to this problem is to
widen the matrix, thus increasingthe minimal number of par-
ticipants.Altough the schemes have beendescribed in terms of
bits, it can begeneralizedto symbols with any number of values�

, e.g. by combining severalbits into onesymbol. For thesame
sizeID, thiswill reducethe number of symbols % and thus the
numberof keyseachparticipantwill hold.At thesametime,this
will increasethenumberof keysacolluding groupneedsto hold
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to
�

persymbol, requiring at least
�

conspiratorswith carefully
chosenIDs

�
to becomeresistant.

For a typical output of a hash function used for ID creation
(128 bits), the matrix sizesmay thus range from WC� by 128 toW.�S� O by 1 (width � height).

For CentralizedFlat,increasing
�

hasthedrawbackthatmore
storage is needed at the group manager (the participantsare not
affected). For DistributedFlat, storage is not increased, but in-
creasing

�
will weaken the connectivity network, so more re-

lay operationsare neededto perform leave operations.Thus,
�

should bechosenbasedon estimatesof the total group size and
theexpectednumberof colluding participants.
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Fig. 10. Expell ing ColludingGroupsfor Different Matrix Sizes (log scale)

The probabil ity for any legitimatemember to bewrongly ex-
cludedwhenexpell ing largecollusions is shown in Figure 10 on
a log scale.The lines represent the behavior for dif ferent table
sizes, represented by their size (

�
columns by % rows). They

represent typical table sizesthat canbe achieved if theID is the
output of a 128 bit hashfunction.

As canbe seen, even with modest tablesizes,it is possible
to exclude large amounts without major interference with the
group operation. Setting the tablewidth to the maximum col-
lusionsize keepsre-joins below 1%, increasing it slightly mas-
sively reducesre-joins.Slight paranoia, i.e.assuming collusions
where therein fact aren’t is thusa viable policy.

To further reduce the impact for the mis-excluded partici-
pants, the group manager (CentralizedFlat) or admitting mem-
ber (Distributed Flat) may include a token in its original re-
sponse.This tokenmay laterbe used to obtain thecurrent ver-
sions and revisions of the TEK and the same KEK set again
fromtheoriginal introducer. Limitedadmission control needsto
be performed, but only to checkwhether the admissability has
been revoked. Sucha token may alsobe usedas the basisfor
an encryption key, to avoid another establishment of a shared
secret.If the introducer does not want to keep statefor each
successful admission, the token can be constructedasfollows:�:� � time � PeerID � Group ID � PeerNetwork Address� , where �
is the concatenation operator,

�:�
is a MAC keyed with � , a

key only known by theintroducer, the only stateto bekept.The
party wanting to bere-admittedcanthensubmit the information
usedto build the token, authenticatedby using the token as a
key to a MAC covering thesubmitteddata.

IV. TRANSITIONS

As we have seen,the three schemes discussedare closely
related. Not only is it possible to have the schemesworking
togetherin a hybrid fashion(i.e. one part of the key spaceis
managed by onescheme,while another, possibly overlapping,

part is managedby anotherscheme),it is also possible to switch
betweenthemat run-time quite easily, adapting to the applica-
tion’sneedswhenever required.Useful transitionsare identified
in Figure 11.

Centralized
Tree

Lossless

Lossless2

Lossless1

Preparation

Large Message

1 No security gain for old participants: Colluding old participants still
cannot be expelled, participants joining after the transition can.

2 Previous group manager still knows all keys and cannot be easily expelled.

Centralized
Flat

Distributed
Flat

Fig. 11. TransitionsBetweentheThreeSchemes

A. Flat-Flat Transitions

Switching between the two flat schemes is simple, because
they usethesamedatastructure.This transition pair is therefore
very attractive, allowing a heterogeneous approachcombining
theadvantagesof both schemes: CentralizedFlat is usedwhen-
everpossibleto simplify theparticipants’ operation.

To perform the switch towards Distributed Flat, the group
manager notifiesthegroup of the change,assists in electing the
first set of key holders,and thenforgetsall thekeys.Should the
group managerbedysfunctional,theremainderof thegroupcan
agreeon the transition andperform the election among them-
selves. For that, any electionscheme can be used, such as [30].

