
1

A Flexible Middleware for
Multimedia Communication:

Design, Implementation, and Experience
Burkhard Stiller Christina Class Marcel Waldvogel Germano Caronni Daniel Bauer

Abstract—Distributed multimedia applications require a variety of com-
munication services. These services and different application requirements
have to be provided and supported within (1) end-systems in an efficient
and integrated manner, combining the precise specification of Quality-of-
Service (QoS) requirements, application interfaces, multicast support, and
security features, and within (2) the network. The Da CaPo++ system pre-
sented here provides an efficient end-system middleware for multimedia
applications, capable of handling various types of applications in a modu-
lar fashion. Application needs and communication demands are specified
by values in terms of QoS attributes and functional properties, such as en-
cryption requirements or multicast support. Da CaPo++ automatically con-
figures suitable communication protocols, provides for an efficient run-time
support, and offers an easy-to-use, object-oriented application program-
ming interface. While its applicability to real-life applications was shown
by prototype implementations, performance evaluations have been carried
out yielding practical experiences and numerical results.

Keywords— Flexible Middleware, Application Programming Interface,
Quality-of-Service (QoS), Protocol Processing Support, Security.

I. INTRODUCTION

W
ITHIN an environment of highly distributed systems so-
phisticated communication facilities are significant. A

great number of distributed applications, most of them handling
multimedia data, can be supported by tailored communication
protocols and efficient middleware transparently hiding details
of network technologies. However, in many cases communica-
tion middleware may create a performance and functional bot-
tleneck, since communication protocol implementations avail-
able today do not offer proper protocol functions for handling
continuous data adequately. Furthermore, standard run-time en-
vironments for protocol processing are not able to cope with
high data rates.

Therefore, emerging multimedia applications require various
communication features to be integrated and supported effi-
ciently, which traditionally have been considered separately. For
example, a video conference on public networks for confiden-
tial enterprise management meetings requires communication
protocols providing appropriate encryption and authentication
functionality in addition to multicast data transmission capabil-
ities for audio and video. Many-to-many communication links
between participants have to be established on demand. More-
over, scenarios involving financial transactions or confidential
data require different degrees of security. Therefore, for real-
world applications, an integrated solution for communication
middleware has to provide security and multicasting function-

B. Stiller, C. Class, and M. Waldvogel are with the Computer Engineering
and Networks Laboratory, TIK of the Swiss Federal Institute of Technology,
ETH Zürich, Switzerland (<last name>@tik.ee.ethz.ch); G. Caronni is now
with Sun Microsystems Research Laboratory, Palo Alto, California, U.S.A.
(gec@acm.org); Daniel Bauer is now with the IBM Zürich Research Labora-
tory, Zürich, Switzerland (dnb@zurich.ibm.com).

ality in addition to multimedia services. The developed mid-
dleware Da CaPo++ provides multimedia support within end-
systems which is adaptable to application needs. This concept is
applicable to standard communication processing environments.
In addition, a number of re-usable middleware services for deal-
ing with multimedia application communication services are de-
fined and implemented. Da CaPo++ integrates many aspects of
research results obtained so far, e.g., Quality-of-Service archi-
tectures, object-oriented system development, efficient protocol
run-time systems, protocol configuration, and advanced proto-
col function support. The Da CaPo++ middleware demonstrates
within a powerful and efficient system that a general purpose
end-system middleware for multimedia support is operational
and interoperable with other end-systems applying Da CaPo++
as their choice of middleware.

Extending a multimedia middleware far beyond traditionally
layered communication architectures has offered manifold op-
portunities for the provision of tailored multimedia communica-
tion services. This avoids common design pitfalls for multime-
dia communications, such as low efficiency or dedicated func-
tionality. Therefore, the following three classes of requirements
hold for communication middleware in general. They imply ma-
jor design goals for Da CaPo++ and its implementation specifi-
cally claim:

• Efficiency: Middleware has to provide an efficient multimedia
communication protocol processing support which is applicable
to standard workstations and operating systems. In addition, it
has to support many specific protocol functionalities, e.g., mul-
ticasting and security, in an integrated fashion. The Da CaPo++
run-time system and its protocol processing algorithm – called
Lift – represent a flexible processing scheme for controlling
modular protocol tasks based on a standard workstation’s op-
erating system.
• Usability: A homogeneous Quality-of-Service-based (QoS)
multimedia communication interface, similar for all kinds of
multimedia applications, is essential. The interface should be
easy to use for application programmers and independent of spe-
cific multimedia applications. Therefore, a QoS-based Applica-
tion Programming Interface (API) achieves application trans-
parency by assisting the exchange of control and user data be-
tween applications and the middleware. Furthermore, It has to
offer the unchanged performance of the underlying communi-
cation subsystem to applications. This allows for the provision
of the following features:

1. The specification of various functional requirements, such
as degrees of privacy or reliability, multicast group management,
and addressing, in terms of QoS parameters.

2

2. The transfer of and agreement on application requirements
in terms of traditional QoS attributes, including numerical val-
ues for, e.g., bandwidth, delay, or bit error rates.

3. The enabling of application programmers to design re-
usable application components whenever possible or intended.
• Modularity: A variety of communication protocols and net-
work technologies has to be supported in a modular fashion for a
wide spectrum of traditional and multimedia applications. Based
on QoS specifications, modular communication functions and
specific protocols are selected flexibly, e.g., for live audio, stored
video, or plain data transfer, where protocols consist of building
blocks. A series of various protocols and functions, particularly
for security and multicast, has been implemented as prototypes
and is integrated into Da CaPo++.

Da CaPo++’s real-life applicability including the list of above
mentioned features, has been experienced and tested within
an Application Framework offering by itself a modular struc-
ture. This framework has been implemented for real-life sce-
narios and applications, such as a tele-seminar or a picture
phone. These applications and the middleware provides the ba-
sis specifically for performance evaluations under real-life con-
ditions. A picture phone is discussed with respect to the above
stated claims.

This paper is organized as follows. Section II briefly com-
pares related work on various aspects related to middleware for
multimedia communications. Whereas Section III discusses the
design of Da CaPo++, Section IV points out implementation is-
sues. While Section V shows its practical use, Section VI evalu-
ates obtained results. Finally, Section VII summarizes the work
and draws conclusions.

II. RELATED WORK

On one hand, related work on middleware covers approaches
with a strong architecture-oriented focus. These approaches de-
fine the access level and degree of transparency for distributed
applications to communication functionality. In general, they
may cover transaction-based applications, directory services,
location-independent services, or dynamic object invocation.
Examples of some general purpose middleware comprise DCE
[1], CORBA [2], TINA-C [3], COM [4], or ANSA [5]. The
views of these middleware approaches focus mainly on the in-
teroperability issue as well as the generic service provision, but
they do not concentrate on efficient communication protocol
processing or multimedia Quality-of-Service (QoS) support in
the first place. The latter aspects started to be dealt by in recent
work, however, have not been finished yet. The approach TAO
[6] deals with investigations of CORBA-based middleware for
high-speed networks and applications. The AQuA approach [7]
develops adaptable, object-oriented, distributed computing sys-
tems while applying quality objects to manage system charac-
teristics. The support of computational grids for applications is
described in Globus [8], which defines the design of a special
purpose middleware.

On the other hand, the support of diverse functionalities and
the provision of adequate performance of the middleware is cru-
cial for multimedia-capable approaches. Due to the wide range
of relevant topics that are integrated to provide a flexible, multi-
media middleware presented here, a number of different areas of

related work is relevant. Four main groups of aspects are dealt
by the Da CaPo++ middleware:
• Provision of advanced communication functionality,
• Flexible and multimedia middleware,
• Efficient run-time system and protocol configuration, and
• Application support by QoS specification.

Another set of important related work has been selected and
categorized according to these main aspects. Table I depicts
these aspects in addition to further comparison criteria, where
a criterion not applicable is marked by N/A.

While multimedia middleware is intended to support a wide
range of multimedia applications, flexible middleware intro-
duces an orthogonal concept for communications to support ad-
justable protocol processing for high-performance applications
and high-speed networks, as done within ADAPTIVE [9] or F-
CSS [10]. Generally spoken, to facilitate a flexible approach re-
quires to structure protocols in a modular fashion, where sep-
arate building blocks can inter-operate efficiently. Da CaPo++
offers a set of protocol functions implemented in terms of soft-
ware modules that run in an efficient run-time system, the Lift
algorithm.

Efficient run-time support for general protocol processing
tasks has been investigated, e.g., in the x-kernel for modular
protocols [11], the Scout operating system for path-based mod-
ule interconnections [12], and the Crossbow project supporting
a high-performance toolkit for experimenting with IP (Internet
Protocol) next generation protocols [13]. In particular, for mid-
dleware supporting tailored communication protocols accom-
modating the needs of communications, a suitable run-time sys-
tem for fine-grained and interoperating modules is essential.
In contrast to the Integrated Layer Processing approach (ILP)
[14], Da CaPo++ favors a modular protocol processing approach
which is integrated with the Application Level Framing (ALF)
approach [14] to achieve good protocol and application perfor-
mance.

Most existing approaches provide application knowledge to
the middleware environment by offering an interface for the
specification of QoS parameters. In OSI’95 [15], a QoS-based
transport service including QoS parameter definitions was de-
veloped; the Lancaster QoS-Architecture (QoS-A) [16] defined
a QoS concept for end-systems, and the QoS Broker [17] in-
vestigated QoS management issues which are continued in the
QualMan approach [18]. A comparison of QoS specification and
management as well as general QoS concepts may be found in
[19] and [20]. Many of these approaches allow for the detailed
characterization of applications and the specification of their
communication requirements on different levels, such as the
application-level, the transport-level, or the end-system-level.
But they are lacking open, extensible, and efficient Application
Programming Interfaces, e.g., in support of multimedia applica-
tions. Therefore, object-oriented interfaces for stand-alone sys-
tems have been studied, e.g., IPC-SAP [21] or Sockets++ [22]
in addition to procedural ones, such as WinSock2 [23]. The
Da CaPo++ middleware integrates an open, QoS-based object-
oriented interface with the exploitation of many QoS attributes
for configuring a specifically tailored communication protocol
as well as the selection of an appropriate network technology, if
at all applicable.

