
Scalable Best Matching Prefix Lookups

Marcel Waldvogel George Varghese Jonathan Turner Bernhard Plattner
Washington University in St. Louis and ETH Zürich

Abstract

All global routing protocols use hierarchies to allow scaling to a
world wide community while keeping the routing database size
manageable. Databases of variable length prefixes are a powerful
tool for providing this in a flexible manner, but require a Longest
Prefix Matching algorithm. In this paper, we report a fundamentally
new solution that is both algorithmically interesting and practical.

Our scheme is based on doing binary search on hash tables orga-
nized by prefix lengths, and scales very well as address and routing
table sizes increase: independent of the table size, it requires a worst
case time of

���������	��
�
���
��������������
hash lookups. With the current In-

ternet Protocol, which uses 32 bit addresses, at most 5 hash lookups
are needed; for the upcoming 128 bit addresses of the next gener-
ation Internet Protocol (IPv6), 7 lookups suffice. Several refine-
ments, including specializing the Binary Search with every match,
considerably reduce the average number of hash search steps to less
than 2.

1 The Lookup Problem

Messages on the Internet are ferried by a system of automated post
offices, called routers, that are interconnected by communication
links. For each message received from any of its input links, the
router decides which of its outgoing links it will forward this mes-
sage to based on the destination address encoded in the packet.

Because of the flexible hierarchies needed to avoid database size
explosion, this forwarding decision cannot be done by a simple ex-
act match but by Longest Prefix Matching. To keep up with faster
links, each lookup should take a few hundred nanoseconds.

Internet addresses are 32 bit strings, and each prefix length can
be vary from 1 to 32 bits. Most current implementations are based
on bitwise branching tries. Thus, each possible length is tested se-
quentially, requiring up to the number of address bits memory ac-
cesses; this is too slow for high-speed routers.

2 Binary Search on Prefix Lengths

Instead of searching for prefixes one length at a time, the new
scheme divides the problem in half at each stage. Instead of asking
if the longest prefix is at length 1, length 2, etc. (the naive way), the
new scheme does binary search on the set of possible prefix lengths.

Suppose we could start by asking the question “Given our pre-
fix database and the current message’s destination address, does the
longest prefix matching this address have a length in the range from������������ 

”. If the answer is no, we know the answer must be in
the range

�!��������"
; so we can cut down the range further by asking

whether the longest prefix length is in the range # ��������"
. If we con-

tinue in the same way, we will do binary search on prefix lengths
and find the correct length prefix in time that is logarithmic in the
address length.

However, there are some pitfalls to be avoided. They can be
demonstrated using a small database with U.S. destinations orga-
nized in Country.State.City format, containing the prefixes USA.*
(which is stored in the length 1 table); USA.CA.* (length 2), and
USA.MO.SL (length 3).

First, suppose we get a packet destined for USA.CA.LA. We
don’t know which length the correct prefix has, so we start with
the middle (length 2) database, extract the first 2 symbols and get
a match with USA.CA.*. Thus, we can immediately discard the
length 1 table (as we have already found a longer match) but we
certainly need to search the length 3 table as it may have a longer
match. This gives us a simple rule: we start by looking for a match
(using say hashing) in the database corresponding to the middle
length of our current set. If we get a match, we try lengths longer
than the probe; if we do not, we try shorter prefixes, halving the
range of prefix lengths with each step.

To make this rule work in all cases (e.g. when searching for
USA.MO.SL) we need to introduce a signpost at length 2. These
are pseudo-prefixes, pointing the search routine towards the longer
prefixes. Without this signpost (USA.MO.*), no match would be
found at length 2, and shorter prefixes would be searched, missing
the USA.MO.SL entry.

Second, consider a search for the destination address
USA.MO.KC. The new signpost in the length 2 table will
lead us to length 3, where we won’t get a match. The real longest
prefix of USA.MO.KC is USA.* in the length 1 table. This
problem can be solved without inefficient backtracking by storing
a reference to the correct prefix with the signpost. Still, the final
search procedure is simple and fast (extremely small constant
factors).

3 Conclusions

This scheme has been described in a paper that was presented at
the ACM Annual Networking conference (SIGCOMM) in Cannes,
France. More details, further refinements (of which the most sig-
nificant is a way of specializing the binary search with every search
step by compactly encoding search trees), and references to prior
work can be found in [1].

Internet routers soon will have to look up 128 bit addresses in-
stead of 32 bit ones, as the Internet prepares to retrofit to serve
a global community of users and user devices, where even your
toaster and Nike shoes might have Internet addresses. Our binary
search is especially attractive because of its scalability when deal-
ing with next generation 128 bit addresses. A number of companies
have finalized licensing agreements to use this scheme in products
that should be introduced in 1998.

References

[1] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard
Plattner. High Speed Scalable IP Lookups. In Proceedings of
ACM SIGCOMM ’97, Cannes, France, September 1997. Also
available from http://www.tik.ee.ethz.ch/˜mwa/