To get towardsCentralizedFlat, a new group manageris ap-
pointed, whichstartscollecting all thekeysfromthecurrent key
holders and builds a complete table. The new group manager
should bechosencarefully, sincetherewill be no way to expel
it short of re-creatingthegroup.

B. Centrali zed-CentralizedTransitions

The transitions between the two centralized schemes are
somewhat more involved, as they require changesin the orga-
nization of the keys. To createa hierarchy from the flat table,
apply the following scheme to eachKEK in the newly-created
hierarchy: The lowest-level (leaf) KEK in the hierarchy is cal-
culatedasafunction (e.g. asimpleexclusive-or) of all % KEKs
known to that node.The next higher imaginary KEK is equiva-
lent to thefunction appliedto a subsetof size %jXA� of its real
keys,e.g. theKEKs corresponding to thehighest %YX�� ID bits,
and soon. All theparticipants similarily create the % tree keys
they should know. This key calculation canbe donelazily, only
whenakey is actually needed. As this transitionobviouslydoes
not strengthenthe systemagainstpreviously unsuspectedcollu-
sions, it is advisable to gradually replaceall the auto-generated
keys after the transition.

The transition from treeto centralizedflat is easy, if keys for
the flat structure are sent out when participants join the tree.
Each participant thus gets a “sleeping” flat structure, which is
stored until the transition takesplace.While thetransitionis oc-
curring, theparticipantscombineeachKEK in it with thecurrent
TEK (e.g. by hashing themor usingexclusive-or), obtaining the
new KEKs. This processis necessaryto ensure thatpreviously
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expelledparticipantscannot sneak back into the group during
thetransition.

If a transitionfrom CentralizedFlat to Centralized Treeand
back should be possible,the KEKs should bepassedthrough a
one-way function on thefirst change.

V. EVALUATION

The threepresented schemesof VersaKey behave differently
in terms of offered functionality, achieved performance,and
how they deal with security threats. Thesepropertieswill now
beexplored.

A. OfferedFunctionalit y

TableIII compares the properties for each scheme. Most
propertiesare self-explanatory, theothersaredescribedhere:
Multiple leaves Dealingwith multipleleavesis moredifficult in
theapproachesusing flat datastructures. Having multiple invali-
dated fields causesthetable to become sparse, thus the mecha-
nismsof theCentralizedTreeapproachcannot beused. Forcing
out collaboratingentities isdifficult.
Easily recoverable If the group manageror other group mem-
bers suddenly disappear, the Flat approachescanrecover from
this situation by either electing a new group manager in the
Centralized approach, or shifting key holders in the distributed
approach. This does not involve the cooperation of the whole
group, but only a few participants. Thus failure recovery or self-
healing canbeachieved.
Assigned IDs While the Centralized Flat approach can work
with assignedIDs, it maybeunwantedto remembertheassign-
ment of IDs,and thus theuseof IDs definedby the network (or
a function thereof) maybepreferred.
Exclusion of colluding parti cipants This is possiblein the Flat
schemesof VersaKey, but may alsoexclude a number of valid
participants, which will needto re-join.

B. Useabili ty

While thecentralizedapproachesarebettersuitedfor broad-
castingandhigh-security applications,the distributedapproach
fits more into dynamic conferencing without a dedicatedses-
sion chair. While memory requirements for the group manager
aresignificantly higher in the Tree scenario (seememory con-
sumption below), this allows for an additional level of control,
andmaythusbenecessary anyway, and worth itscostin certain
applications.

The multitude of available features, suchas perfect forward
secrecy, self-healing, no need for participants to cooperate or
return channelsto the manager, the possibility to make a tran-
sition form one scheme to the other, migrate control and no
required trust in third parties allow these approachesto fulfill
many different basicneeds.They compare favorably to exist-
ing approaches in termsof simplicity, reliability, computational
requirementsandachievedsecurity.