3

TABLE I

COMPARISON OF SELECTED RELATED WORK

Criteria ADAPTIVE F-CSS QualMan Scout OSI’95 QoS-A MCF Da CaPo++
Multimedia Middleware Medium Medium Yes N/A N/A Yes Yes Yes
Flexible Middleware High High Medium N/A N/A No High High
Protocol Configuration Flexible Flexible No Flexible No No Flexible Flexible
Run-time System No No Yes Yes No No Yes Yes
Application Support API QoS-API QoS-API Path Protocol Interface QoS-API QoS-API
QoS Specification Yes Detailed Yes No Yes Detailed Detailed Detailed
QoS Management No Limited Yes Yes No Yes Yes Yes
QoS Exploitation Yes Yes Yes Yes Yes Yes Yes Yes
Security Functionality No No No N/A No No No Yes
Application Framework No No No No No No No Yes

Multimedia middleware must integrate various functionali-
ties, e.g., encompassing security and multicasting capabilities.
Security issues are dealt by a number of approaches, e.g., the
Globus approach [8], the work for high-level network protocols
such as the Secure Socket Layer [24], and a number of specific
security algorithms and protocols. A good overview of security
relevant policies and solutions may be found in [25]. Many al-
gorithms deal with multicast communications, such as for Au-
diocast [26] and multicast routing [27]. A feature-rich and ef-
ficient multicast framework for end-to-end QoS guarantees for
multipoint communications (MCF) is presented in [28]. How-
ever, it has not been well understood how QoS requirements,
security mechanisms, and multicast communication protocols
inter-operate within one single middleware at the same time.
Da CaPo++ offers a new approach for handling security require-
ments as QoS attributes, integrating multicasting independent of
the underlying network technology, and for providing synchro-
nization mechanisms for multimedia data streams. While this
paper focuses on security issues, further details can be obtained
from [29].

Summarizing, the Da CaPo++ approach combines most of
the advantages mentioned above for related work and handles
multimedia applications and advanced functionality in an inte-
grated and efficient manner as not performed before. This in-
cludes the Da CaPo++ middleware provision on end-systems
for standard workstations, showing a close cooperation between
applications, the API, security and multicast capabilities, QoS
concepts, and the communication middleware itself.

III. DA CAPO++ DESIGN

The Da CaPo++ middleware is end-system-based and located
between the network access and the Application Programming
Interface (API) (cf. Figure 1). The middleware as well as the
API support multimedia communications, since multiple time-
dependent media flows in addition to native data flows being part
of a single or multiple flow session can be processed on standard
workstations. This is due to the middleware’s good performance
and its provision of appropriate protocol functions.

Da CaPo++ provides on end-systems communication proto-
cols in support of application flows. In addition, it covers the
possibility to flexibly configure these communication protocols
built out of protocol functions according to application require-
ments expressed in terms of QoS parameters [29]. A configu-
ration process to perform this application-driven adaptation is
directly supported by a number of internal Da CaPo++ compo-

nents (cf. Figure 2) and a component to configure the required
protocol. In addition, this configuration is based on applica-
tion requirements, availability of local resources, and network
prerequisites as well as protocol functions and mechanisms in-
cluding their properties [30]. Relevant protocol functions, e.g.,
checksumming or flow-control, are processed during run-time
by individual communication modules (later referred to as C-
modules) and are located in the heart of the protocol. Applica-
tions access any type of communication service of a configured
communication protocol via the API through application sup-
port modules (A-modules) including a direct multimedia device
support. This integration is achieved by combining the physi-
cal end-system architecture in terms of data producing or con-
suming devices into the Da CaPo++ design, e.g., for multimedia
devices cameras, microphones, or speaker boxes.

API

Network Access

NetworksNetworks

Applicatio
Applicatio

Multimedia
Devices

St
an

da
rd

W
or

ks
ta

tio
n

Networks

Applications

Applicati
Applicatio

Multimedia
Devices

Applications

Da CaPo++
Middleware

T

CC

AAPI

Network Access

Da CaPo++
Middleware

T

CC

A

Fig. 1. Overall Da CaPo++ Middleware Architecture

On the network access side of Da CaPo++ available net-
works in terms of ATM (Asynchronous Transfer Mode) and an
Ethernet-based Internet are utilized, particularly offering differ-
ent levels of guarantees for network performance, such as band-
width guarantees or no guarantees at all. As an application does
not have to care about differences in network mechanisms used,
properties and especially semantics of different networks are
hidden. This level of abstraction is provided by transport mod-
ules (T-modules) being part of the configured communication
protocol. Summarizing, every Da CaPo++ protocol consists of
one A- and T-module each and up to multiple C-modules.

4

For design purposes the Da CaPo++ middleware covers end-
system issues on standard workstations, common multimedia
devices, and applications on top (cf. Figure 1). The Da CaPo++
core – determining an instance of the middleware on one end-
system – and an API reside once per workstation in end-systems,
while multiple applications may utilize the same middleware
core at the same time [31]. To accommodate diverse networks,
QoS specifications are used in the API and in the core as pow-
erful abstractions, enabling application programmers to ignore
specific properties. Also most applications and protocol mod-
ules of the core do not have to care how end-system-internal
security services or unicast or multicast are internally imple-
mented.

All important details of Da CaPo++ tasks and additional inter-
nals of the middleware core are discussed below. The following
introduces how sessions are configured and set up. Afterwards,
the data transport mechanism is explained including the module
concepts used the resource management. The designed security
features are discussed before an overview of the API developed
is presented.

A. Da CaPo++ Tasks and Components

The Da CaPo++ core determines the heart of the middleware,
it performs all functions related to session management and data
transfer, and it specifies an evolution of the original Da CaPo
system [30]. Its central goal is to take as much as possible bur-
den off the application and the programmer yet still give them
a maximum of freedom. To show how Da CaPo++ achieves
these properties, the following issues describe main function-
alities and tasks from an application viewpoint for setting up a
communication association:

• The application names the source or sink for data and specifies
communication requirements. It may choose among predefined
protocols offered by the protocol database, instead of specifying
a list of parameters itself.
• The application identifies the communication peer, requests
the establishment of an association, and starts the data transfer
for sessions consisting of a single or multiple flows.
• Afterwards, data transport is performed independently of the
application. Instead of caring about each individual packet that
is transmitted, the application is free to return to its main task,
e.g., perform user interaction.
• Whenever important communication events happen, e.g.,
alarms or change requests of QoS specifications, the application
is notified to take appropriate measures. The application can also
query and modify the state of flows at any time.
• When the transmission of user data is finished, the application
requests a session tear-down.

The main workhorse is the Da CaPo++ core. As shown in
Figure 2, it consists of several main components, which inter-
act closely. Applications send requests through the API to the
Session Manager, which performs the necessary session man-
agement functions. It receives help for setting up protocols –
configured out of modules – from information stored in the Pro-
tocol Database. It also assigns resources and buffers to the pro-
tocols themselves, which perform the actual data transfer. The
Security Manager will be discussed below (cf. Section III-E).

Sessions

Buffer
Manager

Session
Manager

Protocol
Database

Security
Manager

Ressource
Manager

Protocols and
Modules

Owns
Uses

API

Network

Fig. 2. Da CaPo++ Component Relations

B. Session Specification

Recall that Da CaPo++’s main design goals were to provide
a modular and efficient middleware. It should offer applications
the flexibility of specifying their communication needs in detail
where desired, but also remain oblivious about elements applica-
tions do not want to specify and still receive reasonable service.
To achieve this, a two-layer model was chosen: the application
can (a) specify the types of flows needed, e.g., audio transmis-
sion, and (b) mention any specific QoS requirements it has for
each of these flows.

To allow this, sessions have to be created in a modular fash-
ion. They form bundles of unidirectional data flows which form
the basic data transport entities; e.g., a picture phone session
would consist of an audio flow in one direction, an audio flow in
the reverse direction, and a corresponding pair of video flows.

To achieve this modularity, a single session needs to be split
into a hierarchy of elements, which are selected according to
application-specified parameters and then combined into the fi-
nal protocol. In the picture phone example (cf. Section V-C), the
application would specify its need for a session consisting of
the above-mentioned audio and video flows. The session hierar-
chy is depicted in Figure 3. Since many protocols will require
feed-back mechanisms, e.g. retransmission requests or camera
control, the data flows are split into two data paths, a “forward”
main path, consisting of the data and some protocol control in-
formation, and into a “return” path, transmitting this feed-back
information.

Every data paths can be implemented by a protocol stack,
which can be built according to the application’s requirements.
Each flow definition can specify the set of functions the under-
lying protocol may need to fulfill. For a video flow, this might
include frame grabbing, compression, encryption, and transmis-
sion on the sending side, and the corresponding inverse func-
tions on the receiving side. These generic protocol functions can
be implemented each by any number of modules, tuned to a spe-
cific environment and making use of the existing hardware. Such
modules could include a SunVideo frame grabber, DES encryp-
tion, support for a specific ATM networking card, among others.

This approach for abstraction allows for a high flexibility in
that the application does not need to know any details of data
transfer from the source to the sink, but still can influence what-
ever is needed. For example, an application might request com-

5

pression and does not care about how the video stream is com-
pressed, as long as a specified compression factor providing a
specified minimum quality is met, but it might request a specific
encryption scheme with specified parameters.

Consist of

Consist of

Implemented
by one of several

Implemented by

Consist of

Data Paths

Sessions

Data Flows

1:n

Protocol Functions

Modules

1:n

Protocols

1:1

1:2

1:n

Fig. 3. Session Hierarchy

Besides the flows specified by the application, each session
requires a reliable flow, used internally by Da CaPo++ for
session-wide management information. It is used at session set-
up time to inform the joining participant of protocols and pa-
rameters being used. Later on, it is used to send out-of-band ses-
sion control information between individual modules, the mid-
dleware core per se, or between applications.

At configuration time, all modules performing necessary ser-
vices are selected and configured according to a set of re-
quirements specified by applications. These requirements are
grouped into several categories, e.g., peer to connect to, through-
put, security parameters, and levels, e.g., high-level/abstract re-
quirements, low-level requirements.

High-level requirements specify parameters in an abstract
manner and do not provide necessarily complete determinism
with respect to modules selected and parameters tuned, as long
as the result meets the requirements. In contrast, low-level re-
quirements select a specific module to use or a specific parame-
ter of a given module. Requirements usually do not specify fixed
values, but a (possibly weighted) range, so the Da CaPo++ mid-
dleware has flexibility in fulfilling requests. Since the require-
ments specified may conflict with or have influences on each
other, a precedence hierarchy has been set up. Low-level re-
quirements have precedence over abstract requirements which in
turn override system-specified default parameters. After config-
uration, the application is informed of the configuration success
and values selected.

A single module is not of much use, it needs at least a cor-
responding peer at the other end of an association. Often, the
receiving module also needs to provide feedback to the send-
ing module to function properly. This shows that many oper-
ations classically considered as one function indeed consist of
up to four parts (cf. Figure 4). In Da CaPo++, these four parts
are treated independently. A forward path consists of a “down”

Sender

Up
Path

Down
Path

Network

Receiver

Up
Path

Down
Path

Forward Path

Backward Path

Application Application

Fig. 4. Module Relations

part in the sender transporting (usually a lot of) data towards
the network and a matching “up” part in the receiver in addi-
tion to a corresponding backward path with comparatively little
control information. The forward and backward data paths may
have different module configurations, either because only some
modules need to have access to the backward path or because
the modules in the backward path themselves need some pro-
tocol processing, e.g., authenticated acknowledgments. Each of
the data paths had to be completely separate. To provide efficient
use of the backward (feedback) channel, communication among
the parts of the module performing operations in either the “up”
or “down” path have to be simple and fast.

C. Lift

As described above, protocols determine the middleware’s
view of application flows. Flows are split into two data paths
(cf. Figure 3) for the forward (data and control) and backward
(feedback) direction. User data transfer only occurs in one di-
rection (forward path), where resource reservation based on the
requirements may be applied. The backward path is used for
control information only, e.g., acknowledgments, quality feed-
back, which encompasses usually small amounts of data. Thus,
flows are uni-directional from an application point of view, but
they are bi-directional for control.