C. AchievedPerformance

Ressourceusage is a critical point in all applications thatof-
fer cryptographic functions.Relevant costs (both for the group
manager and theparticipants)are:� CPUconsumption

� Memory consumption� Communication bandwidth� Typical end-to-end operationdelay
Parts of VersaKey (especially, the TreeandDistributedFlat

approaches)havebeenimplemented, for specificmeasurements
seeSection V-D. In view of the simpli city of the presented ar-
chitecture,asound assessment of theinvolved costscanbemade
for all approaches.The upper bounds given asconcrete values
aresofarconfirmedby our implementation, and areappropriate
for a Sun “Ultra 1/170” workstation. The following two tables,
Table IV and TableV, highlight the required amount for each
primitive function to achieve a join or leave operation. Datais
given for the group manager and the participants for both the
CentralizedTreeandCentrali zedFlatmodel.
% indicatesthedepthof atree(equal to ���R� � �9��� ), or thesize

of a table in theFlatcase,a typical valueis ]�W . Algorithmsused
are MD5 for revision increments and MAC computation, and
IDEA for encryption operations. As canbeseenin the’Cost per
Function’ column, key setup for IDEA in decryption mode is
more expensive than it is for encryption mode. This has to be
taken into account astheinternal key schedulesusuallywill not
be cached by the group manager. Particpants may precompute
and cachethem for their own keys if required. Pleasenote that
computational costsof cryptographic functionsasoutlined here
areworst casemeasurements.Handoptimized code and better
performing platformsmayoffer significantly shorterprocessing
times.Gainsof a factorup to five have beenobserved.

All function counts in the tables are given as atomic. They
may involve multiple encryptions or hashcalculations,whose
costshave beengivenin theconcretefigures.Thus %hX|� hash
operationswould require lessthan ��%�Xi���.� / ( / ���Z� . Thecost
also includeskey setup times for encryption/decryption algo-
rithms.

An additional cost, incurred by all participantscoversmem-
ory management, treetraversal, MAC computationfor outgoing
messages, etc. A conservativeestimateof theexpectedcostsper
operation for each participantplacesthis below

/ ( / ]-��� .
The costsfor thefirst threeoperationsin the tablecanbedel-

egatedto adedicatedreplicatedsetup componentthatdoesonly
the asymmetric computations and accesscontrol verification.
This saves the central group managercomponent most of the
load for thejoining of new participants.Becauseof thesimplis-
tic admission control used, the current implementation of Ver-
saKey doesnot allow more than20 joins per second. However,
more joins are possible,if this admissioncontrol component is
adequatelyenhanced.

In the caseof the DistributedFlat approach,the costsof the
CentralizedFlat approachapply, but someparticipantsaddition-
ally incur the costs of the group manager in thecentral Flat ap-
proach. In the bestcase,the sum of the additional costsis the
sameasthecostof the group manager.

For all scenarios, additional periodic costs may incur. To
achieveperfect forward secrecy, thegroupmanagermaychoose
to update its own secret value (used to establish a sharedse-
cret with joining participants, for exampleaDiffie-Hellman key)
regularly, e.g. onceanhour. Thiswould not changeanything for
current participants,it would just put a small additional loadon
thegroup manager.
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TABLE III

PROPERTIES OF THE VERSAKEY SCHEMES

Property Tree CentralizedFlat DistributedFlat

Allowsestablishment of group-wisekey to
achieveprivacy and/or authenticity

yes yes yes

Perfectforward secrecy yes yes yes
Dynamicjoin andleave canbe handled yes yes yes
Trust in third partiesrequired no no no
Designedfor one central controlling entity yes yes no
Controlling entity mustknow all participants yes no no
Multiple leaves yes difficult difficult
Exclusionof colluding participants yes difficult difficult
Joining andseparationof groups easy yes yes
Setupimplosionis anissue yes yes no
Return channel required during operation no no yes
AssignedIDs or Network IDs both both network
Single point of failure yes yes no
Easilyrecoverable no yes yes
Smalldatabase no yes yes
Involvementof multiple partiesfor leave/join no no yes

Memory consumption is very different in the Tree vs. Flat
scenarios. For the Tree,the group managerneeds to hold all �
participants, andan additional ��X�� KEK nodes. This corre-
sponds to astorageof about 40 bytesper treenodeor leaf, in an
uncompressedtree,or two timesthisfigurefor each prospective
participant. Thetreecan besparselypopulatedand compressed.
It canalsobegrown at run-time, so thegroupmanagerneed not
commit to a certainsizein thebeginning. In theTreescenario,
memory requirementsfor each participant amount to % times
40bytes,or lessthan10kB evenfor IPv6IDs. In theFlatscenar-
ios, the memory requirementfor eachparticipant andthegroup
manager is small. Some additional informationmay needstor-
age, such askey ownership, but total cost is below 20kB in all
cases.This makesthe approach usableon platformswith com-
paratively reducedresources, suchasembeddedsystems.