Although Figure 3 may suggest that there is a lot of hierarchi-
cal overhead involved, this overhead is negligible for protocol
processing (cf. Section VI). A limited amount of overhead oc-
curs at session setup and almost no penalties are to be paid at
run-time, where all protocols’ selected module instances are di-
rectly accessed, making the layering a conceptual tool only.

In each data path, data is transported by an algorithm called
Lift, an active transport mechanism, originally developed in a
first version in the predecessor project Da CaPo [32]. Once
started, the Lift works autonomously calling in turn modules’
processing functions, according to the sequence set out at pro-
tocol configuration time. The Lift goes on to transfer data from
the network to the user or vice versa, until it receives new in-
structions from the application or one of the modules it passes
by. The Lift passes a packet along all modules within a pro-
tocol and each module performs appropriate changes and may
request the Lift to pause, bring another packet, or discard the
packet. The independence of the Lift – every Lift responsible for
a single protocol runs in a separate thread – frees other system
parts from duties (cf. Section IV-C for Lift/module interaction).
It also makes a protocol easy to trace and schedule.

Compared to most other flexible protocol architectures, this
scheme does not cause each module to be stacked on top of each

6

other on the function call stack, possibly requiring a large stack
for local variables. Compared to traditional stacking architec-
tures, after a module returns the control back to the Lift, only
minimal module state is present, making this an ideal point for
efficient context switching. An additional advantage is that mod-
ule implementation can be simplified. They do not need to care
for special cases, such as errors returned from called modules.
Instead, the Lift determines the decision-making mechanism. To
relieve the programmer from a burden, generally, a module’s
handler function will be called. This is achieved by requesting a
module for its requirements at protocol set-up time. Knowing all
the requirements in advance enables for further optimizations.
This approach eases configuration changes, since there is only
one location knowing about the protocol chaining.

The actions a module can control include the following:

• Communication between forward and backward path: The
corresponding module in the other path received information
which it will need to send out with the next data packet. This
schedules a Lift run in the other path.
• Out-of-band information has to be transmitted to the module
implemented in the communication peer.
• The module has remaining data to be transmitted. Do not turn
idle after finishing protocol processing for the current packet.
• The module is currently busy, wait for a mutex to be cleared.

Normally, the Lift passes a packet through all modules in only
one direction, according to the direction of the data path. It starts
with an empty packet, obtained from a buffer list maintained by
the Buffer Manager, which is being filled with data by the first
module. Possibly the packet is modified by intermediate mod-
ules and emptied by the last module in the chain. Under some
circumstances, e.g., for segmentation and reassembly or reliable
data transmission, modules may not only have data to fill in,
but entire packets to send. In this case, the module will signal
the Lift that its next run only should be a partial run to pick up
the remaining data. This partial run merely covers the signaling
module and the modules beyond it.

Concerning memory requirements of modules, buffers con-
taining packets show a packet structure including a fixed header,
where each module owns a pre-arranged number of bytes at
a known offset. The packet also contains a variable-sized data
block, for use by A-modules to transport end-to-end data. Since
protocol details are known at initialization time, the size of
the maximum data block can be deduced in advance; growing
and shrinking data blocks within these limits is just a matter
of telling which part of the allocated block contains the data
(cf. Section III-D).

Probably one of the main points of interest for the applica-
tion programmer concerns the control he has over running pro-
tocols. It is possible to create or destroy sessions and to pause
or restart flows in a session, where the control flow is used to
transmit changes in the session’s state and, thus, is always ac-
tive (cf. Section III-F). The A-module directly can be controlled
by applications and provides feedback to applications using re-
quest/response messages and asynchronous events. This scheme
can be used to request fast forward or rewind functions for a re-
mote video server and could be extended to control a remote
camera, e.g., zooming and panning.

D. Resource Management

Another of the main goals for designing the Da CaPo++ core
was to provide efficiency by reducing data copying. Therefore,
the Lift only transports a packet descriptor. A packet consists of
three buffers whose sizes are determined at configuration time.
One of the buffers holds data of variable-length to be transmit-
ted between A-modules located at peers. Another buffer holds
the constant-sized header enabling all modules to communicate
information to its partner module located at the peer. A third
buffer is used for communication between modules in a single
data path within one end-system and is not transmitted over the
network. Packets and buffers are managed by the Buffer Man-
ager also keeping track of reference counts for each buffer. This
allows modules to keep a copy of a buffer by a referencing
pointer without actually copying the data. Segmentation and re-
assembly modules can also pass on partial buffers to avoid the
creation of partial copies. The possibility to pass partial buffers
together with separate, constant-sized headers gives processing
advantages. As far as Da CaPo++ is concerned, it also allows
for a zero-copy operation using Application Layer Framing [14]
even for segmentation/reassembly.

The Buffer Manager – and all other components requiring
system resources – request their resources from the Resource
Manager (cf. Figure 2). It provides an abstraction layer for mem-
ory, CPU resources (in the form of threads), and timers. This
simplifies portability, reduces memory management overhead
and minimizes memory copying.

E. Security Functionality

In Da CaPo++ encryption and authentication functions are not
only available as an integral part of the middleware, but the se-
curity degrees (amount of privacy and authenticity required for
messages) are also treated as QoS parameters. In an environment
handling multimedia data streams of high data volume, compu-
tational resources required to provide the highest level of secu-
rity usually exceed available CPU power. For this reason, the
provided amount of security (the strength and, therefore, com-
putational requirements of employed protocols) is variable, de-
pending on user demands.

Privacy and authenticity of communication are as much
considered a basic service quality parameter of the network
as packet loss rate, bandwidth, and delay. Together with C-
modules providing the actual data security, the Security Man-
ager (cf. Figure 2) represents all security functionality within
Da CaPo++. Special C-modules encrypt or authenticate arbi-
trary data streams and the Security Manager provides peer au-
thentication services. It is fed with application requirements
and translates them into low-level security parameters, collects
randomness from system state to provide keying material, and
assures security at runtime. Additionally, it includes the key
database and cryptographic routines of PGP (Pretty Good Pri-
vacy) [33]. For integration purposes, PGP has been changed into
a library and linked into the middleware.

E.1 Authentication Services

In Da CaPo++, communication peers and local applications
connecting to the middleware are authenticated. The application

7

or the user must authenticate itself when the application first
requires services from Da CaPo++ through the Application Pro-
gramming Interface (cf. Section III-F). During the delegation of
identity, the application indicates the keys in the database to be
used and provides a passphrase to unlock them. This informa-
tion (cf. Figure 5) is passed from the application via the API to
the Security Manager. Figure 5 shows details on data structures
shared between the Security Manager and the Da CaPo++ Ap-
plication Programming Interface. In practice, only the provision
of a key ID for a public/private key pair and the corresponding
passphrase are required to prove one’s identity to the middle-
ware. The middleware then utilizes the public/private key pair
that is provided by the user and its own public/private key in the
proof of authenticity to the peer system. The administrator of
a system must be trusted, because he can impersonate any user
accessing the middleware by multiple means, one of them is the
capture of the passphrase as it is transferred from the user to the
middleware.

struct auth data {
process id;
// simplified RFC822 address, e.g. <joe@doe.com>

user id;
// String with separate fields, e.g. name = netscape navigator;
// ver = 2.0b; platform = sun4u; os = sunos5.5.1; author = foo@bar.
application id;
// Hash of application file(s), signed by trusted entity.
application certificate;
// Given as PGP key ID, RFC822 or hex style.
user public key id;
// Unlocking the key in the PGP DB.
user private key passphrase;
// Alternative to giving the passphrase.
user private key;
// String passed on to the user for confirmation.
query string;

};

Fig. 5. Application Authentication Data Structure

As an additional means of control, the user may choose to
terminate any or all applications using the middleware on his
behalf. This is done by accessing a separate user interface that
directly connects to the Security Manager.

Admission control of communicating peers is done by appli-
cations, because evaluations have shown that criteria for admis-
sion control are too varied to be efficiently delegated to the mid-
dleware. Upon arrival of a new peer, the Security Managers ex-
change (1) certified keys and (2) additional authenticating mate-
rial forming a authentication hierarchy. So an application could
specify whether it would only accept a particular remote user,
or that it would also trust the remote application or the remote
middleware. If the application accepts the association, commu-
nication begins.

E.2 Security QoS Translation

Security parameters can be controlled as application require-
ments. Security parameters in Da CaPo++ express requirements
on four separate layers: (1) user requirements, (2) abstract appli-
cation requirements, (3) low-level requirements, and (4) infras-
tructure requirements. Depending on requirements put upon a
layer, certain costs result. Requirements posed on the infrastruc-

ture are, e.g., necessary CPU seconds per real second for a flow
transmission, memory consumption, or network bandwidth.

Low-level requirements within the middleware cover param-
eters, such as key length, choice of algorithm, and key change
rate, and are easily understood and directly adhered to by mod-
ules. As it is the goal of Da CaPo++ to provide a comfortable en-
vironment for application programmers, these parameters may
be well-known and straightforward, nevertheless the average ap-
plication programmer or even user cannot be expected to fully
understand their security implications. Additionally, it might
be undesirable to pre-select encryption and authentication al-
gorithms and their parameters in detail. Whenever advances in
cryptology indicate the insufficient safety of such an algorithm,
all applications statically demanding the algorithm would re-
quire changes.

To address this problem, low-level requirements are derived
from application and user level requirements, as outlined in
Figure 6. The application can specify the required strength of
security algorithms to be employed, defined as the amount of
time a communicated information is supposed to stay unread-
able or authenticated against a predefined class of potential en-
emies. The model employed in Da CaPo++ to specify security
requirements on the user level is the threat model. Users specify
the most likely attacker, e.g., casual hacker, determined group,
competing enterprise, multinational corporation, or rogue gov-
ernment agency, as well as the presumed value of the informa-
tion. Therefore, the system must provide security mechanisms
whose breaking costs are higher than this value. Additionally, a
probability specifies how likely these promises should be met.

R
eq

ui
re

m
en

ts

Fe
ed

ba
ck

User Requirements

Abstract Application Requirements

Low Level Requirements

Infrastructure Requirements

Fig. 6. Abstraction of Requirements

This type of parameters can be determined easily by the user
than the low-level requirements. These parameters are evaluated
based on a database containing strengths and weaknesses of dif-
ferent algorithms, together with their likeliness to be broken or
weakened in the years to come. This likeliness based on cur-
rent and expected cryptanalytic results. Creating and maintain-
ing this database is not an easy task, but is only marginally more
complex than directly specifying well chosen low-level security
parameters in the first place. One advantage of this database is
that it only needs to be defined once by the developer or admin-
istrator of the middleware and not by every application program-
mer or user. Additionally whenever necessary due to advances in
cryptology, the strength of security mechanisms offered to appli-
cations can be increased transparently by updating the database.
This mechanism even allows for adding new and improved en-
cryption algorithms without user or application programmer in-
volvement.

8

E.3 Security Assurance

The Da CaPo++ middleware allows for modification of secu-
rity parameters in an ongoing communication. This reconfigu-
ration can switch off or change cryptographic algorithms with-
out interrupting the flow of data. This admits users to tune sys-
tem performance in a fine-grained manner, e.g., receiving better
quality in video transmissions, when security is not required. At
the same time, if underlying infrastructure offers security func-
tionality by itself or if it is considered to be secure, e.g., a leased
line or an office LAN are usually considered much more private
and authentic than packet radio or the Internet, security function-
ality employed in the middleware can be reduced. As an addi-
tional consideration, the middleware administrator may enforce
certain minimal security requirements which can not be circum-
vented by applications relying on the Da CaPo++ middleware.

The security assurance component in the Security Manager
also monitors the usage of keying material and keeps track on
the amount of encrypted data and period the key was used.
Whenever the user or the systems determines the necessity,
a change of keying material is initiated. To economize costly
asymmetric cryptographic operations, multiple data encryp-
tion keys are transferred as one asymmetrically encrypted data
packet and containing keys are consumed as needed.

Within this novel approach of the Da CaPo++ middleware,
security functionality is integrated tightly into the Da CaPo++
core and protocol processing. This provides key management
and a variety of encryption and authentication functions to flows
and sessions, which are selectable be users in a similar fashion
as they request for reliable transfer of data.

F. Application Programming Interface

The Application Programming Interface (API) for commu-
nication services is the only interface visible to application
programmers in end-systems from the middleware. Since data
streams may vary according to their type, location, and origin of
data, two basic abstractions for application data streams, called
flows and sessions have been designed (cf. Section III-B). This
allows for hiding all communication protocol specific features
[34]. In addition, basic operations for dealing with Quality-of-
Service (QoS) have been introduced [30]. Although, e.g., TCP
considers one type of user data only, namely a general stream
of bytes, a general-purpose QoS-based API needs to distinguish
between several different data types. Transport protocol proper-
ties for audio, video, and user data are different in terms of max-
imum acceptable delay, loss-rates, required bandwidth, security-
levels, and multicasting features. This is formalized in a configu-
ration file as depicted and discussed in Section V. However, the
application always handles communications in an association-
based manner, where the API handles association context in-
formation, e.g., including session identifiers, and the underlying
protocols may provide a connection-oriented or connectionless
service. In general, the API utilizes an object model, where the
base class of flows consists of three subclasses for an audio-
flow, a video-flow, and a data-flow, each of them containing the
respectively required functionality. As every flow may receive or
sent data only, separate classes encompass the required function-
ality. Therefore, applying the concept of multiple inheritance to

these classes, the requested instance will be automatically gen-
erated based on the application requirement specification and it
contains the functionality for, e.g., sending user data which is
termed SendDataFlow.

An important difference is encountered for data from appli-
cations and live data, originating from multimedia devices. As
the BSD socket interface [35] considers data only being directly
generated or consumed by the application, inefficiencies when
moving data from user to kernel space and vice-versa are sig-
nificant. Since this is not suitable for every type of application,
e.g., for a video conference application, video and audio data
may traverse directly from their associated device (camera and
microphone) or file to the corresponding remote device (monitor
and speakers), without having to transit through the application.
In general for any application, only the less expensive control
of devices – in terms of the amount of data – still remains un-
der the responsibility of applications which may include control
commands such as fast forward or fast rewind for video. Mul-
timedia user data per se are directly handled by the appropriate
multimedia device.

The design of a general-purpose QoS-based communication
API implies the provision of three different steps, which are in-
dependent of the underlying middleware. Firstly, within an ap-
plication process resources are locally allocated and configured
according to application needs using available API functions
(cf. Section IV-E and Table IV). This process is similar to open-
ing and binding a BSD socket with options. Secondly, a set-up
process is involved to establish an association between two or
more end-points and to exchange user data. Thirdly, user data
are transferred via the API, if they do not originate from multi-
media devices, otherwise, they are handled by the corresponding
A-module directly. The designed API has to enforce phase one
and two to offer the application programmer a maximum de-
gree of flexibility. This takes into consideration that application
QoS requirements play an important role not only during the es-
tablishment phase (including configuration and reservation), but
also during run-time (QoS re-negotiation).

API-Client Session

Access

Application

Upper

Lower

Da CaPo++

Events

Flow Flow

(1) (4)

API

API

API-Server Data
Management

Module
Access
Module

MCP

Protocol
MCP: Main Control

Protocol
DDP: Data Delivery

CAP DAP

DDP

CDP

Protocol
CDP: Control Delivery

CAP: Control Access Point

DAP: Data Access Point

Main Control
Data

User Data to/from

User Control

Components

(2)

(3)

DAP

Process BoundaryCommunication Subsystem
(Core System)

User Data to/from

Applications

Devices

Fig. 7. API Architecture

To support several applications on top of the Da CaPo++ mid-
dleware a client-server approach has been designed. This fa-
cilitates the resource management tasks for port numbers, de-
vices, and memory (cf. Figure 7). The upper API is linked to
the application, while the lower API defines the front-end of
the Da CaPo++ core. Functionalities and tasks are accessible
by ways of the Control Access Point and Data Access Points.

9

During the set up procedure of associations the Main Control
Protocol assures that the appropriate number of resources is al-
located. While user data is in transit the Control Delivery Pro-
tocol is applied. The Data Delivery Protocol ensures that com-
mon shared memory or appropriate Inter-process Communica-
tion (IPC) schemes are utilized to optimize the communication
performance.

A central issue in the API is concerned with the definition of
an end-to-end association between peers. Besides middleware-
internal encryption and decryption functionalities being sup-
ported, the application and the user must authenticate them-
selves during the establishment phase. Succeeding the autho-
rization, an association between two or more applications must
be defined in terms of user data streams and QoS requirements,
which is additionally supported by separate memory segments
for every session.

IV. IMPLEMENTATION

A. Object-oriented Module Implementation

The entire Da CaPo++ core is object-based, in order to
achieve the desired modularity of the middleware. This is most
noticeable with modules: neither the module selection and con-
figuration components, nor the setup components, nor the Lift
algorithm needs any adaptation, when a new module is added.
In order to have all the flexibility of an object-based approach,
yet still full control over everything that happens, and the speed
available, the core and every module was written in the C pro-
gramming language. Since creating classes and instances is not
supported by the C run-time environment, a special run-time
support was created. Modules form basic building blocks and
behave like classes in an object-oriented environment: They
have a descriptor structure which contains key elements iden-
tifying them, e.g., their name, and a list of function pointers to
call and perform well-known functions. Additionally, they have
an assigned partner module to be used at peers.

Individual instances of a module can be created using a func-
tion in the Da CaPo++ run-time system. Instances do also have
a descriptor structure, containing identifying elements, informa-
tion about which module they stem from and which protocol
they are used in. Unlike most other object-oriented systems, it
also contains function pointers. As each module gets to know
application requirements at configuration time, it can and must
adapt to these parameters, i.e., an audio module may config-
ure the sampling rate and input device according to specified
requirements. Although most modules are capable of handling
different media types, each individual instance will process only
a single data type during its lifetime. Therefore, some modules
go even further and change their instance’s function pointers to
point to functions which are optimized for a number of special
cases, at initialization or even run-time. This turned out to be
especially handy in implementing protocol state machines. A
module that has adapted itself to its environment is called a vir-
tual module. For example, instances of transport modules know,
whether the configured protocol will ever use header fields or
what the maximum size of a data block can be and do replace
their generic function. Also, when audio receiver modules are
instantiated, they can determine whether they are the second in-

stance and can make sure that the first instance (and any further
instance to be created) will use the audio mixer. Using a mixer
is required since the used audio device only supports a single
reader and a single writer.

Instances can not only find out about their class or other in-
stances of the same class, they can also determine information
about any module within their session, both on the local and re-
mote site. After having found the desired module, they can also
communicate with them; locally using method invocations and
remotely by sending them a control packet. Although the class
concept is being used, no inheritance is currently provided, but
modules providing similar functionality may share code provid-
ing common functionality by putting it to a code library.

Besides internal test, protocol trace/debug, measurement, and
traffic generation modules, a number of multi-media commu-
nication protocol processing modules have been implemented.
Among A-modules are modules to transmit application-to-
application data (RawData) and to receive and transmit from
the audio and video ports or from stored files including the
usual rewind and fast forward functionality, e.g., SunVideo,
VideoFile, SunAudio, AudioFile. T-modules include unicast and
multicast transport support for ATM, UDP, and TCP, where mul-
ticast for TCP is emulated by opening multiple ordinary TCP
connections. C-modules for different groups have been imple-
mented, such as flow control and reliable transfer (Alternating
Bit Protocol, Idle Repeat Request, Multicast Error Control), seg-
mentation and reassembly, encryption (DES, Triple DES, IDEA,
and RC5 in both Electronic Code Book (ECB) and Cipher Block
Chaining (CBC) modes, Diffie-Hellman and RC4), and authen-
tication (H-MAC MD5, RSA signature). All these modules are
designed for multimedia communications. They are capable of
handling different data types at performances required by high-
quality streaming media.

B. Protocol Database

As we have seen, each data path is implemented as a series
of individual modules in Da CaPo++. Although the modules are
independent of each other, the corresponding modules in the for-
ward and backward path usually share their instance variables
to simplify state updates. Since these modules are tailored to be
used together, they are combined into one mechanism. A mech-
anism usually has a natural way to be integrated into a protocol,
e.g., video compression should be done in the down path on the
sending side and the corresponding decompression step on the
receiving side. Reconsider the authentication of acknowledg-
ments; sometimes it would be useful to use a mechanism a little
bit differently, e.g., decompress stored video in the sender, be-
cause the receiver is only able to handle uncompressed video or
use the segmentation/reassembly module to assemble tiny pack-
ets from the source into suitably large network packets. To fulfill
these demands, it is possible to individually swap each mecha-
nism in a protocol (specified by flags in the protocol database)
along all its symmetry axes: Swap sender and receiver side, up
and down direction, or forward and backward path.

During the development and testing of the Da CaPo++ mid-
dleware, it turned out that the level of flexibility mentioned in
Section III-B and prototypically implemented in [36] is seldom
needed. It results in indeterministic behavior and requires a lot

10

of effort on the side of the module designer to fully specify
the configuration dependencies (each module may specify pre-
and postconditions as requirements, e.g., a reliable transport be-
low). Last but not least, it also introduces a very high evalua-
tion overhead at session setup time. Therefore, the middleware-
internal table of modules has been augmented by a database of
pre-configured protocols. Each of these named protocol defini-
tions consists of a sequence of modules to use and configuration
parameters to these modules. Still, the application retains com-
plete control and can override any of the parameters, yet it was
possible to greatly simplify the configuration algorithm during
session setup both in code and run-time overhead.