On the communication side, join operations in centralized
scenarios induceno additional traffic, andparticipants are noti-
fiedof key revision changesimplicitly, by thereception of mes-
sagesencryptedwith a higher revision number. A leave oper-
ation causesa message consisting of WF% new encryptedkeys
eachat 24 bytes— if we assume the key length to be 128 bits
— to be sent, or about 1-2 kB. This message may need to be
retransmittedin one of the reliablemulticast implementations,
increasingthe participantsdelay until he receives the updated
keying material. In theDistributedscenario, multiple exchanges
arerequired,resulting into W1% multicastmessagesin theworst
case.Thismayalso involveafew unicastmessagestocovergaps
betweenunrelatedsubgroups.

D. MeasuredSystemBehavior

The following measurementscover theTreeapproachof Ver-
saKey. To perform the measurements,a small distributedenvi-
ronmentwassetup, incorporatingour prototype.Theimplemen-
tationusesagrowing treestructure, and losslesscommunication
of key changedatais assumed.

The depicted scenario consists of a group of 20000 partici-
pants, with one dedicatedsender andgroup manager and two
dedicatedadmission control machines.Admission control may
beperformedatarateof 20participantspersecond in total.This
limit hasbeenchosen by assuming that it requiresanestabli sh-
ment of a shared secret using Diffie-Hellman key agreement.
25% (5000) of the participants are readyto join at the begin-
ning of the test which runs for 7200 seconds. For eachof these
7200 seconds, eachnon-member may initiate a join operation
with a probability of 1%. At the sametime, the group manager
is excluding every participant with a probability of 0.1%, and
0.01% of theparticipantsdefinitively leavethetest setupin each
second.

Most prominent in thisscenario is theoverloadon theadmis-
sioncomponents(cf. Figure12). For thefirst 30minutes,admis-
sion is catching up with the5000 participants that want to join
from the beginning, and the oneadditional percent that comes
in every second. Soon after admissioncontrol catchesup, and
no joins remain pending, leave and join actions balance each
other out, due to the nature of the chosenscenario. Erosion of
participants,by thosethat leave permanently becomesvisible.

Theamount of operationsrequiredby thegroupmanagerand
theparticipantsaresignificantly different. The depictedamount
of operations per second stands for the number of atomic op-
erationsrequireddue to leave andjoin operations. Thepeakof
700 operations per second for theserver is causedby a peakof
30 leaving and 20 joining participants at the same time. Due to
the essentially random leaving behavior in the experiment, the
fictious client with id ’0’ thatwas chosen as referencepoint ex-
perienced peaks of up to 60 necessary operations per second.
This happens when the amount of participantsthat leave from
a closely relatedbranchhasdisproportiate size. Otherwise the
client loadmiddlesout nicely, on a level reflectingthelogarith-
mic nature of this key managementscheme.

The observednetwork peaktraffic of approx. 1000 messages
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TABLE IV

CPU USAGE — TREE

Function Cost per Join Operation Leave Operation
Function GM Newcomer Participants GM Participants

DH Agreement ��� /-/ �Z� 1 1 – – –
RSA Signature �kW /-/ �Z� 1 1 – (1)a –
RSA Verify �i, / �Z� 1 1 – – (1)
Key Generation � / ( / ,��Z� 1 – – %jX|� –
Hash � / ( / ���Z� %hX|� – ��(*(*(r��%hXi�w� b – –
Encryption � / ( / ���Z� %hX|� – – WF%jX�] c –
Decryption � / ( / W��Z� – %hXi� – – ��(*(=(*%hXi� d

�
If asymmetric authentication required, e.g.if denial of serviceby participants is anissue�
Operationneedsto takeplaceeventually, latestat thenext leaveof concern to this participant. Mean overall participantsis below 2�
Includesdoubleencryptionof new keys�
Meanfor all participantsis below 2

TABLE V

CPU USAGE — CENTRALIZED FLAT

Function Costper JoinOperation Leave Operation
Function GM Newcomer Participants GM Participants