{
{“pfVideo”, NULL, “mcVideo”, 1, 0,0,0},
{“pfAuth”, NULL, “mcMD”, 2, 0,0,0},
{“pfAsymAuth”, NULL, “mcDS”, 3, 0,0,0},
{“pfPrivacy”, NULL, “mcCBC” 4, 0,0,0},
{“pfKeyAgreement”, NULL, “mcDH”, 5, 0,0,0},
{“pfTransport”, NULL, “mcATM”, 0, 0,0,0}

}

Fig. 8. Sample Protocol Data Base Entry

A sample protocol definition for a secure video transmission
is shown in Figure 8. All fields from left to right contain the
name of the protocol function, the name the instance should
get (if needed for communications between otherwise unrelated
modules), the name of the preferred mechanism to be used, the
order in which the modules should be executed, and swap and
module options including side swapping. The processing order
must be specified, because it was originally planned to allow for
the parallel execution of independent protocol functions. This
has not been implemented, since the synchronization overhead
between parallel threads turned out to be much higher than the
performance improvements achievable.

C. Module Configuration and Operation

Although the modules can be used very flexibly, knowledge
of only a few simple interfaces is needed to implement a module
(cf. Figure 9). In general, modules are passive and are called,
when they need to perform a function, directing the caller using
return codes. If a module wants to make use of an interface, it
simply provides a function which will be called at appropriate
times.

Module Instance
Out-of-Band

in out

Module Class

req start

Lift
Control

Protocol Session

Configuration
Manager

configs calc

Connection
Manager

init

data ready

ind stop guess

External
Trigger

Lift
Run-Time

Fig. 9. Module Interfaces

At session setup, the Connection Manager and all other re-
quested protocols are created. The Connection Manager is a

regular communication protocol, but with the special duty to
help in connection set-up and transmission of control and out-
of-band messages. Each protocol fulfills requirements given by
the application, which the Configuration Manager resolves in
a two-pass process: In the first pass, traversing from the A- to
the T-module, it determines all module requirements using the
guess function. In the second pass, traversing the opposite di-
rection, it resolves these requirements using the calc function.
If the preferred configuration of the modules is not able to match
all requirements, each module is queried for other potential con-
figurations using the configs function. After the decision has
been made, all modules are instantiated accordingly.

At run-time, modules’ start and stop functions are
called, whenever data transport is allowed to start/resume, or is
paused/stopped, based on instructions of local and remote appli-
cations. After that, modules’ req and ind (request/indication)
functions are called as long as at least one module signals that it
has more data ready. After that, the Lift turns idle and waits for
anyone calling its data ready function to continue, e.g., because
of a timer event or the backward path signaling the forward path
that it has finally received the acknowledge.

Return values of the req and ind functions are especially
powerful. They signal, e.g., whether the module has data that
should be transported, whether the module is busy and cannot
accept new data now, whether it or it’s sibling in the other path
has more packets ready, or whether it wants to send out-of-band
data. After signaling that out-of-band data is ready, the Connec-
tion Manager picks up the data by calling the out function and
will deliver it through the network to the matching module’s in
function.

All req and ind functions are called after each other (if both
are defined), where the idea of the request function is to send
data into the module and of the indication function is to get data
out of the module again. This looks redundant at first, but in
fact, this can be used to simplify the design of modules due to
a design particularity of the Lift. Whenever the Lift has trans-
ferred a packet through all modules, it performs a reverse scan
through the indication functions to find out, whether any mod-
ule has anything more to send, which it would start transport-
ing. This results in a simplification of segmentation or retransmit
modules, while still assuring the packet order.

TABLE II

EXAMPLES OF SOME DEVELOPED MODULES AND PROTOCOLS

Protocols A-modules C-modules T-modules
Audio Ethernet AudioFile - McastSocket

Audio ATM AudioFile - McastSocket
Video Ethernet VideoFile Measure ATMMultiSocket

Video ATM VideoFile Measure ATMMultiSocket
Reliable Data RawAPI - MultiTCPSocket

Unreliable Data RawAPI - UDPSocket
CryptoDES RawAPI MD5, DES, RSA UDPSocket

Crypto-IDEA RawAPI MD5, IDEA, RSA UDPSocket
CryptoRC5 RawAPI MD5, RC5, RSA UDPSocket

To obtain a detailed view on some different protocols sup-
ported, Table II depicts an excerpt and configuration in terms
of configured A-, C-, and T-modules, where short module and
protocol names are presented.

11

D. Security Modules and Protocols

To implement and evaluate the basic QoS mapping mech-
anisms for user and abstract application requirements, the
Da CaPo++ middleware offers different security modules and
protocols. This allows to show their usability in the context of
multimedia protocols and continuous media support. Modules
for key agreement, privacy, and authentication are provided (cf.
Table III). Note that MD4 is not practically used anymore, since
it has been broken in the meantime, and DH for agreement on
a shared secret is only usable in conjunction with RC4. It can
be used when no peer authenticity is required or perfect forward
secrecy has to be provided.

TABLE III

IMPLEMENTED SECURITY MODULES

Function Algorithm Parameter
Key Agreement DH Size of shared secret
Privacy
(block cipher)

DES,
3DES,
IDEA, RC5

Key change interval, ECB or CBS
modes, number of rounds and key
length for RC5

Privacy
(stream cipher)

RC4 Key length, Key change interval

Symmetric Au-
thentication

MD4, MD5 MAC on/off, Key change interval

Asymmetric
Authentication

RSA Signing interval

Protocols providing either encryption, authentication, or both
can be configured. By specifying appropriate QoS requirements
the application can choose which cryptographic algorithm is to
be used in appropriate security modules. QoS requirements can
be changed on runtime, while users can influence directly the be-
havior of active protocols, change the employed cryptographic
algorithms, or switch off cryptographic mechanisms completely.

E. Implementation of the API

While the complete API is discussed in [37], an excerpt of
main interface functions offered for the session- and flow-level
are listed in Table IV. These functions are applied from the ap-
plication programmer to utilize the Da CaPo++ middleware as
exemplified in (cf. Section V-C).

As a general task, the API has to cross a process bound-
ary between applications and the Da CaPo++ core. The appli-
cation itself is considered as the “API client process” utilizing
the upper part of the API. The “API server process” offers the
lower part of the API. Multiple API clients, one for each ap-
plication, reside in a multi-threaded process on a workstation
and applications including the upper part of the API generate
a request followed by a response from the lower part of the
API. Events can be directed towards the application in an asyn-
chronous fashion. Shared memory and Inter Process Commu-
nication paradigms are offered by the API to efficiently sup-
port various types of stored data coming from applications. Par-
ticularly, bypassing the API for data originating from devices
achieves a sufficient throughput for continuous multimedia data
streams (cf. Section VI).

TABLE IV

EXCERPT OF PUBLIC SESSION- AND FLOW-LEVEL API METHODS

Function Description
Ses-
sion()

Constructor of a session object requiring the configura-
tion file and a reference on the previously instantiated API
client object as parameters.

Con-
nect()

The session either actively connects to a peer or passively
waits for a connect() from a peer. Parameters are addresses
and ports, necessary for both unicast and multicast connec-
tions.

Confi-
gure()

Every flow of a session is configured by the communica-
tion subsystem.

Acti-
vate()

The transport of data is started or resumed for every flow
of a session.

Deacti-
vate()

The transport of data is stopped or paused for every flow
of a session.

Flow-
Join()

A new flow is dynamically added in the session (allocation
of resources).

Flow-
Leave()

An existing flow dynamically leaves the session (dealloca-
tion of resources).

Close() The session is terminated and all resources are de-
allocated.

SetReq-
Flow()

New QoS requirements can be forwarded to the
Da CaPo++ core during run-time.

GetReq-
Flow()

Actually configured values of QoS requirements can be re-
trieved.

Send-
Data-
Flow()

User data can be sent within a flow using its flow descrip-
tor.

Receive-
Data-
Flow()

For receiving data the asynchronous approach via a call-
back function is available.

V. EXAMPLE: IMPLEMENTATION OF A PICTURE PHONE ON

TOP OF DA CAPO++

Da CaPo++ has been validated by the implementation of an
extensive application framework on top of the middleware. A
modular design has been retained also for complex applications
resulting in a three-level framework [38], [39]. Since its modu-
larity reflects the modularity of Da CaPo++ on the application
level, its basic idea is shortly introduced. Based on the example
of a picture phone implementation on top of Da CaPo++ the us-
ability design goal of the Da CaPo++ middleware is discussed.

A. A Three-level Application Framework

As control mechanisms and user interfaces for different data
and connection types may be reused in different applications, a
three-level application framework has been defined and is de-
picted in Figure 10.

Application
Scenario

Application

Application
Component

Fig. 10. 3-Level Application Framework

It is per se independent of Da CaPo++ and can be applied to
all sorts of applications. The application component level com-
prises atomic units providing a well-defined functionality, e.g.,

12

the display of video data. This functionality is system specific
and directly can make use of, e.g., Da CaPo++ A-modules. An
application consists of one or more application components and
offers a single, homogeneous functionality being provided in
close cooperation by the application components. E.g., a picture
phone determines an application in this sense. An application
scenario fulfills a completely specified task within a real-world
scenario. It consists of one or more applications being logically
structured. As the application and application scenario level of-
ten cannot be separated clearly, a picture phone can be used as
part of, e.g., a telebanking scenario (application) or as a simple
picture phone (application scenario).

B. Applying the Da CaPo++ Middleware

In order to make use of the Da CaPo++ middleware, it has
to be installed on all involved end-systems of senders and re-
ceivers. Within development environment, Da CaPo++ has been
implemented on Sun workstations operating Solaris 2.5.1. The
Da CaPo++ core including the lower part of the API is imple-
mented in C. A compilation is required on the dedicated end-
system. The compiled core is running permanently on these end-
systems and applications can connect to the core and utilize the
middleware. The upper part of the API is currently implemented
as a C++ library and must be linked to applications built on top
of Da CaPo++.

Dedicated functionality like video compression using Sun’s
video card [40] can be used only, if the required hardware
is available on the end-systems. Applying, e.g., compression
schemes like JPEG (Joint Pictures Expert Group), which are also
supported, the interoperability is increased as JPEG can be de-
coded on other platforms as well. In order to use Da CaPo++
on other platforms, like Windows NT, the Sun specific part of
the code, e.g., the thread management, of Da CaPo++ needs to
be ported.

Existing applications can run on top of the middleware af-
ter the integration of the Da CaPo++ API. Data generated and
consumed by the application is transmitted to and received from
the Da CaPo++ core via the API methods SendDataFlow and
RecvDataFlow. These methods are called in a ported appli-
cation whenever data is written to or received from, e.g., TCP
(Transmission Control Protocol) sockets. Data transmission is
provided by Da CaPo++ transparently to the application. While
this is a valid approach to apply the Da CaPo++ middleware,
applications hardly profit from the supported middleware func-
tionality. Especially the handling of multimedia data within the
Da CaPo++ middleware eases and supports the efficient imple-
mentation of new multimedia applications. This is demonstrated
by the example of a picture phone implementation on top of
Da CaPo++.

C. Implementation of a Picture Phone

The Da CaPo++ picture phone allows two participants to
communicate by exchanging live audio and video. Da CaPo++
A-modules capturing and presenting live audio or live video
data, respectively, are combined with unreliable, unicast data
transmission T-modules to live audio and live video protocols.

The configuration file for the picture phone session in the
creator, i.e., the caller, is depicted in Figure 11. The spec-

ified session determines a unicast session, while it consists
of four flows, each one for sending and receiving audio
and video, respectively. Every flow is assigned a type, e.g.,
VIDEO RECV DEVICE. This type specifies the data type, the
source/sink of the flow, and the direction of the flow. In this
case the session creator is a receiver of a VideoRecvFlow. In
this example, data is sent directly to the device and not passed
via the application (cf. Section III-F). Depending on the data,
on end-systems, and on the communication medium available,
QoS parameters are specified for every flow. They may encom-
pass, e.g., throughput, frames per second, samples per second,
bits per pixel. The communication protocol is configured out of
selected modules, where the decision is based on the configura-
tion file, and the protocol is instantiated by the Da CaPo++ core
(cf. Section III-A) according to the specified QoS.

SESSION CREATOR UNICAST Picturephone
FLOW VIDEO RECV DEVICE VideoRecvFlow

THROUGHPUT 4.5 2.0
FPS 5 13
DELAY 0.2 0.45
JITTER 0.001 0.0035

ENDFLOW
FLOW AUDIO RECV DEVICE AudioRecvFlow

THROUGHPUT 1.41 1.41
DELAY 0.2 0.45
JITTER 0.001 0.0035

ENDFLOW
FLOW VIDEO SEND DEVICE VideoSendFlow

THROUGHPUT 4.5 2.0
FPS 5 13
DELAY 0.2 0.45
JITTER 0.001 0.0035

ENDFLOW
FLOW AUDIO SEND DEVICE AudioSendFlow

THROUGHPUT 1.41 1.41
DELAY 0.1 0.3
JITTER 0.001 0.003

ENDFLOW
ENDSESSION

Fig. 11. Picture Phone Configuration File

The example of the configuration file (cf. Figure 11) specifies
two values (maximum and minimum) per parameter for audio
and video data. In the sample configuration file, the communi-
cation requests different delay and jitter characteristics in both
directions, specifying an asymmetric communication.

Multimedia data capture and presentation is performed by the
instantiated A-modules, whereas data transmission is performed
by different Da CaPo++ protocols.

Implementing a Da CaPo++ picture phone requires the fol-
lowing steps, which are depicted in Figure 12:
1. A Da CaPo++ client must be created exactly once per appli-
cation. The corresponding method (DaCaPoClient construc-
tor) in the upper API creates a Da CaPo++ client and connects
it to the Da CaPo++ middleware. Authentication information
of the application is passed in the securityInfoStruct
and evaluated in the Security Manager during creation of the
Da CaPo++ client. After this method invocation the functional-
ity of Da CaPo++ can be used.
2. Sessions for data transmission must be instantiated. The pic-
ture phone is implemented within one single data session. The
corresponding API method requires a configuration file and the

13

identification number of the Da CaPo++ client. The configura-
tion file passed to this method is depicted in Figure 11.
3. A connection based on the specified QoS parameters must
be established between sender and receiver. This is done by
the Connect method invocation. The connection information
passed to this method contains a structure specifying the ad-
dress of the peer, its port number, as well as the own address
and port number. Both port numbers are used to establish the
connection between the Connection Managers of both peers. A
callback function is specified within this method call. This func-
tion is called whenever an event must be passed from the upper
API to the specified session.
4. The session is activated (Activate) to start data flows
sending and receiving data. Due to the specification in the con-
figuration file (cf. Figure 11), data is captured directly by the
device (microphone and camera) and displayed on the device
(speakers and monitor). Data transmission continues until the
method Deactivate is called.
5. To stop data transmission the session is deactivated
(Deactivate). If the session is deactivated gracefully, the
Lift algorithm delivers all data pending in the middleware for
this session to the participating modules before the session is
stopped. Deactivating the session instantaneously would result
in a graceless deactivation of all participating flows. After de-
activation, the session can be resumed again by the Activate
method.
6. Before leaving an application, involved sessions must
be closed (Close). This frees resources reserved by the
Da CaPo++ middleware and deletes all data structures related
to this session. Afterwards the destructors for session objects
and the Da CaPo++ client objects are called.

/* create Da CaPo++ client */
1: client = new DaCaPoClient(securityInfoStruct);

/* create session */
2: pp = new Session (configFileName, client);

/* connect session to peer */
3: pp->Connect (connectInfo, callbackFct);

/* start or resume session */
4: pp->Activate ();

/* stop/pause session or hold on line */
5: pp->Deactivate (GRACEFUL);

/* close the session */
6: pp->Close ();

Fig. 12. Applying the API to the Picture Phone

These method invocations are sufficient to implement a pic-
ture phone on top of Da CaPo++. Additionally, a graphical user
interface has been implemented in Tcl/Tk [41]. The connection
information is specified in this user interface. The user can enter
the communication peer’s machine, a default is used for the port
number. By activating user buttons, the peer can be connected,
data transmission can be started or stopped, and the connection
can be closed.

Within the Da CaPo++ project, numerous applications includ-
ing a teleseminar scenario and a media server have been imple-
mented in order to evaluate the Da CaPo++ middleware further.
As the results obtained have shown, the support of multimedia
data provided by Da CaPo++ is adequate and even complex mul-
timedia applications can be implemented easily [39].

VI. EVALUATION OF DA CAPO++

The performance of data communication obtained in a given
implementation determines the quality of communication ser-
vices and protocols. The Da CaPo++ middleware as described
above has been implemented on standard workstations [31],
such as Sun SPARC20 and Sun UltraSPARC 170E (evaluation
machine) running the non real-time operating system Solaris
2.5.1. The Da CaPo++ middleware has been evaluated using the
Quantify tool [42] and high-resolution system time measure-
ments directly. Standard Sun multimedia equipment has been
utilized, such as cameras, microphones, and the SunVideo board
[40] offering real-time image capture and compression for digi-
tal video.

Concerning the performance numbers below, first the over-
all overhead due to modularity is discussed. Afterwards security
relevant performance figures are outlined and, finally, the API’s
efficiency is presented. Both, writing and sending of user data
requires semaphore operations for accessing the shared mem-
ory. For this reason, the sending (<460 ms) and the receiving
delays (<12 ms) for data originating in applications on top of
the Da CaPo++ middleware on an end-system were measured.
The throughput numbers achievable for various protocols differ,
specifically based on the special protocol configuration applied.
For example, the results for an unreliable protocol processing
determine: The sender requires on average 45 µs vs. 18 µs and
the receiver requires 41 µs vs. 31 µs. Concerning the measured
upper bounds in the unreliable case, 273 µs for the sender and
323 µs for the receiver have been observed within the Solaris
operating system environment. Therefore, Da CaPo++ achieves
in this case an average sender throughput of 38.4 Mbit/s for
88 Byte packets and of 44.8 Mbit/s for 1024 Byte packets. The
worst but guaranteed case throughput for the unreliable protocol
is determined by 2.4 Mbit/s and 3.7 Mbit/s respectively.

A. Lift Performance and Protocol Processing Overhead

The performance of the Lift determines the overhead involved
in the concept of achieving modularity within Da CaPo++. The
processing overhead is shown in Figure 13. These numbers in-
clude the overhead incurred by the Resource Manager to allocate
necessary packet memory and is referred to in total as protocol
overhead. 1000 Lift runs were performed. All data were mea-
sured in wall clock time and modules in the protocol were mea-
surement modules, having a measurement overhead of 0.6µs
each. This results in an overhead of 9 µs for the packet alloca-
tion and the per-run Lift overhead, plus 0.4 µs for each module
in the data path. The high maximum numbers stem from occa-
sional context switches in the non real-time multitasking system.
Therefore, the goal of achieving efficiency has been reached
while remaining as modular as possible.

The total run-time overhead depending on the amount of
memory requested for a flow with 3 modules is shown in
Figure 14. As it can be seen, the memory management (using
the standard C library) takes a constant 5 µs (difference between
memory allocation of 0 Byte and allocation of ≥ 1 Byte), except
for the first run, which takes additional 60 µs. The overall max-
imum value occurs the first time a buffer is requested, all future
requests are handled fast. The first run also includes inherent

14

0

10

20

30

40

50

60

70

80

90

3 5 10

Pr
ot

oc
ol

 O
ve

rh
ea

d
[m

ic
ro

se
co

nd
s]

Number of Modules

Average
Maximum

Standard Deviation

Fig. 13. Protocol Overhead Based on Modules

semaphore signaling overhead by the operating system needed
to start the Lift thread blocked initially. It was considered impor-
tant to reduce the high overhead inherent to handling multime-
dia devices before addressing the much smaller overhead related
to module processing. It turned out to be impossible to reduce
the multimedia device overhead, since specifications describing
their operation could not be obtained in enough detail. The max-
imum value in the figure is again due to context switches. Note,
the required time is independent of the requested memory size
in terms of buffers. Only the initial setup time increases slightly
with buffer size.

0

10

20

30

40

50

60

70

80

0 1 10 100 1000 10000 100000

Pr
ot

oc
ol

 O
ve

rh
ea

d
[m

ic
ro

se
co

nd
s]

Memory [Byte]

Average
Maximum

Standard Deviation
First Run

Fig. 14. Protocol Overhead Based on Memory

B. Security Modules

For the evaluation of the security performance, 1000 packets
of 1000 Byte length each were sent using the TCP T-module
over Ethernet connecting two Sun UltraSPARCs 170E as sender
and receiver. For every 100 packets sent, a key change for the
symmetric algorithm took place, while an RSA operation in-
cluding their encryption and decryption was performed every
500 packets. The user CPU consumption of the authentication
module Message Digest MD5 and the encryption module DES
CBC are studied in detail, while further mechanism numbers are
given for additional comparisons.

An overview of all numbers is depicted in Figure 15. Specifi-
cally, within the MD5 module the calculation of the MD5 check-
sum accounts for 97.6% of the CPU usage. 2.1% of the time
was used for extracting keys, the rest is accounted by module
specific overhead. The per-packet CPU usage for 100 packets
without a key change is 0.086 ms. This corresponds to a theo-
retical throughput of 92 Mbit/s.

0 0.1 0.2 0.3 0.4 0.5

Processing
MD5

Processing
DES CBC

Key Change
DES CBC

Processing
IDEA

Key Change
IDEA

Processing
RC5-12-16

Key Change
RC5-12-16 [ms]

[ms/packet]

[ms]

[ms/packet]

[ms]

[ms/packet]

[ms/packet]

Fig. 15. Comparison of Security Modules

To perform the encryption and certification of transmitted
session keys and to signal required control data to the Lift,
30.65 ms per key change are required, where the certification
takes 93.48% of the time and the encryption of the session key
with a peer’s public key takes 6.47%. This behavior shows that
operations using a public RSA key are much cheaper than oper-
ations using a private RSA key which is caused by the difference
in time consumed by the modular exponentiation algorithm, de-
pending on the number of 1-bits in the exponent.