DH Agreement ��� /�/ �Z� 1 1 – – –
RSASignature �^W /�/ �Z� 1 1 – (1)a –
RSAVerify �^, / �Z� 1 1 – – (1)
Key Generation � / ( / ,r�Z� 1 – – % –
Hash � / ( / �E�Z� %h�i� – ��(=(*(r��%��^��� b – –
Encryption � / ( / �E�Z� %h�i� – – W1% c –
Decryption � / ( / Wr�Z� – %j�^� – – ��(*(=(+�9%h�i��� d

�
If asymmetric authentication required, e.g.if denial of serviceby participants is anissue�
Operationneedsto takeplaceeventually, latestat thenext leaveof concern to this participant. Mean overall participantsis below 2�
Includesdoubleencryptionof new keys�
Meanfor all participantsis c���`! R¡

perminute,with amessagesizeof 728 bytes,results in a loadof
below 100 kbit/secon theentire group. This is aworstcasesce-
nario measurement bothin termsof performedoperationsonthe
involved machines,and in terms of producedmessages.Here,
all joins and leaves were assumed to be alternating, requiring
themaximum amount of work on the key tree,andno grouping
of e.g.leaveoperationswasperformed.By grouping leavesinto
oneoperation persecond, theaveragenumberof messagescould
bereducedby a factorof over 20, with anaverage message size
of lessthan4000bytes,resulting in anetgainof a factor of four
on thenetwork load.

VI . CONCLUSIONS AND FURTHER WORK

In this paperwe presented the VersaKey middlewareframe-
work for secure multicasting. The core of the framework con-
sists of three approaches which have different properties,but
rely on the samebasicprinciple. All our approachesorganize
thespaceof keysthatwill eventuall y beassigned to group mem-
bers in a unique way, without actuallygenerating the keys be-
fore they are needed. Only when new group keys needto be
established, they aregeneratedanddistributedto only themem-
bers of thegroup affectedby a change. Our organization of the
key spaceassuresthatall operationsongroupsmaybeexecuted

with a complexity of  @���S���	��� or less, where � is the sizeof
thegroup, andthecomplexity is measuredin thesize and num-
ber of messagesexchanged, and the number of cryptographic
operationsto be performed by any of the participants.

Our three approaches differ in some important aspects.
Among others, they offer the userof the middleware a choice
between� centralizedor distributed key management,� no or sometrust in otherparticipants,� varying degreesof loadon theparticipants,and� tight control of thegroup or failsafedistributedoperation.

As discussedin theintroductory section, variousauthorshave
published work on secure multi casting schemes. Some of the
propertiesaspresentedin Table III are alsoofferedby their ap-
proaches,but we are not awareof any scheme that hasall these
propertieswhile maintaining theefficiency of ours.

Some considerations deserve further studies. Although two
preliminary implementationsareavailableandworking, westill
lack experiments using real-world large, distributedgroups; to
this end, the integration of our experimentalsoftwareinto cur-
rently available IPsec platforms is planned. More specifically,
one VersaKey key managementapproachis beeing joined with
the successor of SKIP [15], to provide transparent security to
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Fig. 12. Measurementsfor theTreeApproachof VersaKey

group communications in the context of the Internet Protocol
Suite.At the same time, efforts are going on to extendour ap-
proachof thecontinousconsensusprotocol usedfor reconcila-
tion of key changes in distributedenvironments,andto develop
a distributedscheme that is more collusion resistant.

While a detailedanalysison security issues canbe found in
the Appendix of [31], we believe this warrants further study.
Enhancedand efficient admission control is a challenge on its
ownand requiresfurther studies. Furthermore, weanticipatethat
batching of leave operations may be mademore efficient with
optimal grouping of the participants leaving within some time
interval. Procedures on how to optimally allocatethe IDs are
underinvestigation.
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His research interestsinclude security andprivacyis-
sues in communication networksand distributed sys-
tems,algorithmsfor high-speed packet classification,
and distributedstoragesystems.Marcel Waldvogel is
maintaining theSwissPGPkey server. He is a mem-
ber of theACM.



16 IEEE JOURNAL ON SELECTED AREASIN COMMUNICATIONS,VOL. 17,NO. 9, SEPTEMBER 1999

Germano Caronni received his diploma degree in
computer science from ETH Zürich in 1993. In the
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