Concerning the encryption module, the encryption of 999
packets of 1000 Byte length each with DES in CBC mode takes
199.71 ms. This includes 10 DES key changes, 0.73 ms each,
and two refills of the pool of session keys holding 5 keys at
a time. This takes 1.08 ms per refill. The per packet CPU us-
age without key changes amounts to 186.94 ms. This results in
0.187 ms per packet or in a theoretical throughput of the purely
software-based DES implementation of 42 MBit/s.

C. Security Protocols

Different security protocols encrypting plain data have been
evaluated by sending 10 MByte of data in 10,000 packets, de-
termining the full end-to-end performance achieved. Keys have
been changed every 100th packet and an asymmetric encryption
operation (RSA) has been performed every 500 packets. Table V
shows the real overall (application-to-application) throughput
values that can be achieved using security in Da CaPo++.

TABLE V

ACHIEVED THROUGHPUT OF SECURITY PROTOCOLS

Security Protocol Throughput
DES/MD5 5.87 Mbit/s
IDEA/MD5 4.19 Mbit/s

RC5-12-16/MD5 8.30 Mbit/s

These values include runtime, operating system, applica-
tion, API and A-module overhead, as they are calculated from
elapsed times. Normally multimedia data communication in Da
CaPo++ would run even more efficiently, because data is trans-
ferred from the middleware directly to output devices and vice
versa. Even when coming from the application, throughput is
sufficient for multimedia data applications, e.g., five encrypted
CD-quality audio streams may be transmitted from a SUN work-
station utilizing an RC5 with 12 rounds and 128 bit keys in con-
junction with keyed MD5 authentication.

15

To perform the translation of abstract application require-
ments to low level requirements in the Da CaPo++ middle-
ware, a way to predict resource consumption as a function of
employed security algorithms needs to be found. The solution
is a formula that can be fed by implementation and platform-
dependent figures, resulting in the number of CPU seconds re-
quired for the encryption or authentication of a certain amount
of data - including key change and internal processing overhead.
For simplification purposes, the calculated resource consump-
tion represents the maximum of the cost on the sending and the
receiving side.

The formula below determines required CPU seconds per
Mbit of processed data. π indicates the number of packets that
are contained in a Mbit, Pcost represents the system inherent
per-packet protocol processing cost (e.g., 0.015 ms for the mea-
surement environment), Acost indicates the per-megabit module
inherent overhead, ρ stands for the number of RSA key encryp-
tions done per Mbit (not equal to the number of key changes, as
several keys can be grouped together for one RSA operation),
κ determines the number of keys that are grouped together, and
κb defines for the number of bytes in one single key. RSAcost
stands for the cost of a single RSA operation (approximately
3.6 ms per Byte). Kcost and Rcost represent the cost for chang-
ing the key of an algorithm and the cost for gathering the random
material used to form the key (about 1.3 ms per key).

CPU

[s

Mbit

]

= κPcost + Acost +

ρκκbRSAcost + κKcost + κRcost

Applying an example to this formula shows that the result de-
pends on the number of packets per megabit, the number of key
changes, and the key encryption/exchangesper megabit. Assum-
ing 1000 Byte packets, key changes to be performed every 100
kByte, and RSA operations performed every 5 key changes, the
following algorithm dependent cost result:

C = 125 · 0.000015 + Acost + 0.25 · 1.25 · κb · 0.0036 +

1.25 · Kcost + 1.25 · 0.0013

TABLE VI

ALGORITHM COSTS AND THROUGHPUT

Algorithm MD5 DES 3DES IDEA RC5-12-16
Acost 0.0108 0.0234 0.0701 0.0380 0.0129

κb 16 8 16 16 16
Kcost 0 0.0007 0.0022 0.0002 0.0001

CPU
[s/Mbit]

0.029 0.035 0.091 0.056 0.031

Mbit/s 35 29 11 18 32

To combine required costs for authentication and encryption,
CPU seconds per Mbit values for authentication and encryp-
tion must be summarized. Table VI represents cost values and
achievable middleware throughput as derived for the measure-
ment platform of Da CaPo++.

Data Send
Data Receive

� +/- 1.25

� +/- 0.48

� +/- 1.59

+/- 5.38

SPARC20ULTRA 170E

T
hr

ou
gh

pu
t

[M
bi

t/
s]

80

70

60

50

40

30

20

10

0

Fig. 16. Saturated Raw API Throughput

D. API Performance

The API plays an important role during connection establish-
ment and data transfer. Control data are exchanged between the
application and the Da CaPo++ core over a Unix domain socket
by an IPC mechanism. User data exchange is supported by a
shared memory concept [37] and data is either injected or re-
ceived by an application in the upper part of API. Within the
lower part of the API, the A-module either generates new data or
consumes incoming data. Figure 16 depicts the maximum per-
formance that can be expected for sending or receiving data over
the API. These results were obtained by sending and receiving,
respectively, 1000 packets of 1000 Byte size each. The differ-
ence between the maximal sending throughput and the maximal
receiving throughput is due to the overhead in A-modules, since
data coming from the application are available to the Lift after
an additional thread-switch for accessing the call-back function
from the Lift.

API measurements with varying packet sizes in the sending
direction are presented in Figure 17. An almost linear relation
between the packet size and the throughput is achieved, reaching
the maximum for 8 kByte packets at approximately 108 Mbit/s.
These figures are caused by the relatively large overhead due to
semaphore operations of the shared memory which are an in-
herent problem of the applied operating system. The required
time to copy larger packets via the C-library call memcpy() is
not significant compared to these operations. Since multimedia
data originating in devices bypass the API, these obtained num-
bers specifically determine the upper limit to the application-to-
application throughput. The high degree of modularity applied
to all threads (Lift, API) and processes (applications) could be
reduced further to achieve an ever higher API throughput, how-
ever, implemented applications experienced a sufficient perfor-
mance as these figures show.

The Da CaPo++ API throughput achieved has been compared
to a number of different alternatives as depicted in Figure 18.
The triangles show that the Da CaPo++ API performs very well
ranging from 13.7 Mbit/s for 256 Byte packets to 274.2 Mbit/s
for 8 kByte packets [37]. These numbers are in-line with Unix
Sockets as well as Internet Sockets. Of course, a shared mem-
ory solution would give better performance, however, note that
only user data not originating from a multimedia device must
cross the API. Therefore, the API does not act as bottleneck for
multimedia data transmissions.

16

0.1

1

10

100

1000

100 1000 10000

T
hr

ou
gh

pu
t (

Se
nd

)
[M

bi
t/s

]

Packet Size [Byte]

Throughput
Standard Deviation

Fig. 17. API Throughput

10

100

1000

100 1000 10000

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Packet Size [Byte]

Internet Sockets
Unix Sockets

Shared Memory
Da CaPo++ API

Fig. 18. Throughput Comparison of Different API Mechanisms

VII. SUMMARY AND CONCLUSIONS

The Da CaPo++ middleware is a comprehensive systems ap-
proach providing QoS-based multimedia services to applica-
tions. Its key characteristics and major results comprise
• The Application Programming Interface hides away complex
protocol issues from the programmer, providing an abstract and
QoS-based interface.
• Security and as not discussed in detail multicast are
seamlessly integrated into the QoS specification offered by
Da CaPo++.
• The Da CaPo++ approach provides valuable and well-adapted
services and protocols to application programmers. By applying
it in the implementation of a sample real-life picture phone ap-
plication, a significant proof of concept has been presented.
• A prototype has been implemented and submitted to perfor-
mance measurements. The results show that the implementation
approach taken provides for a highly efficient protocol process-
ing (Lift algorithm) which has been shown to fulfill soft real-
time requirements, even when secure protocols are used.

The Application Programming Interface of Da CaPo++ offers
the required degree of transparency between applications and
the middleware. While the complexity of the Da CaPo++ core
and of communication-relevant tasks is completely hidden from
the application programmer, a useful exploitation is possible
with QoS attribute specifications. Although breaking the trans-
parency by handling application QoS within the Da CaPo++
core in the first place (applications are requested to specify their
communication requirements for underlying “layers”), this of-
fers an order of magnitude better alternatives in providing a

best-suited communication protocol and service from the mid-
dleware’s point of view. Even in case of QoS-ignorant applica-
tions, communication facilities are provided by the middleware
relying on pre-defined standard communication protocols. The
API abstractions developed show to be suitable and easy-to-use
for application programmers providing QoS specifications. The
support of efficient data transfers is achieved at the same time.
Since multimedia devices and the middleware are tightly inter-
connected, applications do not require much effort for control-
ling these devices. Therefore, many difficult aspects of multi-
media support are no longer part of the application, but are com-
pletely handled within the middleware. The general-purpose and
QoS-based communication API offers a set of functions for
communication purposes, where the flow types defined in the
API are extensible and may be used naturally to generate ob-
jects and protocols required for communications.

Security and multicasting functionality is made available to
users in the same way as they request for a reliable transfer of
messages. The Da CaPo++ approach integrates security func-
tionality into middleware by synthesizing security into addi-
tional QoS attributes. Thus, properties of secure protocols are
as changeable as those of insecure protocols, provided that both
parties agree on such changes.

Da CaPo++ is capable of accommodating in a tailored fashion
a variety of multimedia application requirements due to its inter-
nal configuration facility for communication protocols and ser-
vices. This flexibility achieved is fruitful for applications, how-
ever only required at the level of different protocols and for a
group of protocol functions concerning security, multicasting,
and error control. Experiences gained from the prototypical im-
plementation reveal that protocol processing for the transmis-
sion of continuous data, e.g., audio or video, can be performed
with the Lift efficiently on standard workstations. Specifically,
the exact number of concurrently supported data streams de-
pends on their particular requirements, e.g., in terms of secu-
rity protocol functions. The Lift as a run-time system for modu-
lar protocols shows, in the given implementation environment, a
minimum overhead of 9 µs for the packet allocation and a per-
run Lift overhead of 0.4 µs for each module in the Lift’s data
path. This determines adequate protocol processing efficiency
for a highly modular approach at the same time.

Concluding, the approach of supporting applications by ad-
vanced middleware, in terms of flexible protocol selection as
well as QoS support, is a promising one. Its viability has
been demonstrated by the design and implementation of the
Da CaPo++ middleware. Further advantages of Da CaPo++
are concerned with its independence of the underlying op-
erating system and the possibility to port the prototypical
Da CaPo++ implementation easily. Even though the perfor-
mance of Da CaPo++ is not optimal completely at a few places
in its current implementation, specifically due to undesirable
operating system interactions, the proof of concept for flexibly
configured communication protocols has been furnished, and an
efficient multimedia support on standard workstation’s hardware
has been accomplished successfully.

17

ACKNOWLEDGMENTS

The authors would like to express many thanks to their for-
mer ETH Da CaPo++ team members Christian Conrad, Toomas
Tommingas, and Martin Vogt, to a group of diploma students,
and to two project partners from former XMIT AG, Dietikon,
now with Swisscom, and Swiss Bank Corporation, Basel, now
UBS. George Fankhauser and Bettina Bauer commented on ear-
lier versions of this paper.

REFERENCES

[1] H. W. Lockhart, OSF DCE—Guide to Developing Distributed Applica-
tions, McGraw-Hill, New York, U.S.A., 1994.

[2] Object Management Group, “CORBA: The common object request broker
architecture,” July 1995, Revision 2.0.

[3] “The TINA-C homepage,” http://www.tinac.com, 1998.
[4] D. Rogerson, Inside COM, Microsoft Press, Redmond, Washington,

U.S.A., 1997.
[5] R. van den Linden, “An overview on the advanced network systems archi-

tecture (ANSA),” Architectural Report AR.000.00, APM Ltd., Cambridge,
England, 1993.

[6] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, W. Kachro, and
A. Gokhale, “Applying optimization patterns to design real-time ORBs,”
in 5th USENIX Conference on OO Technologies and Systems COOTS’99,
May 1999, San Diego, California, U.S.A.

[7] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W.H. Sanders, D. E.
Bakken, M. E. Berman, D.A. Karr, and R.E. Schantz, “AQuA: An adaptive
architecture that provides dependable distributed objects,” in 17th IEEE
Symposium on Reliable Distributed Systems (SRDS’98), West Lafayette,
Indiana, U.S.A., Oct. 1998, IEEE.

[8] I. Foster and C. Kesselman, “The Globus project: A status report,” in
12th International Parallel Processing Symposium and 9th Symposium on
Parallel and Distributed Processing (IPPS/SPDP’98), Mar. 1998.

[9] D. Schmidt and T. Suda, “Transport system architecture services for high-
performance communication subsystems,” IEEE Journal on Selected Ar-
eas in Communications, vol. 11, no. 4, pp. 489–506, May 1993.

[10] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-
performance communication subsystems,” IEEE Journal on Selected Ar-
eas in Communications, vol. 11, no. 4, pp. 507–518, May 1993.

[11] L. Peterson N. Hutchinson, “The x-Kernel: An architecture for implement-
ing network protocols,” IEEE Transactions on Software Engineering, vol.
17, no. 1, pp. 64–76, Jan. 1991.

[12] D. Mosberger, SCOUT: A Path-based Operating System, Ph.D. thesis,
University of Arizona, Tucson, U.S.A., 1997.

[13] D. Decasper, M. Waldvogel, Z. Dittia, H. Adiseshu, G. Parulkar, and
B. Plattner, “Crossbow—a toolkit for integrated services over cell-
switched IPv6,” in IEEE ATM Workshop, Lisboa, Portugal, June 1997.

[14] D. Clark and D. Tennenhouse, “Architectural considerations for a new
generation of protocols,” ACM Computer Communication Review, vol.
20, no. 4, pp. 200–208, Sept. 1990.

[15] A. Danthine, “The OSI’95 transport service with multimedia support,” in
Research Reports ESPRIT, Project 5341. 1994, vol. 1, Springer, Berlin,
Germany.

[16] A. Campbell, G. Coulson, and D. Hutchinson, “A Quality of Service ar-
chitecture,” Computer Communications Review, vol. 1, no. 2, pp. 6–27,
Apr. 1994.

[17] K. Nahrstedt, An Architecture for End-to-end Quality-of-Service Provision
and its Experimental Verification, Ph.D. thesis, University of Pennsylva-
nia, U.S.A., 1995.

[18] S. Narayan K. Nahrstedt, H. Chu, “QoS-aware resource management for
distributed multimedia applications,” Journal on High Speed Networking,
1998, (to appear).

[19] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A survey of QoS archi-
tectures,” Multimedia Systems, vol. 2, no. 6, pp. 138–151, 1998.

[20] B. Stiller, Quality-of-Service—Dienstgüte in Hochleistungsnetzen, Inter-
national Thomson Publishing, Bonn, Germany, 1996.

[21] D. Schmidt, “IPC SAP: An object-oriented interface to operating system
interprocess communication services,” C++ Report, vol. 4, no. 8, pp. 1–
10, November/December 1992, SIGS.

[22] S. Böcking, “Sockets++: A uniform application programming interface for
basic-level communication services,” IEEE Communications Magazine,
vol. 34, no. 2, pp. 114–123, Dec. 1996.

[23] “WinSock2: Information, architecture, and specification,”
http://www.sockets.com/, 1997.

[24] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 protocol,” Netscape
Communications Corporation, http://home.netscape.com/eng/ssl3/, Nov.
1996.

[25] M. Purser, Secure Data Networking, Artech House, London, England,
1993.

[26] S. Casner and S. Deering, “First IETF internet audiocast,” ACM Computer
Communication Review, vol. 22, no. 3, pp. 92–97, July 1992.

[27] S. Deering, Multicast Routing in a Datagram Internetwork, Ph.D. thesis,
Stanford University, California, U.S.A., Dec. 1991.

[28] D. Bauer, B. Stiller, and B. Plattner:, “Guaranteed multipoint commu-
nication support for multimedia applications,” in SYBEN’98 Broadband
European Networks Conference, Zürich, Switzerland, May 18-21 1998,
pp. 395–404.

[29] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner, and
M. Waldvogel, “Project Da CaPo++—Volume I: Architectural and de-
tailed design,” Tech. Rep. 28, TIK, Swiss Federal Institute of Technology,
Zürich, Switzerland, July 1997.

[30] T. Plagemann, B. Plattner, M. Vogt, and T. Walter, “Model for dynamic
configuration of light-weight protocols,” in 3rd IEEE Workshop on Future
Trends of Distributed Systems, Taipeh, Taiwan, Apr. 1992, pp. 100–106.

[31] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner, and
M. Waldvogel, “Project Da CaPo++—Volume II: Implementation doc-
umentation,” Tech. Rep. 29, TIK, Swiss Federal Institute of Technology,
Zürich, Switzerland, Aug. 1997.

[32] M. Vogt, T. Plagemann, B. Plattner, and T. Walter, “Eine Laufzeitumge-
bung für Da CaPo,” in GI/ITG Arbeitstreffen ”Verteilte Multimediale Sys-
teme”, Stuttgart, Germany, Feb. 1993, pp. 3–17, K. G. Sauer, München,
Germany.

[33] P. Zimmermann, The Official PGP Users Guide, MIT Press, Boston,
Massachusetts, U.S.A., 1995.

[34] C. Conrad and B. Stiller, “A QoS-based application programming inter-
face for communication middleware,” in 22nd IEEE Conference on Lo-
cal Computer Networks, Minneapolis, Minnesota, U.S.A., Nov. 1998, pp.
274–283.

[35] W. R. Stevens, UNIX Network Programming, Addison Wesley Publishing
Company, Reading, Massachusetts, U.S.A., 1992.

[36] T. Gutekunst, Shared Window Systems, Ph.D. thesis, Swiss Federal Insti-
tute of Technology, Zürich, Switzerland, 1995.

[37] C. Conrad and B. Stiller, “A QoS-based application programming interface
for communication middleware,” in SPIE for the Voice, Video, and Data
Communication Symposium, Dallas, Texas, U.S.A., Nov. 1997, vol. 3233,
pp. 248–259.

[38] B. Stiller, “An application framework for the Da CaPo++ project,” in
5th Open Workshop on High Speed Networks, ENST, Paris, France, Mar.
1996, pp. 4–17 – 4–24.

[39] B. Stiller, C. Class, M. Waldvogel, G. Caronni, D. Bauer, and B. Plattner,
“The design and implementation of a flexible middleware for multime-
dia communications comprising usage experiences,” Tech. Rep. 54, TIK,
Swiss Federal Institute of Technology, Zürich, Switzerland, July 1998.

[40] Sun Microsystems, “SunVideo user’s guide,” 1994.
[41] B. Welch, Practical Programming in Tcl and Tk, Prentice Hall PTR,

Upper Saddle River, New Jersey, U.S.A., 2nd edition, 1997.
[42] Pure Software, “Quantify user’s guide,” 1995.

Burkhard Stiller received his diploma degree in com-
puter science and his doctoral degree from the Uni-
versity of Karlsruhe, Germany in October 1990 and
February 1994, respectively. From January 1991 un-
til September 1995 he has been a Research Assistant
at the Institute of Telematics, University of Karlsruhe,
being on leave in 1994/95 for a one-year EC Research
Fellowship at the University of Cambridge, Computer
Laboratory, England. Since November 1995 he is with
the Computer Engineering and Networks Laboratory
TIK, ETH Zürich, Switzerland as a Lecturer for mul-

timedia communications and a Research Associate.
Dr. Stiller currently acts as technical program co-chair for the DSOM’99

and has served as a reviewer for journals, conferences, and workshops. Besides
managing research projects in Germany, Switzerland, and the UK, his primary
research interests include architectures for multimedia communication systems,
middleware, Quality-of-Service models, charging and accounting systems, and
ATM networking. He is a member of the IEEE, ACM, and the Gesellschaft für
Informatik GI in Germany.

18

Christina Class received her diploma degree in com-
puter science applied to business administration from
the University of Mannheim, Germany in 1995. Since
1995 she has been with the Computer Engineering and
Networks Laboratory TIK at ETH Zürich, Switzerland
as a Research Assistent. She is currently completing
the Ph.D. degree in the Department of Electrical En-
gineering at ETH Zürich.
Her research interests include communication proto-
cols, multimedia, middleware, Quality-of-Service and
synchronization of multimedia data. She is a student

member of the IEEE and ACM.

Marcel Waldvogel received his diploma degree in
computer science from ETH (Swiss Federal Institute
of Technology) Zürich in 1994. He is currently work-
ing towards the Ph.D. degree at the Computer Engi-
neering and Networks Laboratory TIK at ETH Zürich.
His research interests include security and privacy is-
sues in communication networks and distributed sys-
tems, algorithms for high-speed packet classification,
and distributed storage systems. Marcel Waldvogel is
maintaining the Swiss PGP key server. He is a mem-
ber of the ACM.

Germano Caronni received his diploma degree in
computer science from ETH Zürich in 1993. In the
same year, he joined the Computer Engineering and
Networks Laboratory TIK at ETH as a research assis-
tant. Currently, he is per-suing his Ph.D. on QoS-based
Dynamic Security. Since 1997, he is with Sun Mi-
crosystems, now with the Network and Security group
of Sun Labs.
Mr. Caronni was one of the first to invent a process to
watermark images, participated in the IETF (IPSEC),
led the independent implementation effort for SKIP

(secure TCP/IP) and its integration into an adaptive firewall. In 1997, he won
the RC5/48 challenge of RSA Data Security Inc. His work and publications’ fo-
cus are in the area of distributed systems and communication security. He is a
member of the IEEE and ACM.

Daniel Bauer is a researcher at the IBM Research
Laboratory in Zürich, Switzerland. He received his
diploma degree in computer science from the Swiss
Federal Institute of Technology, ETH Zürich in 1993.
From 1993 until 1997 he worked as a Research As-
sistant with the Computer Engineering and Networks
Laboratory, TIK at the ETH Zürich. In 1997 he re-
ceived his Ph.D. in electrical engineering also from
the ETH Zürich.
Dr. Bauer’s research interests include routing,
Quality-of-Service, distributed computing, multime-

dia, multicasting, and resource management.

